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� Akadémiai Kiadó, Budapest, Hungary 2012

Abstract A theoretic work on magnetocaloric properties

of the polycrystalline La0.6Ca0.4MnO3 system near a sec-

ond-order phase transition from a ferromagnetic to a

paramagnetic state is presented. The value of the magnet-

ocaloric effect has been determined from the calculation of

magnetization as a function of temperature under different

external magnetic field shifts. The magnetic entropy

change DSM reaches a peak of about 3 J kg-1 K-1 at

266 K upon 1.60 KA/m applied field variation. The DSM

distribution is much more uniform than that of gadolinium,

which is desirable for an Ericson-cycle magnetic refriger-

ator, which is beneficial for the household application of

active magnetic refrigerant materials.
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Introduction

The refrigeration by magnetocaloric effect (MCE) and elect-

rocaloric effect (ECE) offer a lot of clear advantages over the

conventional gas compression refrigeration technology [1–9].

These provide efficient and environment-friendly solutions

for cooling. It is more efficient, inexpensive, and environ-

mentally friendly for replacing the current refrigerators using

greenhouse gases that are harmful to environment and con-

tributing to global warming.

Characterization and application of the magnetic prop-

erties of ferromagnetic particles become increasingly

important for the level of miniaturization and reliability

necessary for commercialization [10].

Perovskite manganites have attracted significant atten-

tion since the discovery of colossal magnetoresistance and

several interesting properties of these compounds have

been found. In recently years, there has been an increasing

interest in using manganites not only as a material having

colossal magnetoresistivity but also as a material with

interesting magnetocaloric properties [11–13].

A large magnetocaloric effect makes manganites

excellent candidates for working materials in magnetic

refrigeration units especially because they are less costly

than other materials, particularly those based on Gd.

In this paper, theoretic work on magnetization versus

temperature in different magnetic field shifts for polycrys-

talline La0.6Ca0.4MnO3 system. It is used a phenomenolog-

ical model for simulation of magnetization dependence on

temperature variation to predict magnetocaloric properties

such as magnetic entropy change, heat capacity change,

temperature change, and relative cooling power.

Theoretic considerations

According to phenomenological model in Hamad [14], the

dependence of magnetization on variation of temperature

and Curie temperature Tc is presented by

M ¼ Mi �Mf

2

� �
tanhðAðTC � TÞÞ½ � þ BT þ C; ð1Þ

where Mi is an initial value of magnetization at

ferromagnetic–paramagnetic transition and Mf is a final

value of magnetization at ferromagnetic–paramagnetic

transition as shown in Fig. 1.
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A ¼ 2ðB� ScÞ
Mi �Mf

;

B is magnetization sensitivity dM

dT at ferromagnetic state

before transition, Sc is magnetization sensitivity dM

dT at Curie

temperature TC and

C ¼ Mi þMf

2

� �
� BTC:

A magnetic entropy change of a magnetic system under

adiabatic magnetic field variation from 0 to final value

Hmax is available by

DSM ¼ �A
Mi �Mf

2

� �
sech2ðAðTC � TÞÞ þ B

� �
HMax:

ð2Þ

The foundation of large magnetic entropy change is

attributed to high magnetic moment and rapid change of

magnetization at Tc. A result of Eq. (2) is a maximum

magnetic entropy change DSMax (where T = TC) can be

evaluated as following the equation

DSMax ¼ HMax �A
Mi �Mf

2

� �
þ B

� �
: ð3Þ

Eq. (3) is an important equation for taking into consider-

ation of value of the magnetic entropy change to evaluate

magnetic cooling efficiency with its full-width at half-

maximum.

A determination of full-width at half-maximum dTFWHMð Þ
can be evaluated as follows:

dTFWHM ¼
2

A
cosh�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2A Mi �Mfð Þ

A Mi �Mfð Þ þ 2B

s !
: ð4Þ

This equation gives a full-width at half-maximum magnetic

entropy change contributing for estimation of magnetic

cooling efficiency as follows.

A magnetic cooling efficiency is estimated by consid-

ering magnitude of magnetic entropy change, DSM and its

full-width at half-maximum dTFWHMð Þ [13]. A product of

�DSMax and dTFWHM is called relative cooling power

(RCP) based on magnetic entropy change.

RCP ¼� DSMðT;HMaxÞ � dTFWHM

¼ Mi �Mf � 2
B

A

� �
HMax

� cosh�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2AðMi �MfÞ

AðMi �MfÞ þ 2B

s !
:

ð5Þ

The magnetization-related change of the specific heat is

given by [13]

DCP;H ¼ T
dDSM

dT
: ð6Þ

According this model [14], DCP;H can be rewritten as

DCP;H ¼ �TA2 Mi �Mfð Þ sech2ðAðTC � TÞÞ
tanhðAðTC � TÞÞHMax: ð7Þ

A temperature change of a magnetic system under

adiabatic magnetic field variation from 0 to Hmax can be

written in the form

DT ¼� T

CP

ZHMax

0

oM

oT

� �
E

dH;

¼AT Mi �Mfð Þ
2CP

sech2ðAðTC � TÞÞ þ B
� �

HMax:

ð8Þ

Cp is the heat capacity per mole at constant magnetic

field.

Tc
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Fig. 1 Temperature dependence of magnetization in constant applied

field

Table 1 Model parameters for La0.6Ca0.4MnO3 in different applied magnetic fields

H/KA m-1 Mi/A m2 kg-1 Mf/A m2 kg-1 Tc/K B/A m2 kg-1 K-1 Sc/A m2 kg-1 K-1

0.08 51.25 3.65 253 -0.11 -4.08

0.16 56.30 7.00 255 -0.29 -3.22

0.40 59.50 8.50 257 -0.23 -2.45

0.80 59.80 11.00 261 -0.24 -1.91

1.60 60.10 17.10 266 -0.23 -1.50
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From this phenomenological model, it can easily

assess the values of dTFWHM, |DS|max, RCP, and DT for

La0.6Ca0.4MnO3 under magnetic field variation.
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Fig. 2 Magnetization in different applied magnetic field shifts for the

La0.6Ca0.4MnO3 versus temperature. The dashed curves are modeled

results and symbols represent experimental data from ref. [12]
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Fig. 3 Magnetic entropy change as function of temperature for

La0.6Ca0.4MnO3 in different applied magnetic field shifts
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Fig. 4 Heat capacity changes as function of temperature for

La0.6Ca0.4MnO3 in different applied magnetic field shifts
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Fig. 5 Temperature changes as function of temperature for

La0.6Ca0.4MnO3 in different applied magnetic field shifts
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Theoretic work

Numerical calculations were made with parameters as dis-

played in Table 1. A heat capacity Cp = 550 J kg-1 K-1

[15, 16]. Figure 2 shows the magnetization versus temper-

ature in different applied magnetic field shifts for

La0.6Ca0.4MnO3 polycrystals have been prepared by a non-

standard ceramic method with presintering at 1,100 �C and

final sintering at 1,350 �C. The symbols represent experi-

mental data from ref. [12], while the dashed curves represent

modeled data using model parameters given in Table 1. It is

seen that for the given parameters, the results of calculation

are in a good agreement with the experimental results. Fur-

thermore, Figs. 3, 4, and 5 show predicted values for changes

of magnetic entropy, specific heat, and temperature versus

temperature. Magnetic entropy change in La0.6Ca0.4MnO3 is

reported in Fig. 3 and shows an increase in |DSM| with

increasing DH. The magnetic entropy change curves reveal

the characteristics of the spin reorientation by the kinks in the

DSM curve. The maxima observed in the DSM curves are

associated to a spin reorientation that occurs continuously.

The behavior of curves suggests how to extend the range of

temperatures for use in the MCE.

The values of maximum magnetic entropy change, full-

width at half-maximum, and relative cooling power at dif-

ferent magnetic field shifts for La0.6Ca0.4MnO3 are calcu-

lated by Eqs. 3–5, respectively, and tabulated in Table 2.

Furthermore, the maximum and minimum values of specific

heat change for each sample is determined from Fig. 4.

Both DSM and DT reflect a fundamental importance on the

understanding of the behavior of the MCE, and these terms

can be approximately estimated by Eqs. 2 and 8, respec-

tively. As shown in Fig. 3, DSM reaches a peak of about

3 J kg-1 K-1 at 266 K upon 1.60 KA/m applied field vari-

ation. Though the maximum DSM is 1.92 J kg-1 K-1 upon

0.80 KA/m applied field variation which is about 70 % of

that of a pure Gd metal 2.8 J kg-1 K-1 upon 0.80 KA/m, the

DSM distribution of the La0.6Ca0.4MnO3 is much more uni-

form than that of gadolinium [17, 18]. This feature is desir-

able for an Ericsson-cycle magnetic refrigerator [19].

Although La0.6Ca0.4MnO3 is very similarly to research

La0.67Ca0.33MnO3 in Hamad [14], the magnetic entropy

changes of La0.6Ca0.4MnO3 and La0.67Ca0.33MnO3 have

great difference. This due to the methods and conditions of

synthesizing of two samples are different. Moreover, the

former has a polycrystalline structure, while the latter has a

single crystalline structure.

In general, the large magnetic entropy change in perov-

skite manganites has been believed to be related to the

considerable variation of magnetization near TC [20]. The

spin–lattice coupling in the magnetic ordering process could

play a significant role in additional magnetic entropy change

[21]. Owing to the strong coupling between spin and lattice,

significant lattice change accompanying magnetic transition

in perovskite manganites has been observed [22, 23]. The

lattice structural change in the Mn–O bond distance as well

as Mn–O–Mn bond angle would, in turn, favor the spin

ordering. Thereby, a more abrupt reduction of magnetization

near TC occurs and results in a significant magnetic entropy

change [16, 24–26]. In this way, a conclusion might be

drawn that a strong spin–lattice coupling in the magnetic

transition process would lead to additional magnetic entropy

change near TC, and consequently, favors the MCE.

Conclusions

Dependence of the magnetization on temperature variation

for La0.6Ca0.4MnO3 upon different magnetic fields was

simulated. In general, this allows the prediction of mag-

netocaloric properties of La0.6Ca0.4MnO3 such as magnetic

entropy change, full-width at half-maximum, relative

cooling power, and magnetic specific heat change for

La0.6Ca0.4MnO3 upon different magnetic field shifts.

Though the maximum DSM is about 70 % of that of gad-

olinium, the DSM distribution is much more uniform than

that of gadolinium, which is desirable for an Ericsson-cycle

magnetic refrigerator, which is beneficial for the household

application of active magnetic refrigerant materials.
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