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Abstract The zero-order reaction rates (specific rate

constants) for isothermal decomposition at 120 �C of

plastic bonded explosives (PBXs) were measured by means

of the Czech vacuum stability test, STABIL. The PBXs are

based on 1,3,5-trinitro-1,3,5-triazinane (RDX), b-1,3,5,7-

tetranitro-1,3,5,7-tetrazocane (HMX), cis-1,3,4,6-tetra-

nitro-octahydroimidazo-[4,5-d] imidazole (BCHMX), and

e-2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane

(e-HNIW, e-CL-20) with 9 wt.% of the C4 type matrix, i.e.,

a matrix containing 25 wt.% of polyisobutylene, 59 wt.%

of dioctyl sebacate and 16 wt.% of the oil HM46. Depen-

dencies were found between the specific rate constants

mentioned and the detonation velocities of the PBXs, and

consequently between these constants and the impact of

pure explosive fillers, i.e., RDX, b-HMX, e-HNIW, RS-

e-HNIW, and BCHMX and, at the same time, the corre-

sponding PBXs. The results obtained are compared with

those from a recent analogous study of PBXs using an SBR

(Formex P1) binder which could increase the PBXs’

reactivity in comparison with C4 matrix. These results also

help to dispel a widely held view about HNIW being a

relatively sensitive explosive.

Keywords Plastic explosives � Sensitivity � Nitramines �
Vacuum stability test

Introduction

Following on from the work described in papers [1–3] we

continue here the study of plastic bonded explosives

(PBXs) by means of the modified Czechoslovak mano-

metric method (vacuum stability test) which was developed

mainly for studying the thermal stability of propellants

[2–4] and which is generally known under the name of

STABIL [1–3]. This study is compatible with a recently

published analogous paper about PBXs with a Formex P1

matrix as the binder [1] and is to be considered as a con-

tinuation of paper [2].

This study is focused on PBXs with a polyisobutylene

binder (PIB), softened by dioctyl sebacate (DOS), i.e.,

with the C4 matrix, whose active fillers are attractive

cyclic nitramines BCHMX (cis-1,3,4,6-tetranitro-octahy-

droimidazo-[4,5-d]imidazole), RDX (1,3,5-trinitro-1,3,5-

triazinane), HMX (1,3,5,7-tetranitro-1,3,5,7-tetrazocane),

and e-HNIW (2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexa-

azaisowurtzitane, e-CL-20) [5–8]. These explosives are

treated in this paper from the point of view of their

behavior under the STABIL measurement conditions.

Outputs are compared with detonation velocities of the

PBXs studied, with their impact sensitivities, and with the

results of an analogous study of the Formex P1 type

explosives [1].

Experimental

Preparation of plastic bonded explosives

The C4 matrix refers to a non-energetic binder containing

25 wt.% of polyisobutylene, 59 wt.% of dioctyl sebacate

(DOS), and 16 wt.% of the oil HM46. Preparation of the
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binder was carried out by mixing small pieces of two types

of polyisobutylene (disintegrated by rolling) with the

sebacate and the HM46 oil. The plastic explosives them-

selves were prepared [5–7] by mixing 91 wt.% of the

particular nitramine with 9 wt.% of the binder. The for-

mulations were mixed in a computer controlled Brabender

Plastograph at 70 �C under vacuum for 70 min. The sam-

ples prepared were then extruded using a 40 mm single

screw extrusion machine to obtain long charges of plastic

explosive with a diameter of 16 mm [5–7]. The RDX used

was a product of Dyno Nobel (a mixture of Classes 2 and 5

according to the MIL-DTL-398B standard), b-HMX was

imported from Russia and its particle size distribution was

close to Class 3 as described in the MIL-DTL-4544C

standard, and e-HNIW was a product of the Explosia Par-

dubice pilot plant production unit. For the PBX preparation

in this research we used purified and recrystallized e-HNIW

(from an ethyl acetate––n-heptane system) containing 1 %

of impurities. HNIW with reduced sensitivity (RS-HNIW),

prepared in our laboratory [9], was also included in this

study. BCHMX was prepared by a two step laboratory

synthesis at the Institute of Energetic Materials [10].

Samples of the PBXs used are shown in Table 1 and in the

Figures as follows: RDX-C4, HMX-C4, BCHMX-C4,

HNIW-C4, and RS-HNIW-C4.

STABIL vacuum stability test

We used a modernized STABIL 16-Ex apparatus [11]

(manufactured by OZM Research; the original apparatus

is described in Ref. [2]). The amount of the samples

used for measurements was 1 g. Tests were performed

over 360 min. The temperature for the isothermal mea-

surements was chosen to be 120 �C. The samples in

evacuated glass test tubes were placed into the heating

block and heated to the desired temperature. Pressure

transducers continuously estimated the pressure increase

in the glass tubes. The results were in the form of time

dependence of the gas pressure evolved per 1 g sample––

the corresponding curves up to 360 min measurement are

shown in Fig. 1; here the large increase in pressure in the

first period of decomposition is caused mainly by the

moisture content in the PBXs studied (these samples are

the ‘‘technical grade’’ quality). Straight lines were

obtained by linearization of the data for each curve for

isothermal exposure over 50–320 min and presented in

Table 1; the slopes of these lines, k, correspond to the

reaction velocity of evolution of gaseous products in a

zero-order reaction [1, 2, 4] and, therefore, k represents

the specific rate constant (here the k values are in

kPa g-1 min-1).

Other characteristics of the PBXs studied or their

nitramine fillers

Experimental detonation velocities of the PBXs studied

were taken from Elbeih et al. [5–7]. Impact sensitivity data

of the crystalline fillers of PBXs were taken from paper

[12] for RDX, b-HMX, and BCHMX; and from paper [13]

for e-HNIW and RS-e-HNIW; the data for the C4 PBXs

prepared from these nitramines are published in paper [14]

excluding sensitivity of RS-HNIW-C4 which was deter-

mined by means of a method from Elbeih et al. [14] i.e.,

using a standard impact tester (Julius Peters) with

exchangeable anvil, with the amount of tested substance

being 50 mm3, and with a 2 kg drop hammer weight (the

probit analysis [15] was used to determine the probability

levels of the initiation).

Table 1 A survey of results from the STABIL measurement and of data taken from the literature about detonation velocities and impact

sensitivities of the explosives studied

PBX Equation of linearization Detonation velocity/

density /m s-1/g cm-3
Impact sensitivity/J

Slope k/kPa g-1 min-1 Intercept R2 Pure NA [12] C4 PBXs [14]

RDX-C4 0.0007 ± 6.26E-6 1.1142 ± 1.26E-3 0.9799 8055/1.61 5.6 21.1

RDX-C4 0.0006 ± 5.93E-6 1.0598 ± 1.19E-3 0.9723 8055/1.61 5.6 21.1

HMX-C4 0.0004 ± 4.76E-6 1.3586 ± 9.57E-4 0.9549 8318/1.67 6.4 20.2

HMX-C4 0.0005 ± 4.95E-6 0.7254 ± 1.08E-3 0.9679 8318/1.67 6.4 20.2

BCHMX-C4 0.0076 ± 6.81E-5 3.1767 ± 1.37E-2 0.9789 8266/1.66 3.0 11.6

BCHMX-C4 0.0078 ± 5.91E-5 2.7156 ± 1.19E-2 0.9878 8266/1.66 3.0 11.6

HNIW-C4 0.0012 ± 7.56E-6 1.9517 ± 1.52E-3 0.9901 8594/1.77 4.2a 14.2

HNIW-C4 0.0015 ± 9.68E-6 2.0312 ± 1.95E-3 0.9885 8594/1.77 4.2a 14.2

RS-HNIW-C4 0.0004 ± 3.30E-6 1.2591 ± 7.21E-4 0.9774 (8594/1.77) 10.8a 17.0b

RS-HNIW-C4 0.0003 ± 6.10E-6 1.0695 ± 1.23E-3 0.9131 (8594/1.77) 10.8a 17.0b

a The values taken from Ref. [13]
b The value determined in this paper
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Results and discussion

As already mentioned, Fig. 1 implies that the formation of

gaseous products is a zero-order reaction in the observed

initiation phase of the PBXs’ decomposition. Thus the rate

of thermal decomposition is equal to the specific rate

constant, k, of the reaction. Figure 1 also shows the high

thermal reactivity of the BCHMX-C4 explosive; this nitr-

amine is more sensitive than RDX, b-HMX, and e-HNIW,

as well as other kinds of PBXs based on BCHMX and the

nitramines mentioned [1, 7, 8]. This fact is explained

partially by the molecular structure of BCHMX [16] and

partially by its solubility in plasticizers of solvents [17, 18]

which can eliminate the stabilizing influence of the crystal

lattice [18] (about this effect see also in [19, 20]); the effect

of the crystal lattice, of course, is increased in energetic

materials with crowded molecules [21].

In a previous paper [1] it has already been mentioned

that autocatalysis is missing during detonation [22, 23],

which means that the kinetic data of such low-temperature

processes can only be extrapolated to detonation conditions

in which the influence of autocatalysis is excluded [2, 4, 22].

On this basis, it can be supposed that a relationship exists

between the kinetic characteristics of the curves in Fig. 1

and the detonation velocities of the explosives studied (as

has already been shown in zeman et al. [2]). Figure 2 is a

confirmation of this assumption; here specific rate con-

stants from thermal decomposition show a linear relation-

ship to the detonation velocities of PBXs containing RDX,

b-HMX, and RS-e-HNIW. The data for BCHMX-C4 and

HNIW-C4 do not correlate, however, due to the higher

thermal reactivity of these PBXs (see in Fig. 1); this dif-

ference in the case e-HNIW versus RS-e-HNIW rests in the

crystal disorders in the first kind mentioned, compared with

the more orderly crystals with rounded edges in the case of

RS-e-HNIW [13, 24].

On the basis of the well-known relationships between

detonation parameters and sensitivities to mechanical

impulses [3, 4, 14, 25], the characteristics of the low-

temperature zero-order decomposition of energetic mate-

rials should also correlate with their sensitivities [1, 2, 4].

In this paper we used the impact sensitivities of the PBXs’

nitramine’s fillers (NA), i.e., pure RDX, b-HMX, e-HNIW,

RS-e-HNIW, and BCHMX, and also those of the corre-

sponding PBXs studied. As Figs. 3 and 4 show, in both

cases mentioned, logarithmic relationships have resulted.

According to the comparison with the impact sensitivity

of pure nitramines (NA) in Fig. 3, data for HNIW-C4, i.e.,

with the disturbed crystals of HNIW, good correlation has

been found between the data of RDX-C4 and HMX-C4. It

looks as if HNIW, with impact sensitivity 4–4.5 J, is a

variant of its e-modification. On the other hand, data for

RS-HNIW-C4 and BCHMX-C4 create a pair of explosives

with sterically crowded molecules of nitramine fillers. This

division distinguishes the C4 PBXs from analogous

explosives with Formex P1 binder where the relationship

mentioned has only one shape [1].

Analogous comparisons on the basis of impact sensi-

tivities of the group of PBXs studied (Fig. 4) show a

division of these explosives into a subgroup with nitramine
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Fig. 2 Relationship between experimental detonation velocities and

specific rate constants of thermal decomposition of the PBXs studied
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thermal decomposition of the PBXs studied in the sense of Fig. 1
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fillers with crowded molecules and a subgroup with a pair

of HMX-C4 and RDX-C4. Besides the initiation reactivity

of the pure nitramine fillers, the bulk moduli of the final

PBXs might play some role here (for this see, for example,

information in Haycraft et al. [26]; Qiu et al. [27]), mainly

in the slope of the relation cited for the HMX and RDX

based PBXs (in comparison with Fig. 3). This assumption

might be supported by the relationships in Fig. 5 (i.e.,

relationships between impact sensitivities of PBXs and

their pure nitramine fillers): here a relation with a positive

slope should equate to the dominating initiation reactivity

of nitramine fillers, while in a relation with negative slope

the elastic properties of the corresponding PBXs should be

the prevailing influence.

Comparison of the specific rate constant, k, of the

thermal decomposition from the study of PBXs with the

Formex P1 binders (see Zeman et al. [1]) with those of C4

PBXs from this study gives Fig. 6. The binder cited con-

tains 25 % of styrene-butadiene rubber (SBR) and 75 % of

an oily material. This comparison shows that the k values

of Formex explosives are higher than those of the C4

PBXs. However, the rate constants of both the PBXs with

the HNIW and BCHMX fillers are relatively close; to this

fact an intercept value near zero corresponds with the

appropriate line in Fig. 5. On the other hand, the thermal

reactivity of the Formex explosives with RDX and HMX

fillers is of a higher order compared with their C4 analogs.

This higher reactivity might be caused by the SBR binder

in the Formex PBXs (especially influence of the aromatic

part of the binder).

Conclusions

Using a modification of the vacuum isothermal stability

test, the Czech system STABIL [1–4], in the study of the

thermal reactivity of plastic bonded explosives with the C4

matrix, pressure–time curves in the first 5 h of measure-

ment are obtained which correspond closely to the zero-

order reaction of gaseous products formation. Due to this

fact, a dependency exists between the corresponding zero-

order reaction velocities (the specific rate constants) and

detonation velocities of the explosives studied. As was to

be expected, relationships exist between the impact sensi-

tivities not only of the pure nitramine’s fillers but also of

the PBXs on their base, on the one hand, and the specific

rate constants of the zero-order thermal decomposition of

the PBXs studied, on the other. However, these relation-

ships are not consistent for all the PBXs studied because

the PIB (C4) matrix does not fully eliminate the specific

influence of the nitramine filler’s molecular structure

(crowding in their molecules) on the initiation reactivity of

the corresponding PBXs. This represents a difference from

the recently studied PBXs with Formex P1 binder (SBR

matrix) [1] where their matrices increase the reactivity of

the nitramine fillers to such an extent that the above-

mentioned specific influence of molecular structure is

practically eliminated there. The results of this paper dispel

again a widely held view about HNIW being a relatively

sensitive explosive (about this sensitivity see already

Elbeih et al. [13]; Chen et al. [28]).
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