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Abstract Calcium carbonate decomposes under well-

defined conditions giving CaO (solid) and CO2 (gas). The

process kinetics are known to be strongly influenced by the

CO2 partial pressure and temperature. In dynamic condi-

tions, as in thermogravimetric analysis (TG) and differential

thermal analysis (DTA), kinetics influence the observed heat

effect and mass losses, as was shown in semi-static studies by

Hyatt et al. (J Am Ceram Soc 41:70–74, 1). However, dif-

fering DTA and TG curve shapes are reported in the literature

even under supposedly comparable conditions. The differ-

ences are attributed in part to the design of the equipment and

in part to differing crystalline states of the precursor calcium

carbonate. To resolve these uncertainties, the TG has been

performed at different heating rates and at different but

controlled partial pressures of CO2. The results are reported

and critically evaluated in the light of the data obtained, and

the kinetic parameters as reported by Hyatt et al. (J Am

Ceram Soc 41:70–74, 1) are re-evaluated.
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Introduction

Thermogravimetric analysis (TG) and differential thermal

analysis (DTA) are widely used techniques in the field of

cement chemistry and are of particular interest for studying

the carbonation of hydrated cement pastes [2–9]. During

carbonation, the hydrated cement phases react with atmo-

spheric CO2 giving rise to the formation of calcium car-

bonate. For this reason, the amount of calcium carbonate

present in a sample can be used as an indicator to evaluate

severity of carbonation and its possible consequences, for

example, in affecting corrosion of embedded steel rein-

forcement. To calculate the amount of CaCO3, it is nec-

essary correctly to delineate the temperature range in which

decomposition takes place, identifying and correcting for

possible couplings with other transformations involving

mass changes.

Calcium carbonate decomposes to give CaO (solid) and

CO2 (gas). The process, as measured by TG, is influenced by

intrinsic and extrinsic factors. Intrinsic factors include

chemical purity and defect content of the sample, its surface

area, crystallite size, morphology, etc. Extrinsic factors

include sample packing, gas interchange between furnace

atmosphere and the sample in the course of the test, severity

of the thermal gradient developed in the sample as decom-

position gets under way, etc. In dynamic conditions, as in TG

and DTA, kinetics and equilibrium, i.e., CO2 partial pressure

and temperature, control the observed heat effect and mass

losses, as was shown in semi-static studies by Hyatt et al. [1]

using 0.1 9 1 9 1.5 cm crystals. Since then, many related

studies have been published [10–28]. However, differing

shapes are reported in the literature for DTA and TG curves,

especially in the cement chemistry field. The differences are

due at least in part to the choice of equipment and conditions

(atmosphere, heating rate, etc.). But it is also reported that the

differences arise in part from different crystalline states of

the precursor calcium carbonate.

The objective of this research was to study the influence

of the CO2 partial pressure and the temperature on the
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calcium carbonate decomposition and to re-evaluate the

parameters reported by Hyatt et al. [1]. It is also intended to

provide experimental data that can serve to make the cal-

culations for obtaining the kinetic parameters. Finally, the

study should allow a better understanding of the factors

controlling the shape of TG curves from carbonated cement

paste samples.

Experimental

The material used is commercial CaCO3 powder provided

by Merck with purity of [99.0%. The surface area of the

powder was characterized by BET N2 isotherms as

0.96 ± 0.03 cm2/mg. TG were performed in N2 atmo-

sphere at three different heating rates: 5, 10, and 20 �C/

min, and at constant heating rate 10 �C/min, in three dif-

ferent atmospheres: N2 and mixed nitrogen–CO2 atmo-

spheres with 20% CO2 and 75% CO2. To get the different

CO2 concentrations in the atmospheres, N2 and CO2 were

mixed in the furnace using mass flow controllers equipped

with piezoelectric valves. The equipment used was a

NETZSCH STA 449F3 DTA/TGA.

TG isotherms were done using different temperatures

and atmospheres. The apparatus has two temperature

thermocouples, one at the furnace and the other at the

sample, the difference between the two being a constant 28

to 30 �C over the relevant temperature range. The sample

thermocouple was calibrated using a set of standards (Ga,

In, Sn, Bi, Zn, and Al) with well-known phase transition

temperatures and reported temperatures are probably

accurate up to ±0.5 �C. In N2, the temperatures of the

isotherms (measured at the sample) were 641, 646, 671,

697, 721, 746, 770, 795, and 871 �C. In the 20% CO2

atmosphere, the temperatures used were 896, 922, 946, and

971 �C; and finally, in the 75% CO2 atmosphere, 911, 922,

947 and 972 �C were chosen. In all the cases, the samples

were heated to the isotherm temperature at 20 �C/min: no

significant decomposition occurred during this initial

heating.

100 mg of sample were used for both dynamic and

isothermal experiments. The gas flow rate of 80 ml/min

was used in all the cases.

Results and discussion

Heating rate

Figure 1 shows the calcium carbonate decomposition in N2

at three different heating rates: the left graph uses the x-

axis for the temperature, and the right graph for time.

Modifying the heating rate leads to a shift in the temper-

ature range where the calcium carbonate decomposition

takes place. Higher rates correspond to broader temperature

decomposition ranges, namely, when increasing the rate,

the decomposition is accelerated in terms of time and

delayed in terms of temperature.

CO2 concentration

Increasing the CO2 concentration in the atmosphere, namely

the CO2 partial pressure, displaces the equilibrium reaction

toward calcium carbonate, making the decomposition shift

to higher temperature. At a constant heating rate, higher CO2

partial pressure leads to an increase in the onset temperature

of the CaCO3 decomposition (Fig. 2). In this case, changing

the x-axis from temperature to time does not change the

shape of the decomposition curve: the higher the CO2 con-

centration in the atmosphere, the longer the time is required

to complete the decomposition. The shape of the curve also

approaches more closely to the ideal stepwise shape as the

CO2 partial pressure is increased.

Isotherms

As shown in Figs. 3, 4, 5, increasing the temperature of the

isothermal decomposition leads to a shorter decomposition

duration, namely, as an endothermic reaction, the CaCO3

decomposition is favored when the temperature is

increased. In N2 (Fig. 3) at 871 �C, CaCO3 needs about 1 h

to complete decomposition corresponding to a mass loss of

*44%, while at 641 �C decomposition takes *24 h.

With the 20% CO2 atmosphere (Fig. 4) at 971, 946, and

922 �C, decomposition occurs within 2 h, while at 896 �C,

it takes more than 2 days. With the 75% CO2 atmosphere

(Fig. 5), the great increase in the decomposition time by

lowering the temperature just 11 degrees is apparent, taking

4 h at 922 �C and 25 h at 911 �C.
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function of temperature and

time
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The first few minutes, during which no weight loss is

recorded, correspond in most cases to the time taken for the

samples to reach the isothermal temperature. However, in

the 896 �C and 20% CO2 curve, as well as in the 911 and

922 �C in 75% CO2 dataset, there is also a certain period

where the final temperature will have been reached during

which no weight loss takes place. These experiments,

performed at the lowest temperatures, give information

about the mechanism by which CaCO3 decomposes in CO2

atmospheres: the time interval represents at least in part an

initial induction period before CaCO3 begins to lose

weight. The existence of an induction period was not,

however, observed in analysis with pure N2.

Decomposition rate

For calculating the decomposition rate, the slope of the

linear part of the isothermal decomposition (% mass loss

vs. time) was considered (Fig. 6). Dividing the decompo-

sition rate by the BET area enables the rate to be expressed

as mass loss per unit of time and sample surface area (mg/

min cm2).

The calculated decomposition rates (R) at the tempera-

tures considered in N2 and in 20 and 75% CO2 atmospheres

are shown in Figs. 7, and 8, respectively. The R data can

be fitted to an exponential function

RðTÞ ¼ a � expðT=sÞ � b ð1Þ

where a, b, and s are positive constants that depend on the

CO2 partial pressure. The fitted curves and the corre-

sponding equation are also shown in Figs. 7 and 8.

Using the equations obtained for R(T) for the different

CO2 concentrations, the values of R as a function of the

CO2 partial pressure can be obtained at different temper-

atures (Fig. 9).

Hyatt expression for the decomposition rate

The two main hypotheses of Hyatt et al. [1] are that (1) the

decomposition reaction initiates at the surface of the calcite

grains, and (2) the CaO initially formed is in an unstable

structural state between the original rhombohedral CaCO3
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and the final well-crystallized cubic CaO. Based on these

assumptions and on the equilibrium constants, the expres-

sion proposed for the decomposition rate in relation to

decomposition rate in pure N2 atmosphere is as follows:

R ¼
1� PCO2

.
P0

CO2

B � PCO2
þ 1=R0

ð2Þ

where P0
CO2

is the equilibrium CO2 partial pressure, PCO2
is

the CO2 partial pressure, R0 is the decomposition rate in

N2, and B is temperature dependant.

Figure 10 shows values drawn from Hyatt fittings of R

versus PCO2
.

P0
CO2

is a function of the temperature only: the values for

our calculations were taken from Hyatt (Fig. 11). The

values of R0(T) and R(T) have been calculated for 0, 20,

and 75% CO2 atmospheres (Figs. 7, 8). The values of PCO2

are known from the concentration of CO2 in the furnace. It

should be noted that the CO2 evolving from the CaCO3

decomposition changes slightly the partial pressure of the

surroundings of the sample, although there is a continuous

flow of gas sweeping away the evolved gas. This means

isobaric conditions are not reached all the time in the

vicinity of the sample: PCO2
is an average PCO2

. Although

total pressure is 1 bar, constant partial pressure of carbon

dioxide is not achieved; moreover, despite other factors

being equal, the difference lessens as PCO2
increases.

For the calculation of B(T), the obtained values of R

versus PCO2
from the experimental data (Fig. 9) were fitted

to Hyatt’s equation, fixing P0
CO2

(Fig. 11) and R0 (experi-

mental). The values of B obtained from this calculation as

well as the fitting to an exponential function

B Tð Þ ¼ �2:74þ 6:15 � 1032 � exp �T=12:92ð Þ ð3Þ

are shown in Fig. 12. This expression is valid for every

partial pressure of CO2 because B is dependent on tem-

perature but not on PCO2
.

The results obtained allow us to express the decompo-

sition rate as a function of the CO2 partial pressure and

temperature, namely, although the materials studied are

different (mainly due to differences in surface area), the

Hyatt equation is assumed to apply.

However, the values obtained for powder differ con-

siderably from those obtained from large crystals: both R0

and R are much smaller for powder than for large crystals.
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This can be clearly seen comparing Figs. 9 and 10. For

example, at 950 �C R0(powder) is 0.12 mg min-1 cm-2

(Fig. 9) while R0(crystal) is *14 mg min-1 cm-2

(Fig. 10). Also at 950 �C in 20% CO2 atmosphere, the

values for powder and crystal are 0.08 and 5.6, respec-

tively. Regarding the differences between B values

obtained for the two types of materials, they are much

higher for powder than for large crystals. As an example,

and deducing Hyatt B values from Fig. 10 data, at 950 �C

B(crsytal) is 0.4 min cm2 mg-1 atm-1 while B(powder) is

5.9 min cm2 mg-1 atm-1 (Fig. 12).

The decomposition mechanisms seem similar, but the

parameters proposed by Hyatt cannot be applied to powder

and vice versa. One of the reasons for this may be related to

the changing CO2 pressure around the grains as CO2 is

evolved in the course of decomposition. Depending on the

furnace design and on the grain size of the particles, the

composition of the atmosphere gas close to the grains may

differ from the input gas composition. The most extreme

assumption, where the atmosphere in the vicinity of a

decomposing particle becomes 100% CO2, irrespective of

the input gas composition, may give a partial explanation

for the changing numerical values of B and R. As was

shown before, the higher the CO2 concentration, the slower

the decomposition would be. In the case of powder, a

greater surface area is decomposing at the same time

compared to large crystals. This would imply a greater but

local increase of CO2 partial pressure in the powder

decomposition which in turn would delay the reaction and

lower the decomposition rate.

As there is no easy or certain way to deconvolute all the

variables affecting the process, the use of isobaric condi-

tions, i.e., the constant pressure of the volatile phase, in this

instance, CO2, should be a benchmark for continuing this

study in the future. Further research should include

decompositions in 100% CO2 atmospheres where the dif-

ferences between different calcites cannot be due to

extrinsic causes, but to intrinsic chemical differences.

Regarding the influence of defects on the results, it is con-

sidered that because of the relatively long time required to reach

a steady temperature, point defects will be close to equilibrium.

This means point defects in excess of equilibrium will anneal

out in the course of heating. On the other hand, most particle

size effects are unlikely to anneal out because sintering is slow.

These effects manifest themselves as strains and could influ-

ence significantly decomposition. It seems plausible that sin-

tering may take place during heating of nanoparticles. Future

study should include the preparation and characterization of

calcite nanoparticles to determine if the high surface area per-

sists during heating and is sufficient to influence the subsequent

thermal characteristics of the material.

Another point to be addressed in future studies is the

question of ‘‘amorphous’’ material and its probable disap-

pearance because of crystallization during annealing in

CO2 atmospheres at temperatures between 700 and 850 �C.

By taking a sample close to decomposition, cooling, and

measuring the BET surface, the roles of sintering and

reduction of surface can be evaluated. In N2 or CO2-poor

atmosphere, where some decomposition occurs at low

temperature, the persistence of amorphous material might

still be observed.

Conclusions

The results obtained allow for a better understanding of the

origin of TG data obtained from carbonated cement paste

samples.

Definite indications were obtained regarding the exis-

tence of an induction period before CaCO3 decomposition.

These indications were the strongest in low-temperature

decompositions in CO2-containing atmospheres.

The decomposition rate of CaCO3 can be expressed as a

function of the temperature and the CO2 partial pressure:

R(T, PCO2
), substituting the expressions for R0(T), P0

CO2
ðTÞ

and B(T).
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Although the materials studied are different—mainly the

surface area—Hyatt et al. equation applies also for calcium

carbonate powder decomposition.

The parameters obtained for powder differ considerably

to the ones obtained in large crystals: B values are much

higher for powder than for large crystals, and both R0 and R

are much smaller for powder than for large crystals.

Atmospheres rich in CO2 give weight losses which are

sharper and correspond closely to the ideal step profile.

Consequently, measurement of evolved CO2, and hence

calcite content, is less subject to interference from other

thermal events. Controlled atmospheres rich in CO2 allow

for a better calculation of the kinetic parameters.

By using atmospheres at constant PCO2
, the reversibility

of reaction can also be established. The closer the reaction

achieved under equilibrium conditions, the greater the

justification for applying equilibrium thermodynamics.
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