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Abstract New nanocomposites based on bacterial cellu-

lose nanofibers (BCN) and polyurethane (PU) prepolymer

were prepared and characterized by SEM, FT-IR, XRD,

and TG/DTG analyses. An improvement of the interface

reaction between the BCN and the PU prepolymer was

obtained by a solvent exchange process. FT-IR results

showed the main urethane band at 2,270 cm-1 to PU

prepolymer; however, in nanocomposites new bands

appear as disubstituted urea at 1,650 and 1,550 cm-1. In

addition, the observed decrease in the intensity of the

hydroxyl band (3,500 cm-1) suggests an interaction

between BCN hydroxyls and NCO-free groups. The

nanocomposites presented a non-crystalline character,

significant thermal stability (up to 230 �C) and low water

absorption when compared to pristine BCN.
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Introduction

The development of new composite materials from

nanofibers and polymers of different classes have aroused a

great technological interest because they have improved

characteristics, such as flexibility, low density, hardness

among others. A special class of composites includes

nanocomposites, where aspects such as biodegradability

must be considered [1, 2].

Bacterial cellulose nanofibers (BCN) are interesting

materials to produce the new composites. BCN are pro-

duced in static culture medium by bacteria of the genus

Gluconacetobacter xylinuns obtained in the form of highly

hydrated hydrogels in a 3D nanofibers network (nanocel-

lulose) [3]. Relevant features compared to plant cellulose

fibers include higher crystallinity, tensile strength, elastic-

ity, durability, and absorption capacity [4–6]. Cellulose

fibers present free hydroxyl functional groups that are

involved intra- and intermolecular hydrogen bonds, impor-

tant feature in the preparation of different composite mate-

rials. Owing to these important properties, BCN has been

used for the preparation of a great number of new com-

posites including antimicrobial materials, optical compos-

ites, green composites, and ecocomposites [3, 7–10].

On the other hand, polyurethanes (PU) constitute an

important class of polymers with several different proper-

ties and applications in industrial scale in areas such as

biomedical, foams, coating, adhesives, fibers, composites,

and elastomers [11]. In addition, PU materials are in gen-

eral produced by chemical reaction between polyols and

isocyanates functional groups. In particular, in this study,

the castor oil is the main polyol used to synthesize

PU prepolymer. Castor oil is obtained from seeds of the

Ricinus communis, the interesting point concerning this

natural oil is its composition, of around 90 % of the tri-

glyceride of 12-hydroxyoleic acid, also known as ricinoleic

acid. Moreover, in the field of biodegradable PU, the castor

oil has been suggested as potentially interesting material

[12–14].

Apart from BCN and PU prepolymer, two interesting

materials, to produce the composites, they need a good
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interface adhesion between fiber and matrix. The interface

improves the stress transfer from the matrix to fibers and

thus improving the mechanical strength of the composites

[2]. In addition, there are physical and chemical methods

to improve the interfacial adhesion. Physical methods,

including corona or plasma discharges, are useful for

polymers such as polypropylene, polyethylene, and poly-

styrene [15]. Chemical methods, covering pretreatment of

fibers surface with a coupling agent, such as silanes, iso-

cyanates [16], and the modification of the matrix by

grafting polar moieties, such as acrylic acid, acrylic esters,

or maleic anhydride onto polymer chains [17, 18] are also

being addressed.

Chemical reactions between PU resins and microcrys-

talline cellulose are being considered as reinforcement of

the PU matrix. Wu et al. [19] dispersed microcrystalline

cellulose in the PU prepolymer in order to obtain com-

posites. Seydibeyoglu and Oksman [20] prepared the

composites by compression molding, by stacking the

cellulose fiber mats between PU films. New organic aero-

gels were prepared using cellulose derivatives as precur-

sors. Gels were synthesized in acetone by cross linking

cellulose acetate with a non-toxic isocyanate and a tin-

based catalyst [21].

Although, there are several researches dedicated to BCN

no there are studies reported regarding the interaction of

BCN and PU prepolymer used from renewable sources.

BCN/PU nanocomposites could be interesting to produce

multifunctional bio-nanocomposites for several applica-

tions, include flexible substrate for OLED devices [3, 8, 22].

In order to produce BCN/PU nanocomposites with a good

interface, this study submitted the hydrated BCN to a simple

approach involving the exchange solvent process [23]. This

approach is fundamental to improve the interaction between

BCN and PU prepolymer. The BCN-PU nanocomposites

were characterized by Scanning Electron Microscopy

(SEM), Fourier Transform infrared spectroscopy (FT-IR),

and X-rays diffraction (XRD). The thermal stability was

evaluated by Thermogravimetry (TG/DTG) and swelling

behavior has been also considered.

Experimental

Materials

The PU prepolymer was supplied by Terra Azul Ltda, Brazil

Company. It is synthesized with 1,4-toluene-diisocyanate

(TDI—80:20) and a polyol consisting of castor oil as main

component. It presented 3 % of free-NCO groups [24].

BCN membranes were obtained from cultivation of the

Gluconacetobacter hansenii strain ATCC 23769. Cultiva-

tion medium was conducted for 96 h at 28 �C in trays

30 cm 9 50 cm, containing the sterile medium composed

of glucose 50 g L-1, yeast extracts 4 g L-1, anhydrous

disodium phosphate 2 g L-1, heptahydrated magnesium,

sulfate 0.8 g L-1, and ethanol 20 g L-1. After 96 h,

hydrated BCN hydrogels (3-mm thick) containing up to

99 % of water and 1 % of cellulose were obtained. The

membranes were several times washed in water and

followed with 1 wt% aqueous NaOH at 70 �C in order to

remove the bacteria until neutral pH.

1° Ethanol (48 h)
2° Ethyl glycol acetate (48 h)

O C N N C O

Vacuum pump

PU Prepolymer

Urethane bond
interface

PU Prepolymer

BCN

O

C
NH O

Fig. 1 Representative process

of the interface adhesion

reaction between BCN and PU

prepolymer
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Preparation of the composites

The hydrated BCN membranes were submitted to a solvent

exchange process for 48-h soaking in ethanol and further

48 h in ethyl glycol acetate. After this period, swollen ethyl

glycol acetate the BCN membranes were utilized for the

nanocomposite preparation. The BCN membranes were cut

5 cm 9 5 cm pieces and the samples of masses were mea-

sures. A Buchner filtering system was used to improve the

penetration of PU prepolymer into membranes. The nano-

composites (BCN/PU) were prepared in the mass proportion

1:1 (BCN/PU 1) and 1:2 (BCN/PU 2) to analyze the influence

of the prepolymer in interface nanocomposites.

Characterization of the composites

Scanning electron microscopy (SEM) study was performed

in FEG-SEM JSM 6330F microscope. The nanocomposites

were coated with a 3-nm thick carbon layer.

X-ray diffraction (XRD) patterns were recorded using a

Siemens Kristalloflex X-ray diffractometer at room tem-

perature using nickel filtered Cu Ka radiation. Patterns

were recorded from 4� to 70� (2h angle), steps of 0.02� and

a step time of 3 s.

The FT-IR analyses were carried out using a Perkin-Elmer

2000 spectrometer. Infrared transmission spectra were obtained

from 4,000 to 400 cm-1. Each sample was scanned 32 times at

a resolution of 4 cm-1 and the scans were signal averaged.

Potassium bromide (KBr) pellets method was used with the

proportion 1:100 of the sample and KBr. The samples were

milled with KBr to form a very fine powder. This powder is then

compressed into thin pellets which were analyzed.

Thermogravimetric analyze (TG) measurements were

carried out using a TA Instruments SDT 600 under

dynamical nitrogen atmosphere with a flow rate of

100 mL min-1 and a heating rate of 10 �C min-1 in the

range of 20–600 �C. All samples had approximately 10 mg.

Fig. 2 SEM images of:

a Freeze-dried BCN membrane

surface; b BCN/PU 1

nanocomposite surface;

c surface image detail of BCN/

PU 1 nanocomposite

(low magnification) and d detail

of BCN/PU 1 nanocomposite

(high magnification)
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Fig. 3 Swelling ability among nanocomposites (BCN/PU 1 and

BCN/PU 2) and pure BCN
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Water swelling was evaluated with dried membranes,

cut into disk shapes with 0.6-in diameter, and the samples

of masses were measures. Samples were immersed in

deionized water for different times up to 24 h at room

temperature. Swelling was calculated as follows:

Swelling ¼
Gs;t

� �
� ðGiÞ

Gi

where Gi is the initial mass of dried sample and Gs,t is the

mass of samples in swollen state.

Results and discussion

The nanocomposites BCN/PU were produced and the sol-

vent exchange had a fundamental importance in the

preparation of this nanocomposites. Notably, BCN/PU

nanocomposites have the interface formed from urethane

bond, which it was as result of the reaction between –OH

groups from BCN and free –NCO groups in PU prepolymer.

However, other reactions may have occurred due to the

residual water presence on never-dried BCN membranes

could be reacting with PU prepolymer leading to CO2

release and, consequently, appearance of bubbles [7, 11].

This fact is not desirable, and to eliminate this problem and

promote a good interface interaction between BCN and PU

prepolymer, we proposed an exchange solvent process in

the nanocomposite preparation. This way, to decrease this

unwanted effect, the literature results have demonstrated the

influence of solvent exchange process for cellulose and

derivatives [25] and other fibers [26] to improve the inter-

action between fiber and polymeric matrix.

Never-dried BCN were soaked in ethanol followed by

ethyl glycol acetate. But, the BCN has strong interactions

between water and ethanol; however, these solvents are

reactive toward PU prepolymer. Alternatively, the ethyl

glycol acetate was chosen with the goal to improve the

interface interactions between BCN and PU prepolymer

and, to remove the water and ethanol excesses. All BCN/

PU samples were produced from incorporation of the PU

prepolymer by vacuum Buchner filtering system. Vacuum

process was efficient to increase the PU prepolymer

penetration into BCN network and final curing process

was carried out by air moisture and solvent casting,

Fig. 1.

The formation of the BCN/PU nanocomposites includes

a combination of the reactions between hydroxyl groups

(–OH) from BCN with –free-NCO from PU prepolymer to

produce the urethane groups. Other secondary reaction

could occur with residual water and ethanol molecules

present in BCN bulk [27], in this case the reaction produce

urea bonds. The representative process to produce the

BCN/PU nanocomposite is shown in Fig. 1 with the ure-

thane bond as main group obtained in interface.

Figure 2 shows SEM images for freeze-dried BCN and

representative BCN/PU 1 nanocomposite. Figure 1a reveals

that freeze dried BCN is formed by porous 3D network

structure formed by long cellulose nanofibers [23]. Figure 1b

shows surface image of the BCN/PU 1 nanocomposite,

where BCN surface appears totally covered by PU pre-

polymer. Figures 1c, d show in more details of the PU pre-

polymer filled BCN pores. In addition, bacterial cellulose

nanofibrils appear well integrated within PU prepolymer,

indicating a good interface adhesion between the BCN and

PU prepolymer.

The swelling behavior of the BCN/PU nanocomposites

reveals a diminishing in the water absorption (Fig. 3).

These results evidenced that the PU prepolymer covered

3500 3000 2500 2000 1500 1000 500

d

c

b

T
ra

ns
m

itt
an

ce
/%

Wavenumber/cm–1

a

Fig. 4 FT-IR spectra of: a Pure BCN; b PU prepolymer film; c BCN/

PU 1 nanocomposite and d BCN/PU 2 nanocomposite
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Fig. 5 Diffraction patterns obtained for: a Dried BCN; b PU

prepolymer; c BCN/PU 1 nanocomposite and d BCN/PU 2

nanocomposite
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the BCN surface and also penetrated on pores blocking the

entrance of water, as showed before by SEM images.

The main absorption occurs after 1 h and remains con-

stant for all nanocomposites. For BCN membrane an

increasing behavior is observed within the initial 2 h sta-

bilizing after 6 h. This behavior must be due to both

chemical and physical structure; BCN is in fact hydrophilic

and strong water absorption is expected; concerning the

physical structure, BCN is three-dimensional non-woven

network with large amount of pores which is expected to

generate the capillary forces contributing to water sorption

[1, 28, 29].

The nanocomposites presented different behaviors in

swelling results. The BCN/PU 1 presented a swelling of the

60 %, while the BCN/PU 2 only 40 % of the swelling.

The results indicated that the nanocomposite BCN/PU 2

blocked the water more efficiently than BCN/PU 1, prob-

ably due to more PU prepolymer content in BCN/PU 2.

Therefore, PU prepolymer could be an important key to

control the water absorption in cellulose nanocomposites.

FT-IR spectroscopy (Fig. 4) was used to investigate the

structural difference in BCN, PU prepolymer and nano-

composites synthesized. The mains bands observed for

pure BCN (Fig. 4a) are assigned to OH stretching

(3,450 cm-1), H-bonds (3,250 cm-1), CH stretching of

CH2 and CH3 groups (2,900–2,700 cm-1), CH2 symmetric

bending (1,430 cm-1), CH bending (1,370 cm-1), anti-

symmetric bridge C–O–C stretching (1,160 cm-1), skeletal
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Fig. 6 TG and DTG curves: pure BCN; PU film; nanocomposites BCN/PU 1 and BCN/PU 2

Table 1 Results from TG and DTG curves of the pure BCN, PU film, and nanocomposites

Samples Mass loss/% at 200 �C Temperatures/�C Residues/%

T onset T endset 1� peak DTG 2� peak DTG 3� peak DTG

Pure BCN 2.7 310.4 369.9 350.8 – – 20.6

PU film 6.5 264.9 456.5 286.3 378.1 430.2 2.9

BCN/PU 1 3.6 265.7 469.5 298.2 373.5 450.5 5.3

BCN/PU 2 2.9 271.8 469.4 296.0 374.9 450.2 6.4
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vibrations involving C–O stretching (1,114–1,060 cm-1),

antisymmetric out-of-phase stretching (896 cm-1), and OH

out-of-phase bending (666–619 cm-1) [7, 30, 31]. To PU

prepolymer spectrum (Fig. 4b) bands are assigned to ure-

thane linkages at 3,500–3,300 cm-1 (N–H), and according

to Coleman [32] the peak that corresponds to N–H–O–C=O

hydrogen-bonding appears as shoulder at about 3,255–3,265

and 2,270 cm-1 free-NCO group, 1,730 cm-1 are assigned

to carbonyl, methyl groups at 2,960 cm-1 and C–O

1,100 cm-1 of the polyol.

The spectra obtained for nanocomposites (Fig. 4c, d)

shows bands that are identified in pure BCN and PU pre-

polymer. In addition, new peaks appear at 1,650 and

1,550 cm-1 (N–H, CO–NH) due the reaction between

swollen BCN membranes and PU prepolymer. However,

the FT-IR spectra quantitative analysis was not suitable,

but the decreasing of the relative intensity of free-NCO

(2,270 cm-1) peak in the nanocomposite when compared

with the spectrum obtained for pure PU prepolymer also

suggest that the reaction occurred. Other peaks are

observed indicating secondary reactions, e.g., a peak at

1,640 cm-1, typical of allophanates, and peaks around

1,450 cm-1 of isocyanurate resulting from reactions

between isocyanate and urethane groups [33].

Figure 5 shows XRD patterns for all samples. Broad

diffraction peaks are observed at 15� and 22.6� for the pure

BCN membrane (Fig. 5a), characteristics of cellulose Ia and

Ib phases (1001a, 1101b, and 0101b planes at 15� and 1101a

and 2001b at 22.5�) [34, 35]. A broad diffraction peak at 21�
is observed in the diffraction pattern of PU prepolymer film

(Fig. 5b), confirming the amorphous character usually

observed for aromatic isocyanate PU [36].

X-ray diffraction patterns observed for BCN/PU nano-

composites (Fig. 5c, d) present the convolution of the

broad PU component peaking at 21� and the cellulose peak

at 22.6�. Interesting enough, the cellulose peak at 15� is not

observed with the same relative intensity for the nano-

composites. On the other hand, these results provide

additional evidence that the original crystalline structure of

cellulose (cellulose I) is still in the nanocomposite [19].

Thermal stability was evaluated by TG/DTG curves

presented in Fig. 6. The TG curve obtained for pure BCN

shows two events of mass loss. The first event involving

2.7 % mass loss occurs continuously from 25 to 250 �C

due to water and solvent loss. The second loss is observed

in the temperature range from 250 to 380 �C, attributed to

BCN pyrolysis [37]. DTG curve shows maximum decom-

position at 351 �C. Table 1 presents the main temperatures

and mass loss from TG and DGT curves to all samples.

The TG curve obtained for PU film shows four impor-

tant steps. The major breakdown PU products from thermal

degradation were studied by Javni [38, 39] three mecha-

nisms of decomposition of urethane bonds have already

been proposed. DTG curve presents the first event, it refers

to solvent evaporation, involving 7 % of mass loss and

occurring from room temperature up to 240 �C. Subse-

quently, PU film decomposition occurs in more three steps,

which can also be seen in the DTG curve. In the first one

the highest temperature is near to 286 �C, the next peak

occurred an overlap at 378.1 and 430 �C.

The shapes of the mass loss curves observed for nano-

composites are almost identical and overall differences in

thermal stability seen to be small. T onset increase to

nanocomposites (266 and 272 �C), when compared to

pristine PU film. This increase is corroborated as proposed

model for the process of the interface adhesion reaction

between two polymers, Fig. 1, and also suggested by SEM

images, Fig. 2.

Degradation processes of BCN/PU nanocomposites

presented three steps, which can see in DTG curves, so the

maxima temperature at 298, 375, and 450 �C. Residues are

observed due to the nitrogen atmosphere used in the

measurements (Table 1); however, there were significant

differences in residues. The nanocomposites residues pre-

sented fewer residues than BCN and more than PU film,

these results suggest that PU film made a good interface

and this interaction contributed to decomposition of the

surface that was covered with PU film.

Conclusions

Nanocomposite membranes based on BCN and PU prepoly-

mer have been obtained by a solvent exchange method to

improve BCN and PU surface interface interactions. SEM

images show an effective coating of the BCN by PU pre-

polymer and also suggest a good interface adhesion between

two polymers. According to swelling measurements, the PU

contents could be an important key to control the water

absorption in cellulose nanocomposites. BCN/PU nanocom-

posites present higher thermal stability when compared to

pristine PU film. Potential applications in electronic devices of

these nanocomposites membranes have been studied.
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