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� Akadémiai Kiadó, Budapest, Hungary 2012

Abstract Zinc ferrite nanocomposite was synthesized

via thermal decomposition of zinc acetate and iron nitrate

at three different temperatures (350, 450, and 550 �C).

The influence of the thermal decomposition of precursors

on the formation zinc ferrites was studied by differential

thermal gravimetry and thermogravimetry (TG). The TG

curve shows two steps for the thermal decomposition

with mass loss of 17.3 % at 78 �C and 63.3 % at 315 �C.

The prepared zinc ferrites nanocomposite was character-

ized by X-ray diffraction and scanning electron micros-

copy. The X-ray diffractograms of ZnFe2O4 shows that a

crystalline phase, spinel system is formed. SEM micro-

graph of the zinc ferrite nanocomposite indicates the

formation of uniformly spherical 48-nm nanograins. The

properties of the zinc ferrite phase were strongly depen-

dent on their calcinations temperature and molar ratio of

precursors.
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Introduction

Nanocomposite magnetic materials are of great techno-

logical importance due to their distinctive chemical and

physical properties [1–4]. The ferrite material is a widely

studied class of magnetic materials with remarkable mag-

netic and electric properties having many of applications as

components of electronic devices, magnetic fluids, medical

diagnostics, and humidity sensors [5–9]. Zinc oxide is an

important direct and wide bandgap semiconductor material

(3.37 eV) with unique optical, acoustic, and electronic

properties. Zinc oxide is well known with its high trans-

parency and it has been applied in electronic and opto-

electronic devices. Zinc oxide is non-toxic, possessing a

high luminous transmittance, good electrical properties,

and excellent piezoelectric properties. ZnO have been

prepared by various techniques, among which, sol–gel

technology is of perspective and low cost [10–21]. Ferrites,

including zinc ferrite, are among the most significant

magnetic materials due to vital application in information

storage, electronic devices, magnetic resonance imaging,

and drug delivery technology [1, 2, 22–24]. Synthesis of

composite materials with fine nanostructures and excellent

optical and magnetic properties is still a challenging topic

[25–27]. The aim of this paper is to report preparation of a

series of zinc ferrite nanocomposites and study the effect of

thermal treatment conditions on the formation of zinc

ferrite by sol–gel method.

In this research, we report the preparation of zinc ferrite,

ZnFe2O4 nanocomposite by a simple sol–gel method.

Thermal and spectral analyses were used for materials

characterization. The effect of the zinc and iron precursor

stoichiometric ratio on thermal decomposition process was

studied by differential thermal gravimetry (DTG) and

thermogravimetry (TG). The phase, morphology, particle

diameter of samples, and optical properties were studied by

X-ray diffraction (XRD), scanning electron microscopy

(SEM), fourier transform infrared (FTIR), and UV–Vis

diffuse reflectance (DRS) spectroscopy.
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Experimental

Materials

Commercial compounds (Sigma-Aldrich, Merck), iron(III)

nitrate, Fe(NO3)3�9H2O (98 %), zinc acetate dihydrate

Zn(C2H3O2)2�2H2O (99.0 %), isopropyl alcohol (IP), mon-

oethanolamine (MEA) were used as starting materials for

synthesis of zinc ferrite nanocomposite.

Preparation of zinc sol and pure zinc oxide nanoparticle

Zinc acetate monohydrate, Zn(C2H3O2)2�H2O, 3.1 g as

precursor was dissolved in the mixture of isopropyl alco-

hol, 15 mL as a solvent, and monoethanolamine, 0.86 mL

as a complexing agent while stirring at 60 �C for 1 h and

aged for 2 days to achieve a transparent zinc sol. The sol

was dried at 110 �C. The powder was thermally treated by

a gradual increase of temperature up to 300 �C. The

powder was heat treated in air at 350, 550 �C for 4 h.

Preparation of iron sol and pure iron oxide nanoparticle

Iron nitrate nonahydrate, Fe(NO3)3�9H2O 2.45 g as pre-

cursor was dissolved in the mixture of isopropyl alcohol,

15 mL as a solvent, and monoethanolamine, 0.86 mL as a

complexing agent while stirring at 60 �C for 1 h and aged

for 2 days to achieve a transparent iron sol. The sol was

dried at 110 �C and the powder was thermally treated by a

gradual increase of temperature up to 300 �C. The powder

was heat treated in air at 350, 550 �C for 4 h.

Preparation of zinc ferrite sol and ZnFe2O4

nanocomposite

Iron nitrate nonahydrate, Fe(NO3)3�9H2O, 2.45 g powder

added into zinc sol (zinc acetate monohydrate, Zn(C2H3O2)2�
H2O, 3.1 g as precursor was dissolved in the mixture of iso-

propyl alcohol, 15 mL as a solvent, and monoethanolamine,

0.86 mL) with vigorous stirring to obtain a uniform sol. The

sol was aged for 2 h at ambient temperature in a closed vessel.

The mixtures of zinc sol and iron sol with molar ratios, 1:1,

1:2, 1.5:1, and 2:1 were prepared by mixing the solutions and

drying in vacuum at 110 �C. The produced powder was

thermally treated by a gradual increase of temperature up to

300 �C. The produced solids were thermally treated in air at

350, 450, and 550 �C for 4 h.

Characterization of nanocomposite

The XRD patterns of pure zinc oxide nanoparticle, pure iron

oxide nanoparticle, and zinc ferrite nanocomposite were

obtained using a Bruker D8 advance X-ray diffractometer

using the Cu Ka (k = 1.5406 Å) radiation with a scanning

speed of 1� per min, 35 kV and 30 mA, the scanning in 2h
was from 2 to 70�. The thermoanalytical measurements

(TG-DTG) study for the thermal decomposition of precur-

sors were carried out using a Mettler TA4000 system from

20 to 700 �C at a heating rate of 5 �C min-1. The mor-

phologies and particle sizes of pure zinc oxide nanoparticle,

pure iron oxide nanoparticle, and zinc ferrite nanocomposite

were observed using FESEM (Hitachi, model S-4160) and

Philips XL-30 scanning electron microscopy (SEM). UV-

DRS spectra were recorded on a V-670, JASCO spectro-

photometer. FT-IR absorption spectra of selected samples

before and after heat treatment were obtained using KBr

disks on a FT-IR 6300 in the region 4000–400 cm-1.

Results and discussion

Figure 1 shows the TG and DTG curves for the pyrolysis of

zinc acetate monohydrate using as precursor of zinc ferrite.

The TG curve shows two steps for the thermal decompo-

sition. The first step corresponds to the evolution of water

of crystallization, reaching a constant mass loss of 17.3 %

at 78 �C. The second step corresponds to the complete

decomposition of zinc acetate monohydrate to ZnO

reaching a constant mass loss of 63.3 % at 315 �C. The

X-ray diffractograms of pure zinc oxide thermal decom-

posed at 550 �C (Fig. 2) shows that a crystalline ZnO

phase (hexagonal system) [28]. Crystallite size of the pure

ZnO phase was calculated by Scherrer’s equation and they

were within a narrow range of 17–23 nm which is com-

parable to SEM results (Fig. 3). The pattern intensities

increased on increasing the calcination temperature from

350 to 550 �C. It can be seen that the crystalline zinc oxide

phase may be formed at 550 �C (Fig. 2), as a result of a

solid-state reaction between the corresponding oxides

produced from the thermal decomposition of the starting

materials zinc acetate monohydrate [29]:

Zn C2H3O2ð Þ2� H2O�!78�C
Zn C2H3O2ð Þ2þ H2O

Zn C2H3O2ð Þ2�!Zn C2H3O2ð Þ OHð Þ þ CH3COOH

Zn C2H3O2ð Þ OHð Þ�!Zn OHð Þ2þ CH3COOH

Zn OHð Þ2�!
315�C

ZnO

The TG–DTG curves of iron nitrate nonahydrate,

Fe(NO3)3�9H2O is shown in Fig. 4. It is shown that total

mass loss of 83.1 wt% was determined up to 390 �C. The

first DTG peak indicates the removal of physisorbed water

and water of crystallization. The second peak refers to the

decomposition of ferric hydroxide and formation of ferric

oxide. Figure 5 shows the FT-IR spectrum of the zinc
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ferrite nanocomposite particles annealed at 450 �C. The

broad band centered at 3430 cm-1 is due to the –OH

groups. The peak at 735 cm-1 is a characteristic absorption

of Fe–O. The peak at 548 cm-1 is a characteristic

absorption of ZnO and the IR data are in consistence with

the reported values [7, 8, 22, 30–32]. Figure 6 shows the

XRD patterns of the zinc ferrite sample calcined at 450 �C.
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Fig. 1 Thermal curves of zinc acetate monohydrate as a precursor in

sol–gel preparation of zinc ferrite nanoparticles
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Fig. 2 XRD pattern of pure zinc oxide nanoparticle prepared by sol–

gel method

Fig. 3 Scanning electron microscopy micrograph of pure zinc oxide

nanoparticle prepared by sol–gel method
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Fig. 4 Thermal curves of the Iron nitrate nonahydrate as a precursor

in sol–gel preparation of zinc ferrite nanoparticles
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Fig. 5 FT-IR spectrum of the zinc ferrite nanoparticle prepared by

sol–gel process using zinc acetate monohydrate and iron nitrate

nonahydrate as precursors annealed at a 550 �C, b 450 �C, c 350 �C
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Fig. 6 XRD pattern zinc ferrite nanoparticle prepared by sol–gel

process using zinc acetate monohydrate and iron nitrate nonahydrate

as precursors
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As shown in Fig. 2, characteristic peaks of ZnFe2O4 are

identified in the patterns of the sample which calcined at

350 �C. Figure 2 shows the X-ray patterns of the samples

after calcination of the product obtained from 1 mmol of zinc

acetate monohydrate, Zn(C2H3O2)2�H2O and 2 mmol of iron

nitrate nonahydrate, Fe(NO3)3�9H2O. The peaks at 29.95,

35.22, 36.73, 42.89, 56.53, and 62.34� can be readily ascribed

to the characteristic peaks of the cubic phase of ZnFe2O4

(spinel ferrite) [33–41]. Reaction in the formation of ZnFe2O4

during the calcination process is presented as follows:

Zn OHð Þ2þ 2Fe OHð Þ3�!ZnFe2O4 þ 4H2O

FESEM micrograph (Fig. 7) of the zinc ferrite nano-

composite indicate that particles were uniformly spherical

nanograins of ZnFe2O4 spinel [33].
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