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Abstract The constant heating rate crystallization of

As2Se3 undercooled melt was measured by the differential

scanning calorimetry. The nonlinear regression analysis of

conversion temperature dependence was performed in frame

of the classical nucleation theory supposing the normal 3D

growth. The parameters of temperature dependence of

nucleation rate and growth rate were determined by three

step process. First the simple parabolic model was used to

estimate the maximum and width of nucleation/growth rate

temperature dependence. Then the obtained parabolic curves

were fitted by the theoretical ones. In the third step, the

obtained parameters were used as zero estimates for non-

linear regression analysis of experimental data. The results

obtained by using conversion degree a were compared with

the results obtained by using the -ln(1 - a) transformed

function. Although both treatments give comparable results

the use of -ln(1 - a) input data is preferred due to better

numerical stability of nonlinear regression treatment.

Keywords DSC � Nucleation � Crystal growth �
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Introduction

Due to high transmittance in the infrared region, low

phonon energies, and significant nonlinearity of their

optical properties chalcogenide glasses have been the

subject of intense fundamental and applied research for a

long time [1–4]. The details of non-isothermal crystalli-

zation kinetics are currently intensively studied by using

various experimental techniques for various systems but

with simplified mathematical treatment avoiding the direct

integration of kinetic equations for given time–temperature

regime [5–11]. Among the properties studied namely the

kinetics of crystallization tightly bounded with the glass

forming ability plays the crucial role. The nucleation and

growth of the As2Se3 glass as well as the Raman spectra

and glass structure were studied by Holubova el al.

[12–15].

In the previous work [15] dealing with the As2Se3

crystallization kinetics, the quadratic approximation of

nucleation rate, I, and growth rate, u, temperature depen-

dences were proposed. The degree of conversion was

determined by remelting of crystallized samples obtained

by crystallization experiments with specifically designed

time–temperature regimes emphasizing the various time

intervals given to the system at temperatures from the

temperature region where only the nucleation takes place.

In this work, the same procedure of quadratic approxima-

tion followed by nonlinear regression with theoretical I and

u temperature dependencies is applied to the crystallization

data obtained by simple recording of the DTA crystalli-

zation peaks measured at two different heating rates pre-

ceded with the same isothermal nucleation treatment.

Moreover, the attention is paid to the influence of substi-

tuting the degree of conversion a by the transformed

function -ln(1 - a).
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123

J Therm Anal Calorim (2013) 114:971–977

DOI 10.1007/s10973-013-3085-4



Method

In frame of the classic nucleation theory (CNT), the vol-

ume of crystalline phase, Vcr, crystallized at time t can be

expressed by [3, 16–19]:

VcrðtÞ ¼ g

Z t

0

Vmeðt0ÞI T t0ð Þ½ �
Z t

t0

u T t00ð Þ½ �dt00

8<
:

9=
;

d

dt0; ð1Þ

where Vme(t
0) represents the volume of liquid phase, and

we suppose the congruent crystallization, i.e., the rate of

homogeneous nucleation, I, as well as the linear growth

rate, u, depend only on the temperature. For low values of

the degree of conversion a = Vcr/(Vme ? Vcr), we can

neglect the time dependence of Vme and consider it equal to

the total system volume Vme & Vme ? Vcr. The exponent

d and the shape factor g depend on the crystal shape—for

the spherical particles d = 3 and g = 4p/3.

The temperature dependence of the homogeneous

nucleation rate can be expressed as:

IðTÞ ¼ Ns

kT

h
exp �DGa

kT

� �
N exp � 16pr3T2

m

3 DTð Þ2 DcrHVð Þ2kT

" #

ð2Þ

where Ns is the number of adjacent particles, k is the

Boltzmann’s constant, T is the thermodynamic

temperature, h is the Planck’s constant, DGa is the kinetic

barrier to nucleation, N is the number of particles per unit

melt volume, r is the surface tension, Tm is the equilibrium

melting temperature, DcrHV is the crystallization enthalpy

per unit volume, and the undercooling DT is defined as:

DT ¼ Tm � T : ð3Þ

Supposing the temperature independent value of r and

DcrHV and merging together the constant terms the

temperature dependence of homogeneous nucleation rate

can be expressed by using three constant terms:

IðTÞ ¼ KIT exp �AI

T

� �
exp � BI

T DTð Þ2

" #
; ð4Þ

where

KI ¼
NskN

h
ð5Þ

AI ¼
DGa

k
ð6Þ

BI ¼
16pr3T2

m

3 DcrHVð Þ2k
ð7Þ

and KI; AI; BI [ 0.

Similarly the linear crystal growth rate can be expressed

by [3, 16–19]:

uðTÞ ¼ km0 exp �DGa

kT

� �
1� exp � vDcrHmDT

VmkTmT

� �� �
;

ð8Þ

where k is the characteristic interparticle spacing, m0 is the

characteristic frequency of thermal particle vibrations, Vm

is the molar volume, DcrHm is the molar crystallization

enthalpy, and v is the volume occupied by one particle. As

in the case of the nucleation rate, we can express the

temperature dependence of crystal growth by three

constant parameters:

uðTÞ ¼ Ku exp �Au

T

� �
1� exp �Bu

DT

T

� �� �
; ð9Þ

where

Ku ¼ km0; ð10Þ

Au ¼
DGa

k
; ð11Þ

Bu ¼
vDcrHm

VmkTm

¼ DcrHm

RTm

; ð12Þ

and Ku; Au; Bu [ 0

It is worth noting [16] that the activation barrier DGa for

growth and nucleation may not necessarily be equal, since

the particle movements involved may be quite different for

nucleation and growth.

Inserting Eqs. (4) and (9) into the Eq. (1) and supposing

only the low values of the degree of conversion, a, we

obtain:

VcrðtÞ ¼ K 0
Z t

0

Tðt0Þ exp � AI

T t0ð Þ

� �
exp � BI

T t0ð Þ DT t0ð Þ½ �2

" #

Z t

t0

exp � Au

T t
00ð Þ

� �
1� exp �Bu

DT t00ð Þ
Tðt00Þ

� �� �
dt00

8<
:

9=
;

d

dt0;

ð13Þ

where

K 0 ¼ gKIK
d
u Vmeð0Þ: ð14Þ

In case of higher degrees of conversion, the

decreasing volume of melt has to be accounted by using

the -ln[1 - a(t)] instead of Vcr(t) at the left hand side of

the Eq. (13). Obviously the meaning of K0 proportionality

constant is correspondingly changed in this case.

Giving the set of values {K0, AI, BI, Au, Bu, d}, we can

obtain the time dependence of Vcr by simple numerical

integration of the Eq. (13) for an arbitrary time–tempera-

ture regime T(t). If the experimental data yexp(ti) propor-

tional to Vcr(ti), i.e., yexp(ti) = KyVcr(ti), are measured then

the least squares problem can be simply formulated:
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S K;AI;BI;Au;Bu; dð Þ ¼
X

i

yexpðtiÞ � KyVcrðtiÞ
� �2

¼
X

i

yexp tið Þ � yclc tið Þ
� �

¼ min:;

ð15Þ

where K = KyK0, and we suppose that the proportionality

constant is known. However, this nonlinear least squares

problem needs the appropriate starting estimates of the

unknown parameters. These can hardly be found by simple

mapping the sum of squares value as a function of six

independent parameters. Even if only five parameters can

be treated if we suppose some particular d value (e.g.,

d = 3), it is very difficult to cope with the problem due to

existence of many local minima of S.

x

z

x0

z0

d d

Fig. 1 The parabolic approximation used for growth and nucleation

rates -x = DT = Tm - T
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Fig. 2 Temperature dependence of conversion degree considered in

the regression treatment

Table 1 Parameters of quadratic approximation (16) of nucleation

and growth rate temperature dependence (sapr standard deviation of

approximation)

Input data x0I/K dI/K x0u/K du/K 102�sapr

a 135.8 ± 0.1 9.0 ± 0.1 38.8 ± 1.0 39.3 ± 1.9 1.33

-ln(1 - a) 68.0 ± 2.8 9.1 ± 0.1 36.1 ± 5.8 49.0 ± 6.9 1.47

Table 2 Results of nonlinear regression analysis with theoretical growth (Eq. 9) and nucleation (Eq. 4) rates

Input data log(AI/K) log(BI) log(Au/K) log(Bu) 102�sapr

a 5.182 ± 0.047 7.508 ± 0.063 3.976 ± 0.040 0.081 ± 0.377 1.40

-ln(1 - a) 5.414 ± 0.001 7.785 ± 0.001 4.039 ± 0.001 -0.717 ± 0.001 2.03

See also Figs. 3, 4, 5, and 6
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Fig. 3 Nucleation: a input data
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Fig. 4 Growth: a input data
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To solve the above problem, we suggested in the first

step the replacement of I(T) and u(T) functions by simple

parabolic functions defined by:

z ¼ max 0; azx2 þ bzxþ cz

� 	
; x ¼ DT ¼ Tm � T � 0;

ð16Þ

where z stands for I or u. However in the regression analysis

instead of parameters az, bz, and cz are used parameters with

simple physical meaning, i.e., the DT coordinate of the z

maximum, x0z, the maximal z value, z0z, and the distance, dz,

from x0 to x where z reaches the zero value, i.e., the basement

half width of z (see Fig. 1). The following relationships are

used for obtaining of az, bz, and cz from x0, d, and z0.

az ¼ �z0



d2

z ð17Þ

bz ¼ 2z0x0z



d2

z ð18Þ

cz ¼ z0 1� x2
0z

d2
z

� �
: ð19Þ

Thus in the first step, we use the parabolic approxima-

tions of I and u in the regression treatment of experimental

data yexp(ti). The Eq. (13) is evaluated with the K0 constant

set to one for this purpose:

yredðtÞ ¼
Z t

0

aI DT t0ð Þð Þ2þ bIDT t0ð Þ þ cI

� �

Z t

t0

au DTðt00Þð Þ2þ buDT t00ð Þ þ cu

h i
dt00

8<
:

9=
;

3

dt0: ð20Þ

Because all multiplicative constants are cumulated into

one constant, Kpar we can set u0 = I0 = 1 and optimize

only the values of x0I, x0u, d0I, and d0u. Moreover, we set

d = 3 for As2Se3 crystallization.

For each set of x0I, x0u, d0I, and d0u values the value of

Kpar is obtained by one step linear regression from:
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Fig. 5 Nucleation: -ln(1 - a) input data
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Fig. 6 Growth: -ln(1 - a) input data
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Fig. 7 Calculated versus experimental values for a input data
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Fig. 8 Calculated versus experimental values for -ln(1 - a) input

data
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Kpar ¼

P
i

yexpðtiÞyredðtiÞ
P

i

yredðtiÞ½ �2
: ð21Þ

In the second step, the obtained optimal parabolic

functions (with maximum value u0 = I0 = 1) will be fitted

by standard nonlinear least squares method with the

theoretical functions given by Eqs. (4) and (9). Such way

the starting estimates of AI, BI, Au, Bu needed for nonlinear

least squares treatment of experimental data will be obtained.

In the last step, the nonlinear regression analysis of

experimental data will be performed based on the theo-

retical (according the CNT) courses of I(T) and u(T) func-

tions. The value of K0 will be obtained in each step

analogically to the previous treatment of the Kpar constant.

Experimental

The As2Se3 glass was prepared by conventional direct

synthesis (melt-quenching technique) from high purity

elements (semiconductor purity—5 N elements). Synthesis

was carried out in evacuated silica ampoules at 850 �C for

24 h in a horizontal rocking furnace in order to ensure the

homogeneity of the melt. The melt was subsequently

quenched in cold water. Both homogeneity and composi-

tion were controlled using X-ray fluorescence (XRF) ana-

lyzer Eagle II (Roentgen Messtechnik AG).

Four crystallization experiments consisting from three

parts were realized. First the sample was heated from the

room temperature by the constant heating rate of

5 �C min-1 to the nucleation temperature of 230 �C. Then

the isothermal nucleation of 60 min followed. After that

the crystallization peak was recorded under the constant

heating rate up to 385 �C. The heating rates of

1.5 �C min-1 (peak No. 1 and 2) and 1.0 �C min-1 (peak

No. 3 and 4) were used. The degree of conversion a was

calculated from the relative peak area. Only the values

a\ 0.5 were used in the subsequent regression treatment

(Fig. 2). For the upper limit of such defined conversion

degree region, the transformed function accounting for the

decreasing volume of un-crystallized glass is significantly

different from the a value, i.e., -ln(1 - 0.5) = 0.693.

Therefore, the regression treatment was performed at the

transformed data too. The sum of squares of deviations

595 600 605 610 615 620 625 630 635

0.0

0.1

0.2

0.3

0.4

0.5

α

Peak No. 1

Exp
Calc

595 600 605 610 615 620 625 630 635

0.0

0.1

0.2

0.3

0.4

0.5 Peak No. 2 

Exp
Calc

585 590 595 600 605 610 615

0.0

0.1

0.2

0.3

0.4

0.5

T/K T/K

T/K T/K

Peak No. 3

α

α
α

Exp
Calc

585 590 595 600 605 610 615

0.0

0.1

0.2

0.3

0.4

0.5
Peak No. 4 

Exp
Calc

Fig. 9 Calculated curve versus experimental points for a input data (heat rate is 1.5 K min-1 for peak No. 1 and No. 2; 1.0 K min-1 for peak

No. 3 and No. 4, a\ 0.5)
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containing the experimental data of all four measured

crystallization peaks was minimized.

Results and discussion

The values of parameters of the parabolic I and u functions

resulted for a and -ln(1 - a) input data in the first step are

summarized in Table 1.

Significant differences between the results obtained for

transformed and untransformed input data can be seen

mainly in the position of the nucleation maximum. The

other parameters are within the standard errors practically

equivalent.

In the second step, these fixed parabolic functions were

least squares fitted (using the MS OFFICE-EXCEL Solver

utility) by theoretical functions according to the Eqs. (4)

and (9).

These parameters were in the last step used in the

nonlinear regression treatment of experimental data by

combination of the SIMPLEX method followed by the Pit

mapping method [20]. The own written FORTRAN

program was used for calculation. In this step the loga-

rithms of model parameters were optimized. Thus results

summarized in the Table 2 are given in the logarithmic

scale. It is worth noting that due to multiplicative mixing

expressed by Eq. (14), the individual values of KI and Ku

are not determined. Therefore, we use for graphical pre-

sentation the functions normalized to unity maximum

value.

From the results summarized in Table 2, it can be seen

that both types of input data gave comparable results. In

contrary to the results obtained in the work [15] the

resulting log(AI/K) values are higher than the values cor-

responding to the viscous flow activation energy [21]. In

graphical form, the route from optimum quadratic func-

tions to the optimum theoretical expressions can be found

in Figs. 3, 4, 5, and 6. When comparing with the quadratic

approximation (Figs. 4, 6) the extended non-zero low

temperature tail is present in the optimum theoretical

growth rate. In contrary (Fig. 5), the quadratic and theo-

retical courses are close for the nucleation rate obtained

from -ln(1 - a) input data. In case of a input data, the

quadratic approximation of nucleation rate (Fig. 3) is
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Fig. 10 Calculated curve versus experimental points for -ln(1 - a) input data (heat rate is 1.5 K min-1 for peak No. 1 and No. 2; 1.0 K min-1

for peak No. 3 and No. 4, a\ 0.5)
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shifted to unrealistically high undercooling values. The

preferable use of -ln(1 - a) input data is implied by this

fact. Comparing visually Fig. 3 with Fig. 5 and Fig. 4 with

Fig. 6, it can be found that the resulting optimized theo-

retical growth and nucleation rate temperature dependences

are almost identical for a and -ln(1 - a) input data. The

calculated and experimental values are graphically com-

pared in Figs. 7 and 8. It can be seen that the experimental

data are described with acceptable accuracy in both cases.

In Fig. 9, we can see the calculated curves which are

compared with experimental points for a\ 0.5 (heat rate

for peak No. 1 and peak No. 2 is 1.5 K min-1 and for peak

No. 3 and peak No. 4 it is 1.0 K min-1). Figure 10 shows

the same as the previous figure for -ln(1 - a), a\ 0.5

Conclusions

The nonlinear regression analysis of conversion dependence

on isothermal nucleation temperature and time was per-

formed in frame of the classical nucleation theory supposing

the normal 3D growth. It was found that the parameters of

temperature dependence of nucleation rate and growth rate

can be determined by proposed three step process. First, the

simple parabolic model was used to estimate the maximum

and width of rate temperature dependence. Then the obtained

parabolic curves were fitted by the theoretical ones. In the

third step, the obtained parameters were used in connection

with the theoretical nucleation and growth rate curves for

nonlinear regression analysis of experimental data. It was

shown that for a values less than 0.5 the -ln(1 - a) input

data gave practically the same courses of nucleation and

growth rate theoretical dependence. However, the use of

-ln(1 - a) input data is preferred. The resulted nucleation

and growth curves fit the experimental data with acceptable

accuracy. The kinetic barrier of crystal growth was found

higher than the viscous flow activation energy.
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