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Abstract This study is devoted to the thermal decom-

position of ZnC2O4�2H2O, which was synthesized by solid-

state reaction using C2H2O4�2H2O and Zn(CH3COO)2�
2H2O as raw materials. The initial samples and the final

solid thermal decomposition products were characterized

by Fourier transform infrared and X-ray diffraction. The

particle size of the products was observed by transmission

electron microscopy. The thermal decomposition behavior

was investigated by thermogravimetry, derivative thermo-

gravimetric and differential thermal analysis. Experimental

results show that the thermal decomposition reaction

includes two stages: dehydration and decomposition, with

nanostructured ZnO as the final solid product. The Ozawa

integral method along with Coats–Redfern integral method

was used to determine the kinetic model and kinetic

parameters of the second thermal decomposition stage of

ZnC2O4�2H2O. After calculation and comparison, the

decomposition conforms to the nucleation and growth

model and the physical interpretation is summarized. The

activation energy and the kinetic mechanism function are

determined to be 119.7 kJ mol-1 and G(a) = -ln(1 – a)1/2,

respectively.

Keywords Solid-state reaction � Thermal

decomposition kinetics � Ozawa integral method �
Coats–Redfern integral method � Nanostructured zinc

oxide

Introduction

Sulfur compounds (mainly as H2S and COS) are the most

abundant impurity in coal-derived synthesis gas (syngas)

[1]. These species must be removed from the syngas prior

to its utilization due to their negative effects on envi-

ronment and chemical processing. Zinc oxide (ZnO) is

known to be used as a highly efficient desulfurizer of

coal-derived fuel gas and chemically synthesized gases

[2–4] since it can reduce the concentration of H2S to a

few parts per million [5, 6]. Till now, many methods have

been developed to synthesize nanostructured ZnO

including direct precipitation [7], vapor–liquid–solid pro-

cess [8], vapor phase growth [9], homogeneous precipi-

tation [10], etc. However, thermal decomposition is one

of essential steps for preparation of ZnO from different

precursors.

Metal oxalate hydrates can be dehydrated and decom-

posed by heating to give the corresponding metal oxides,

carbon monoxide, carbon dioxide, and water [11, 12].

Hence, metal oxalate hydrates have been exploited as

precursors for preparing oxides by solid-state reaction

methods [12–14]. Even if the thermal decomposition of

ZnC2O4�2H2O has been the subject of several studies

[12, 15, 16], the mechanism and reaction kinetics of this

transformation remains poorly understood.

Kinetic analysis of decomposition processes can be

profitably of great importance to the understanding of

behavior of intermediate products and products of thermal

decomposition [17]. Number of analytical methods were

developed in order to determine kinetic parameters for

decomposition processes [18–20]. In fact, many of the

present available kinetic methods differ from each other

just due to their respective different approximations of the

temperature-containing integral [21]. The experimental
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kinetic data were usually analyzed using integral methods

because of their inherent advantages [22].

In this paper, ZnC2O4�2H2O was prepared and the

thermal decomposition was investigated by means of both

an experimental study and a numerical calculation. Two

popular methods including those of Ozawa [23, 24] integral

method and Coats and Redfern [25] integral method were

applied to determine the kinetic model and the kinetic

parameters of the second decomposition process of

ZnC2O4�2H2O. The results will provide a theoretical basis

for accurate design and preparation of ZnO-based desul-

furization sorbents.

Experimental

Reagent and instrument

Zn(CH3COO)2�2H2O (analytical-grade product, Tianjin Fen-

gchuan Chemical Reagent Science and Technology Co. Ltd.,

China); C2H2O4�2H2O (analytical-grade product, Tianjin

Fengchuan Chemical Reagent Science and Technology

Co. Ltd., China); QM-3SP2 planetary ball mill (made in

Nanjing, China).

Preparation

ZnC2O4�2H2O was prepared by solid-state reaction from

C2H2O4�2H2O and Zn(CH3COO)2�2H2O. Starting materi-

als were thoroughly mixed with an agate mortar and pestle

at a molar ratio of 1.0. The powder mechanical mixture was

homogenized in a planetary ball mill for 2 h, and then dried

in an oven at 80 �C for about 12 h.

Characterization

Spectroscopic properties were evaluated by a Fourier

transform infrared (FTIR) spectrometer SHIMADZU

FTIR-8400s, in the range of 4,000–400 cm-1 at room

temperature. In the spectra, the transmittance was repre-

sented versus wavenumber (cm-1).

The thermal properties were examined by German

NETZSCH-STA409C thermal analyzer. A series of non-

isothermal tests of ZnC2O4�2H2O was carried out in a

dynamic (40 mL min-1) atmosphere of nitrogen from

room temperature up to 600 �C at different heating rates of

5, 10, 15, and 20 �C min-1. The sample mass used was

about 10.0 mg.

The ZnC2O4�2H2O and solid products of thermal

decomposition were characterized by X-ray diffraction

(XRD) using a Rigaku D/max-2500 equipped with graphite

monochromatized Cu Ka radiation source (k = 1.5418 Å)

operating at 40 kV and 100 mA.

The particle size of the decomposition products was

observed by transmission electron microscopy (TEM)

(JEOL, JEM-1011) working at 100 kV with a point reso-

lution of 0.3 nm.

Results and discussion

Thermal analyses of ZnC2O4�2H2O

Typical thermogravimetry (TG)–derivative thermogravi-

metric (DTG)/differential thermal analysis (DTA) curves of

ZnC2O4�2H2O at heating rate of 10 �C min-1 in nitrogen

atmosphere are shown in Fig. 1. As shown by the TG curves,

ZnC2O4�2H2O has two mass loss stages. The first mass loss

appears from 90 to 171 �C, accompanied by a large endo-

thermic DTA peak at 152 �C with a slight shoulder on its

low-temperature side (at 130 �C). The calculated mass loss

agrees with the evolution of 2 mol H2O per mole of

ZnC2O4�2H2O. The second mass loss of 37.2 % (theoretical

mass loss 38.03 %) appears between 300 and 400 �C, which

is accompanied by a sharp endothermic peak at 402 �C,

corresponding to the ZnC2O4 decomposition reaction. The

total mass loss is 56.9 %, which is in good agreement with

the calculated value of 57.1 % that can be calculated if it is

assumed that the ZnC2O4�2H2O is completely transformed

into ZnO. The dehydration and decomposition correspond to

the following reactions (1) [31] and (2) [16], respectively:

ZnC2O4 � 2H2O! ZnC2O4 þ 2H2; ð1Þ
ZnC2O4 ! ZnOþ CO2 þ CO: ð2Þ

XRD measurements

Typical XRD patterns of the initial sample and the products

prepared at different thermal decomposition temperatures are

shown in Fig. 2. The initial sample examined by XRD analysis is

ZnC2O4�2H2O. Thepeak intensities derived from ZnC2O4�2H2O

decreased by raising the temperature to 270 �C, whereas those

derived from the ZnC2O4 increased. At 300 �C, thermal

decomposition products ZnO appear in the XRD patterns. The

XRD patterns of the products obtained at temperatures of

330–390 �C show the peaks for only ZnO. By increasing the

temperature, the crystallinity became more and more higher. The

product obtained at 390 �C is in good agreement with the

product, which was obtained at 420 �C. It is found that the

thermal decomposition temperature occurs between 330 and

390 �C, which is consistent with the result obtained by TG.

FTIR analysis of ZnC2O4�2H2O

The FTIR spectra of ZnC2O4�2H2O and the decomposition

product are shown in Fig. 3. As shown in Fig. 3a, the
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strong and broad band centered at about 3,394 cm-1 is

assigned to stretching modes of hydrated water [26, 27],

m(O–H); This band is related to moisture in the sample. The

strong band at 1,634 cm-1 is characteristic of C=O anti-

symmetric stretching modes [26, 28], mas(C=O). The other

peaks in this spectrum could be assigned as: the double

band at 1,364 and 1,319 cm-1 is due to the O–C–O

stretching modes [29], m(O–C–O); the small band at

822 cm-1 is the C=C–O bending modes [29], d(O–C=O);

the band at 496 cm-1 is the Zn–O stretching modes [30],

m(Zn–O). From all the above, the initial sample is

ZnC2O4�2H2O without any other impurity. The FTIR

spectra (Fig. 3b) of the final product indicate that ZnO is

the only product, which is in good agreement with the

result obtained by XRD.

TEM studies

TEM photograph of the decomposition product obtained at

390 �C is shown in Fig. 4. The ZnO nanoparticles are

almost about 30–50 nm in size.

The effect of heating rate on the decomposition

of ZnC2O4�2H2O

The DTA curves obtained at various heating rates (5, 10,

15, and 20 �C min-1) for ZnC2O4�2H2O are shown in

Fig. 5. It is found that, with the increase of heating rate, the

peak temperature of the first stage gradually shifts to the

higher. For the second stage, the decomposition tempera-

ture shift to the higher linearly and the peaks become more

and more sharp. These shifts in the first and second peak

temperatures are shown in Fig. 6, and the decomposition

peak is kinetically controlled.

Thermal decomposition kinetic of ZnC2O4

The Ozawa method is described with the following

equation:

log b ¼ log
AE

RGðaÞ

� �
� 2:315� 0:4567

E

RT
: ð3Þ

The terms in Eq. (3) can be described as follows: G(a)

stands for the conversion functional relationship, E is the

Fig. 4 Typical TEM photograph of the decomposition product
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Table 1 The calculated data obtained from Fig. 6

b/�C min-1 logb Tp/K 1/Tp

5 0.699 657.325 0.001521

10 1.000 677.048 0.001477

15 1.176 689.655 0.001450

20 1.301 699.791 0.001429

1122 C. Hu et al.

123



activation energy, A is the pre-exponential factor, R is the

universal gas constant, T is the absolute temperature, b is

the heating rate, and a(0 \ a\ 1) is the fractional

conversion. The heating rate and the degree of

conversion are defined as:

b ¼ dT=dt; ð4Þ

a ¼ m0 � mð Þ
�

m0 � mfð Þ; ð5Þ

where m0, m, and mf refers to the initial, actual, and final

mass of the sample.

The Ozawa method allows evaluating the dependence of

the activation energy on the degree of conversion without

the knowledge of the explicit form of G(a) [32, 33]. At the

peak temperature, the degree of conversion a at different

heating rates would be at a constant value [34], the reaction

rate at a constant extent of conversion is only a function of

the temperature. All the calculated data obtained from

Fig. 6 (peak II) are summarized in Table 1.

The plot of logarithm of heating rates versus reciprocal of

the absolute peak temperature for ZnC2O4 is described in

Fig. 7. It could be found that the logb against 1/Tp is straight

lines with R2 = 0.9988, which indicates that the mechanism

of decomposition of ZnC2O4 is the first order [35]. The slope
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Fig. 7 The plot of logb versus 1/Tp for ZnC2O4

Table 2 The data of temperature at different a values

a 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

T(K) 624.527 635.895 641.499 647.105 652.686 655.502 658.339 661.181

Table 3 G(a) integral kinetic equations for different mechanisms

No. Function name Mechanism Symbols Integral equation

1 Parabolic law Diffusion, 1D D1 a2

2 Valensi(Barrer) eqn. Diffusion, 2D D2 (1 - a)ln(1 - a) ? a

3 Ginstling–Broushtein eqn. Diffusion, 3D (column symmetry) D3 [1-(1 - a)1/3]2

4 Jander eqn. Diffusion, 3D (ball symmetry) D4 (1 - 2a/3)-(1 - a)2/3

5 Anti-Jander eqn. Diffusion, 3D D5 {[1/(1 - a)]1/3-1}2

6 Zhuralev, Lesokin, and

tempelmen eqn.

Diffusion, 3D D6 [(1 ? a)1/3-1]2

7 Self-catalyzed reaction Au ln[a/(1 - a)]

8–12 Avrami–Erofeev eqn. N and G (n = 1, 1.5, 2, 3, 4) An [-ln(1 - a)]1/n

13 Shrinkage geometric shape

(column symmetry)

R1 1-(1 - a)1/2

14 Shrinkage geometric shape

(ball symmetry)

R2 1-(1 - a)1/3

15 Mampel power law P1 a

16 Mampel power law P2 a1/2

17 Mampel power law P3 a1/3

18 Mampel power law P4 a1/4

19 Second order Chemical reaction (2nd order) C2 (1 - a)-1-1

20 One and one-half order Chemical reaction (1 and 1.5 order) C1/1.5 (1 - a)-1/2

21 1/(1 - a)

22 1/(1 - a)2
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of the line is equal to -0.4567Ea/R. Therefore, the activation

energy (Ea) can be obtained from the slope of the graph. The

calculated value of activation energy is 119.7 kJ mol-1

(theoretical value 80–250 kJ mol-1) and the linear equation

can be described as:

log b ¼ 10:701� 6572:6=T : ð6Þ
The Coats–Redfern method is described with the fol-

lowing equation:

ln
GðaÞ
T2

� �
¼ ln

AR

bE

� �
� E

RT
: ð7Þ

The terms in Eq. (7) have the same meaning with those

in Eq. (3).

All the basic data of temperature at different a values

obtained from TG to DTG (Fig. 1) are summarized in

Table 2. The activation energy Eb can calculated from the

linear equation of ln[G(a)/T2] versus 1/T. The different forms

of G(a) [36–40] are shown in Table 3. The most similar Eb

obtained by comparing with Ea is 116.6 kJ mol-1. The

appropriate function G(a) corresponding to Eb is regarded as

the optimum kinetic function. The plot of ln[G(a)/T2] versus

1/T for the ZnC2O4 is shown in Fig. 8.

After calculation, the kinetic mechanism function and

linear equation could be shown as:

GðaÞ ¼ � lnð1� aÞ1=2: ð8Þ

ln G að Þ=T2
� �

¼ �14019:1=T þ 8:398: ð9Þ

It should be mentioned that, each measurement was

performed a minimum of two times, but more typically

three or four times, to ensure reproducibility. The

decomposition conforms to the nucleation and growth

model, and the physical interpretation is summarized as

follows: The reaction starts at separated points on the

crystal surface, where the lattice defects existed. The core

of a new phase is formed by these adjacent decomposition

products; afterward, the interface reaction of perinuclear

moleculars occurs on the nucleus. The growth and

extension of the new phase are accompanied by the

disappearance of the old phase, until the whole solid phase

has decomposed completely. The nucleus would be able to

grow and expand quickly once it is formed, since the

formation activation energy of the nucleus is larger than the

growth activation energy [36].

Conclusions

The thermal decomposition of ZnC2O4�2H2O has been

studied by a series of experiment and calculation. Experi-

mental results indicate that the thermal decomposition

process includes two stages: dehydration and decomposi-

tion, with nanostructured ZnO as the final solid product.

Much attention has been focused on the kinetics and

mechanism of the second decomposition stage. After cal-

culation and comparison, the decomposition conforms to

the nucleation and growth model. The activation energy

obtained from the DTA data by non-isothermal method

proposed by Ozawa integral method is 119.7 kJ mol-1.

The kinetic mechanism function obtained by Coats–Red-

fern integral method and Ozawa integral method could be

described by the following expression:

G að Þ ¼ � ln 1� að Þ1=2: ð10Þ
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