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Abstract Molecular sieves MCM-41 were synthesized

from rice husk ash (RHA) as alternative sources of silica,

called RHA MCM-41. The material was synthesized by a

hydrothermal method from a gel with the molar composi-

tion 1.00 CTMABr:4.00 SiO2:1.00 Na2O:200.00 H2O at

100 �C for 120 h with pH correction. The cetyltrimethyl-

ammonium bromide (CTMABr) was used as a structure

template. The material was characterized by X-ray powder

diffraction, FTIR, TG/DTG, and surface area determination

by the BET method. The kinetics models proposed by

Ozawa, Flynn–Wall, and Vyazovkin were used to deter-

mine the apparent activation energy for CTMA? species

decomposition from the pores of MCM-41 material. The

results were compared with those obtained from the MCM-

41 synthesized with silica gel. The synthesized material

had specific surface area, size, and pore volume as

specified by mesoporous materials developed from con-

ventional sources of silica.

Keywords MCM-41 � Hydrothermal synthesis �
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Introduction

MCM-41 molecular sieves developed by researchers at

Mobil Oil Corporation have attracted great interest since

their discovery in 1992. Their physical properties, such as

high specific surface area, controllable diameter, and pore

volume, allow them to be applied as adsorbents, catalyst

supports, and heterogeneous catalysts in various branches

of the chemical industry.

The synthesis of MCM-41 is performed in aqueous

alkaline conditions, basically using different sources of

silica and structure template. The gel prepared with these

reagents in different molar ratios of template/silicon is

subjected to hydrothermal treatment, then washed and

dried at room temperature. The removal of the template

occurs through calcination. The best condition for calci-

nation is of fundamental importance for obtaining a high-

quality material free of organic template species with good

preservation of the ordered silica structure. The variables in

a typical calcination process are time, temperature, heating

rate, catalyst mass, and calcination’s atmosphere [1].

The synthesis conditions can be changed to obtain

materials with different properties. Factors affecting the

final product are molar ratio template/silica, concentration

and carbon chain length of the template, temperature, pH,

and nature of the silica [2, 3]. As a silica source, typically,

sodium silicate, TEOS (tertaetilortosilicato), TMA-silicate

(tetramethylammonium silicate), and amorphous silica are
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used. However, a disadvantage of these silicon precursors

is the price, resulting in a higher production cost.

Researchers are investigating different sources of silica

to produce the mesoporous silicates, particularly MCM-41.

Jang [4] synthesized mesoporous MCM-41, MCM-48, and

SBA-15 using rice husk ash (RHA) as the silica source.

RHA was obtained by heat-treating the rice husk at 700 �C

for 24 h. Sodium silicate solution was extracted by re-

fluxing RHA (93 % SiO2) in 2 M NaOH in H2O at 70 �C

for 24 h. Wittayakun et al. [5] synthesized AlMCM-41

with RHA, which was washed and dried at 100 �C over-

night, refluxed with 3 M HCl for 6 h, filtered and washed

again with water until the filtrate was neutral, and dried at

100 �C overnight before the pyrolysis in a furnace at

550 �C for 6 h to remove the hydrocarbon and volatile

organic compounds. This silica source was used in the

synthesis of MCM-41 with a molar composition of 4SiO2:1

CTMABr:0.29 H2SO4:400 H2O. The mesoporous materials

obtained by these silica extraction methods showed good

proprieties such as high specific surface area.

RHA is the most voluminous by-product of the rice

industry. The high silica content makes this residue a

valuable raw material that can be used in various industry

sectors. A few zeolitic materials, such as ZSM-5 [6–8],

ETS-10 [9], MCM-48 [4, 10], zeolite beta [11], and

mordenite [12], synthesized from RHA have been reported.

Its use as a replacement of silica, conventionally used in

the production of zeolites, catalyst supports, and the pro-

duction of silicates among other products, reduces the

process toxicity and increases its economy because it is a

natural material which has a low cost. There are many

methods of extraction of silica from natural sources. Many

authors have suggested that acid treatment prior to heat

treatment is a suitable method for extraction of natural

silica [5, 13, 14].

The present study aims to synthesize the mesoporous

molecular sieve MCM-41 using the RHA as a natural silica

source, obtaining the global kinetic parameters of decom-

position of the surfactant CTMA? in the pores of MCM-41

synthesized by model ‘‘Free Kinetics’’, and compare results

obtained with material synthesized with conventional

silica.

Experimental

Silica extraction

The rice husk was washed with deionized water heated to

60 �C, under stirring for 20 min. This material was dried at

80 �C for 16 h, then comminuted in knives mill (TECNAL

TE 631) to increase the surface area, and calcined in a

muffle furnace (TECNAL 3000) at 600 �C, 10 �C min-1

for 2 h. The material obtained was used as the silica source

for the production of RHA MCM-41.

Synthesis of MCM-41

The MCM-41 was obtained through the hydrothermal

method using RHA as sources of silica, cetyltrimethyl-

ammonium bromide (CTMABr) as the structure template,

sodium silicate, and distilled water. The MCM-41 was

synthesized by stirring an aqueous solution containing the

silica source and sodium silicate at a controlled tempera-

ture of 60 �C. After 2 h of agitation, a solution containing

the CTMABr was added to the mixture at room tempera-

ture. The system was stirred for 1 h. The reactive gel, with

molar composition 1.0 CTAMBr:4.0 SiO2:1.0 Na2O:200

H2O resulting from this process, was put into a Teflon vial,

inserted into a stainless steel autoclave, and heated in an

oven at 100 �C for 120 h. The pH correction was per-

formed every 24 h, adjusted to a range between 9 and 10

with a 30 % solution of acetic acid, until it stabilized.

Sodium acetate was added to complete the stabilization of

the silica at molar ratio director/salt 3 when pH stabilizes,

and the system was reinserted in the oven for 48 h at

100 �C.

Characterization

A chemical analysis of the silicon precursor was performed

by X-ray energy dispersive fluorescence (EDX) in a Shi-

madzu EDX-820 model. The FTIR spectra were obtained

in a Fourier Transform of Bio-Raid Excalibur Series

(model FTS 3000 MX) spectrophotometer, in KBr disks.

The X-ray powder diffraction (XRD) analyses were con-

ducted on a Shimadzu XRD-6000 diffractometer, using Cu

Ka radiation (k = 1.5406 Å, 30 kV, 30 mA). The samples

were scanned in the 2h range of 1�–10� with the step time

of 2� min-1 and the step of 0.028. The BET surface area of

the samples was determined by nitrogen adsorption at 77 K

using Quantachrome NOVA 2000 instrument. Before the

nitrogen measurement, samples were degassed at 300 �C in

helium for 3 h. The wall thickness (W) of MCM-41 was

obtained by the difference between the lattice parameter a0

and the pore diameter. Thermogravimetric (TG) analysis

was performed on a Shimadzu TG/DTA-60H equipment

under dynamic nitrogen atmosphere 50 mL min-1, heated

at 30–800 �C.

Kinetic methods

The determination of global kinetic parameters via TG is

based on methods proposed by Ozawa [15], Flynn–Wall

[16], and Vyazovkin and Wight [17], which are models of

‘‘Free Kinetics,’’ which involves measuring the
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temperature corresponding to fixed values of conversion, a,

from experiments at different heating rates, b, and plotting

ln (a) against 1/T giving straights lines with slopes -Ea/R

[18]. The model, Free Kinetic, allows evaluating both

simple and complex reactions kinetics, and was used to

monitor the optimal time and temperature to remove the

template [17]. The velocity of template decomposition

CTMA? in RHA MCM-41 depends on the parameters

conversion (a), temperature (T), and time of reaction (t). In

each process, the reaction velocity is given as a function of

conversion f(a) and can be determined from experimental

TG data [19]. The models proposed require at least three

dynamic curves with different and constant heating rates

(b); in this work it was assumed as 5, 10, and 20 �C min-1

with temperature between 30 and 800 �C. The mass of the

samples was approximately 3 mg and the carrier gas was

N2 with a flow of 50 mL min-1. These models were used

to determine the apparent activation energy (Eq. 1) and

conversion (a) as a function of temperature.

da
dt
¼ A exp

�E

RT

� �
f ðaÞ ð1Þ

Results and discussion

The chemical composition of RHA is a function of the soil

where it is planted, the types and amounts of fertilizer

applied, the climatic conditions, and the kind of rice. The

results of the chemical analysis of RHA showed that by a

simple extraction method without chemical treatment, it

was possible to obtain high-purity silica (96 %).

The infrared absorption spectra of the precursor material

(RHA) and the RHA MCM-41 are shown in Fig. 1. In the

region of 1,082 cm-1 there is an intense band, related to

the asymmetrical stretching of Si–O–Si, and at 798 cm-1 a

band of lower intensity, related to the symmetric stretching

of that bond (Si–O–Si), is observed. The band appearing at

3,498 cm-1 is related to the vibrations of axial deformation

of the hydroxyl group of Si–OH [20]. These bands are also

present in the RHA MCM-41 and in the silica source RHA

spectra, proving the influence of this silica source in the

material structure formation. The infrared spectra of RHA

MCM-41 present bands between 400 and 1,400 cm-1,

which are fundamental vibration characteristics of the

structure of MCM-41 [14, 21]. The bands appearing at

2,936 and 2,854 cm-1 in the spectra of non-calcined RHA

MCM-41 are related to the asymmetric and symmetric

axial strain, respectively, of the methylene group (CH2)

present in CTMABr, the structure template of MCM-41. It

is also possible to observe the presence of bond –CH2Br, a

band of medium intensity in the range of 1,230 cm-1

(Fig. 1) [20].

The results of the XRD of RHA MCM-41 (Fig. 2) show

similar characteristics to the standard XRD pattern of

mesoporous materials, as three peaks at 2h reflec-

tion = 2.12, 3.71, and 4.27. The most intense peak

(2h = 2.12) was attributed to the line of the reflection

plane (100), and the two others of lower intensities

(2h = 3.71 and 4.27) were attributed to the reflections on

the planes (110) and (200), characteristic of mesoporous

hexagonal structure, as described by Mobil Oil Research

and Development Co researchers [22], confirming that the

removal of the structure template did not affect the MCM-

41 structure. The XRD patterns of materials obtained from

alternative sources of silica follow the same pattern of the

MCM-41 synthesized with silica gel [21].

The synthesized materials have a specific surface area,

size, and pore volume as specified of mesoporous materials

developed from conventional sources of silica (TEOS,

TMA-silicate, silica gel); however, the method of silica

extraction used in this work is presented in a simpler and

faster way than that discussed in the literature [4, 5, 13, 14].

Table 1 shows the results of the textural properties as pore

diameter, pore volume, specific surface area, and wall

thickness of the synthesized material.

The kinetic decomposition of CTMA? species from the

pores of the material RHA MCM-41 was obtained from the

TG curves (Fig. 3) at different heating rates (5, 10, and

20 �C min-1). Three typical mass losses were observed: (i)

In the temperature range of 30–100 �C due to physically

adsorbed water, (ii) 100–310 �C due to the first stage of

decomposition of the surfactant, and (iii) 310–600 �C due

to the decomposition of the residual surfactant and con-

densation of adjacent silanol groups resulting in siloxane

bonds [21, 23]. For step (ii), Ozawa, Flynn–Wall, and

Vyazovkin models were used to determine the activation

energy involved in the decomposition of the CTMA?
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species. Figure 4 shows the conversion curves as a function

of temperature, obtained by Eq. 2:

a ¼ ðm0 � mtÞ
ðm0 � mfÞ

ð2Þ

where a is the conversion, m0 is the initial mass of the

sample, mf is the mass of the sample at the end of the stage

being studied, and mt is the mass of the sample that varies

with time (t) or temperature (T).

To calculate the apparent activation energy by the

Ozawa and Flynn–Wall method, the logarithm of the

heating rate (log b) versus the inverse of the conversion

temperature (1/Ta) was plotted for the three heating rates.

Straight lines were achieved, Figs. 5 and 6; the slope of

each line corresponds to -Ea/R (R = 8.314 J mol-1 K-1).

For the Vyazovkin method for each conversion, ln b/Ta
2

was graphed as a function of 1/Ta, also resulting in a series

of straight lines represented in Fig. 7 with the slope -Ea/

R [24].

It can be noted from the results shown in Table 2 that

the activation energy values are very close, suggesting that

the Ozawa, Flynn–Wall, and Vyazovkin methods are

suitable for the determination of apparent activation energy

of decomposition of CTMA? from RHA MCM-41.

During the synthesis of MCM-41 with a cationic sur-

factant (CTMA?), the hydrophilic part of template, which

has positive charge, interacts with the surface of the pore of

mesoporous silica material via coulomb forces. The

apparent activation energy involved in the removal process

of organic species located within the pores of molecular
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Fig. 2 XRD pattern of RHA MCM-41 calcined at 500 �C

Table 1 Textural properties of the RHA MCM-41 obtained by BET

analysis

Pore diameter/nm Pore volume/cm3 g-1 SBET/m2 g-1 W/nm

3.35 0.63 757 1.47
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Fig. 3 TG/DTG curves of the uncalcined RHA MCM-41 material at

heating hate of 10 �C min-1
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sieve provides the magnitude of the interactions between

the template and silica.

In this study, the apparent activation energy involved in

the process of removing the CTMA? of MCM-41, in the

range of 10–90 % of conversion by Vyazovkin model, has

value slightly larger (177 ± 26 kJ mol-1) than that found

for the same material synthesized from the conventional

source of silica, found by Souza et al. [21]. This can be

associated with increased interaction of CTMA? with the

silica wall because there are more reactive functional

groups present on the surface causing structural shrinkage

and reducing the sizes of the mesoporous diameters, which

makes difficult the removal of residual surfactant.

Conclusions

The molecular sieve obtained from RHA as an alternative

source of silica has similar properties to those synthesized

materials with conventional silica, without requiring

chemical treatment of RHA. The RHA, of a negligible cost,

can be a promising replacement for the high cost silica. The

FTIR and XRD data demonstrated that the highly pure

MCM-41 was successfully synthesized from RHA. It was

found that for the removal of the organic phase in the

molecular sieve in this study had higher values for acti-

vation energy than the same material synthesized from the

conventional source of silica. This can be associated with

increased interaction of CTMA? with the silica wall

because there are more reactive functional groups.
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