Magnetic properties of nanocrystalline $CuFe₂O₄$ and kinetics of thermal decomposition of precursor

Xuehang Wu • Kaiwen Zhou • Wenwei Wu • Xuemin Cui • Yongni Li

Received: 27 October 2011 / Accepted: 22 November 2011 / Published online: 10 December 2011 © Akadémiai Kiadó, Budapest, Hungary 2011

Abstract CuFe₂(C₂O₄)₃.4.5H₂O was synthesized by solidstate reaction at low heat using $CuSO_4 \cdot 5H_2O$, $FeSO_4 \cdot 7H_2O$, and $Na_2C_2O_4$ as raw materials. The spinel CuFe₂O₄ was obtained via calcining $CuFe₂(C₂O₄)₃·4.5H₂O$ above 400 °C in air. The $CuFe₂(C₂O₄)₃$.4.5H₂O and its calcined products were characterized by thermogravimetry and differential scanning calorimetry, Fourier transform FT-IR, X-ray powder diffraction, scanning electron microscopy, energy dispersive X-ray spectrometer, and vibrating sample magnetometer. The result showed that $CuFe₂O₄$ obtained at 400 °C had a saturation magnetization of 33.5 emu g^{-1} . The thermal process of $CuFe₂(C₂O₄)₃·4.5H₂O$ experienced three steps, which involved the dehydration of four and a half crystal water molecules at first, then decomposition of $CuFe₂(C₂O₄)₃$ into $CuFe₂O₄$ in air, and at last crystallization of $CuFe₂O₄$. Based on KAS equation, OFW equation, and their iterative equations, the values of the activation energy for the thermal process of CuFe₂(C₂O₄)₃.4.5H₂O were determined to be 85 ± 23 and 107 \pm 7 kJ mol⁻¹ for the first and second thermal process steps, respectively. Dehydration of $CuFe₂(C₂O₄)₃$. 4.5H2O is multistep reaction mechanisms. Decomposition of $CuFe₂(C₂O₄)₃$ into $CuFe₂O₄$ could be simple reaction mechanism, probable mechanism function integral form of thermal decomposition of $CuFe₂(C₂O₄)₃$ is determined to be $1 - (1 - \alpha)^{1/4}.$

K. Zhou

School of Materials Science and Engineering, Guangxi University, Nanning 530004, China

Keywords Nanoparticles · Ferrites · Chemical synthesis · Non-isothermal kinetics - Thermal process

Introduction

Spinels of the type $M^{2+}M_2^{3+}O_4$ attract the research interest because of their versatile practical applications [[1–3\]](#page-7-0). In the case of M^{3+} =Fe, the resulting spinel ferrites having a general chemical composition of MFe₂O₄ (M = Cu, Mn, Mg, Zn, Ni, Co, etc.) are widely used in the field of highdensity information storage, ferrofluids, catalysts, drug targeting, magnetic separation, magnetic resonance imaging, and gas sensor $[4-11]$. Within this group, copper ferrite ($CuFe₂O₄$) is very important soft magnetic material. Its properties such as magnetic behavior and gas-sensing properties are highly dependent on the synthesis method.

To date, various methods have been developed to synthesize $CuFe₂O₄$ with cubic structure, including ballmilling [\[12](#page-7-0), [13\]](#page-7-0), sol–gel synthesis [\[14\]](#page-7-0), co-precipitation [\[15](#page-7-0), [16\]](#page-7-0), combustion synthesis [[17\]](#page-7-0), microwave synthesis $[18]$ $[18]$, and solid-state reaction at low heat $[4]$ $[4]$. In the synthesis of $CuFe₂O₄$, it was found that crystallite diameter, morphology, and crystalline phases of $CuFe₂O₄$ associated with its properties were highly dependent on the synthesis method and temperature. Sun et al. [[4\]](#page-7-0) obtained spinel-type $CuFe₂O₄$ with a crystallite size of 75 nm by solid-state reaction at low heat when precursor was calcined at 600 °C. Tao et al. $[16]$ $[16]$ studied synthesis of spinel-type $CuFe₂O₄$ via sol–gel and co-precipitation methods, respectively. The results showed that spinel-type $CuFe₂O₄$ was obtained at 600 \degree C via calcining precursor obtained by co-precipitation method. However, pure $CuFe₂O₄$ was not obtained until 800 °C by a sol-gel process, which might be due to the loose contact between copper and iron ions and

 $X. Wu \cdot K. Zhou \cdot W. Wu (\boxtimes) \cdot X. Cui \cdot Y. Li$ School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China e-mail: gxuwuwenwei@yahoo.com.cn

the possible low diffusion rate. Therefore, new synthesis methods for $CuFe₂O₄$ still need to be studied and innovated further. Besides, the mechanism and kinetics studies of thermal process of precursor are needed in order to obtain high-quality $CuFe₂O₄$ for practical applications.

The aim of this work is to prepare polycrystalline $CuFe₂O₄$ using $CuSO₄·5H₂O$, FeSO₄·7H₂O, and Na₂C₂O₄ as raw materials via solid-state reaction at low heat [[11,](#page-7-0) [19\]](#page-7-0) and to study magnetic properties of $CuFe₂O₄$, the mechanisms, and kinetics of the thermal process of precursor. The kinetics of the thermal process of precursor was studied using TG–DSC techniques. Non-isothermal kinetics of the thermal process of precursor was interpreted by the Kissinger–Akahira–Sunose (KAS) equation [\[20](#page-7-0), [21\]](#page-7-0) and Ozawa–Flynn–Wall (OFW) equation [[22–24\]](#page-7-0). The kinetic $(E_a$ mechanism) parameters of the thermal decomposition of $CuFe₂(C₂O₄)₃$.4.5H₂O are discussed for the first time.

Experimental

Reagent and apparatus

All chemicals were of reagent-grade purity. TG/DSC measurements were taken using a Netsch 40PC thermogravimetric analyzer. X-ray powder diffraction (XRD) was performed using a Rigaku D/max 2500 V diffractometer equipped with a graphite monochromator and a Cu target. The FT-IR spectra of the precursor and its calcined products were recorded on a Nexus 470 FT-IR instrument. The morphologies of the calcined samples and energy dispersive X-ray spectrometer (EDS) were obtained on S-3400 scanning electron microscopy (SEM). The specific saturation magnetizations (Ms) of the calcined sample powders were carried out at room temperature using a magnetic property measurement system (SQUID-MPMS-XL-5).

Preparation of $CuFe₂O₄$

The $CuFe₂O₄$ precursor was prepared by solid-state reaction at low heat using $CuSO_4·5H_2O$, FeSO₄ $·7H_2O$, and $Na₂C₂O₄$ as raw materials at first. In a typical synthesis, $CuSO_4 \cdot 5H_2O$ (24.41 g), $FeSO_4 \cdot 7H_2O$ (54.37 g), $Na_2C_2O_4$ (43.24 g), and surfactant polyethylene glycol (PEG)-400 (3.0 mL, 50 vol%) were put in a mortar, and the mixture was fully ground by hand with a rubbing mallet for 40 min. The grinding velocity was about 200 circles/min, and the strength applied was moderate. The reactant mixture gradually became damp, and then, a paste formed quickly. The reaction mixture was kept at room temperature for 2 h. The mixture was washed with deionized water to remove soluble inorganic salts until SO_4^2 ion could not be visually detected with a 0.5 mol L^{-1} BaCl₂ solution. The solid

was then washed with a small amount of anhydrous ethanol and dried at 86 \degree C for 4 h. The resulting material was subsequently determined to be the $CuFe(C_2O_4)_3.4.5H_2O$. Nanocrystalline $CuFe₂O₄$ with cubic structure was obtained via calcining $CuFe(C_2O_4)_3.4.5H_2O$ above 400 °C in air.

Determination of activation energy by KAS equation and OWF equation

Activation energy of thermal decomposition of solid compound can be obtained by KAS equation (Eq. 1) and OWF equation (Eq. 2), respectively.

$$
\ln \frac{q}{T^2} = \ln \frac{AR}{g(\alpha)E_a} - \frac{E_a}{RT}
$$
 (1)

$$
\ln q = \ln \frac{0.0048AE_a}{g(\alpha)R} - 1.0516 \frac{E_a}{RT}
$$
 (2)

where q is the heating rate $(K \text{ min}^{-1})$, T is the reaction temperature (K) in TG curve, E_a is the activation energy $(kJ \text{ mol}^{-1})$ of thermal decomposition, R is the gas constant $(8.314 \times 10^{-3} \text{ kJ mol}^{-1} \text{ K}^{-1})$, A is the pre-exponential factor, and α is called conversion degree. The $g(\alpha)$ is a function of α , and it reveals the mechanism of reaction. The plots of $ln(q/T^2)$ versus $1/T$ and $ln q$ versus $1/T$ corresponding to different conversions α can be obtained by a linear regression of least-square method, respectively. Thus, reaction activation energy E_a can be obtained from linear slope $(-E_a/R, Eq. 1)$ and $(-1.0516E_a/R, Eq. 2)$. In order to obtain exact E_a values of the thermal decomposition, the iterative equations of Eqs. 1 and 2 can be expressed as Eqs. 3 and 4, respectively [\[24](#page-7-0)].

$$
\ln \frac{q}{h(x)T^2} = \ln \frac{AR}{g(\alpha)E_a} - \frac{E_a}{RT}
$$
 (3)

$$
\ln \frac{q}{H(x)} = \ln \frac{0.0048AE_a}{g(\alpha)R} - 1.0516 \frac{E_a}{RT}
$$
 (4)

where $h(x)$ is expressed by the fourth Senum and Yang approximation formulae [[25\]](#page-7-0):

$$
h(x) = \frac{x^4 + 18x^3 + 88x^2 + 96x}{x^4 + 20x^3 + 120x^2 + 240x + 120}
$$
(5)

where $x = E_a/RT$, and $H(x)$ is equal to [\[24](#page-7-0)]:

$$
H(x) = \frac{\exp(-x)h(x)/x^2}{0.0048\exp(-1.0516x)}
$$
(6)

The iterative procedure performed involved the following steps: (i) assume $h(x) = 1$ or $H(x) = 1$ to estimate the initial value of the activation energy E_{a1} . The conventional isoconversional methods stop the calculation at this step; (ii) using E_{a1} , calculate a new

value of E_{a2} for the activation energy from the plot of $\ln[q/h(x)T^2]$ versus $1/T$ or $\ln[q/H(x)]$ versus $1/T$; (iii) repeat step (ii), replacing E_{a1} with E_{a2} . When $E_{ai} - E_{a(i-1)}$ 0.1 kJ mol⁻¹, the last value of E_i was considered to be the exact value of the activation energy of the reaction.

Determination of the most probably mechanism function

The probable mechanism function of thermal process, i.e., $g(\alpha)$ function, can be obtained by Eq. 7 [[24\]](#page-7-0):

$$
\ln g(\alpha) = \left[\ln \frac{AE_a}{R} + \ln \frac{e^{-x}}{x^2} + \ln h(x) \right] - \ln q \tag{7}
$$

The procedure performed involved the following steps: (i) the conversion degrees α corresponding to multiple heating rates at the same temperature are put into the left of Eq. 7 at first, combined with twenty-six types of mechanism functions $[26]$ $[26]$, and then the slope k and correlation coefficient r are obtained from the plot of \ln $[g(\alpha)]$ versus ln q; (ii) $g(\alpha)$, which the value of the slope k is near to -1.00000 and correlation coefficient r is better, is determined to be the most probably mechanism function of thermal process.

Determination of pre-exponential factor A

The pre-exponential factor A can be estimated from the intercept of the plots of Eq. [2](#page-1-0), inserting the most probable $g(\alpha)$ function determined [\[27](#page-7-0)].

 a_{100}

Fig. 1 TG/DSC curves of the \mathbf{a}_{def} **b**

TG/DSC analysis of the precursor

Figure 1 shows the TG/DSC curves of $CuFe₂(C₂O₄)₃·4.5H₂O$ at four different heating rates in air, respectively.

The TG/DSC curves show that thermal process of the $CuFe₂(C₂O₄)₃$.4.5H₂O below 450 °C occurs in three welldefined steps. For heating rate of 10 $^{\circ}$ C min⁻¹, the first step starts at about 50 °C, ends at about 201 °C, and characterized by a strong endothermic DSC peak at about 189 \degree C, which can be attributed to dehydration of four and a half water molecules from $CuFe₂(C₂O₄)₃·4.5H₂O$ and the formation of $CuFe₂(C₂O₄)₃$. The observed mass loss in the TG curve is 15.72%, which is in good agreement with 15.58% theoretic mass loss of dehydration of four and a half water molecules from $CuFe₂(C₂O₄)₃·4.5H₂O$. The second decomposition step begins at about 201 $^{\circ}$ C and ends at about 300 $^{\circ}$ C, which involves an exothermic process with a strong DSC peak at about 248 \degree C, attributed to the decomposition of $CuFe₂(C₂O₄)$ ₃ and the formation of $CuFe₂O₄$. The thermal decomposition of second step only requires about 22 \degree C from the beginning to finish, indicating that decomposition of $CuFe₂(C₂O₄)₃$ into $CuFe₂O₄$ in air is a fast step, which can be attributed that Fe^{2+} and Cu^{2+} ions with d^{6-9} outer electron configuration have strong polarization force. The corresponding observed mass loss in the TG curve is 36.56%, which is close to 38.45% theoretic mass loss of reaction of $CuFe₂(C₂O₄)₃$ with two O_2 molecules. The thermal process of third step is

> 4 8

 $CuFe₂(C₂O₄)₃·4.5H₂O$ at different heating rates in air

Fig. 3 Crystallite diameters and crystallinity of $CuFe₂O₄$

Fig. 4 FT-IR spectra of $CuFe₂(C₂O₄)₃·4.5H₂O$ and its calcined samples

Fig. 5 SEM and EDS analyses of the calcined sample: a 600 °C, b 700 °C, c 800 °C

crystallization of cubic $CuFe₂O₄$ and characterized by a weak exothermic DSC peak at about 328 °C.

 XRD analysis of $CuFe₂(C₂O₄)₃·4.5H₂O$ and its calcined samples

Figure [2](#page-2-0) shows the XRD patterns of $CuFe₂(C₂O₄)₃ \cdot 4.5H₂O$ dried at 86 \degree C and the calcined products at different temperatures in air for 1 h.

From Fig. [2](#page-2-0)a, the results show that strong intensity and smoothed baseline, a wide and low diffraction pattern of the precursor is observed, which indicates that the $CuFe₂(C₂O₄)₃·6H₂O obtained at 86 °C is a crystalline with$ higher crystallinity. The diffraction peaks in the pattern can be indexed to be in agreement with the orthorhombic $FeC₂O₄$:2H₂O from PDF card 23-0293, with space group $12/a(15)$. No diffraction peaks of copper oxalate, such as $CuC₂O₄$ or $CuC₂O₄·xH₂O$, are observed, which implies that Cu^{2+} ions enter lattice of FeC₂O₄.2H₂O, and $CuC₂O₄$ or $CuC₂O₄$ $xH₂O$ forms a solid solution with FeC₂O₄.2H₂O. It is explained by the fact that Cu^{2+} ion (72 pm) and Fe²⁺ ion (75 pm) have same electric charge and similar ionic radius. When the precursor is calcined at 250 °C for 1 h, a part of characteristic diffraction peaks of cubic $CuFe₂O₄$ with weak intensity is observed. From Fig. [2](#page-2-0)b, when the sample was heated at 400 $^{\circ}$ C in air for 1 h, the diffraction peaks in the pattern are in agreement with those of cubic $CuFe₂O₄$, with space group F, lattice parameters: $a = b = c = 0.8349$ nm, $\alpha = \beta = \gamma = 90^{\circ}$, density = 5.31 g cm^{-3} , from PDF card 25-0283. Intensity of diffraction peaks of impurities, such as CuO and $Fe₂O₃$, increases with increasing calcination temperature.

Fig. 6 Hysteresis loops for $CuFe₂O₄$ samples obtained at different temperatures in air for 1 h

According to the Scherrer formula [\[6](#page-7-0)]: $D = K\lambda/(\beta\cos\theta)$, where D is crystallite diameter, $K = 0.89$ (the Scherrer constant), $\lambda = 0.15406$ nm (wavelength of the X-ray used), β is the width of line at the half-maximum intensity, and θ is the corresponding angle. The resulting crystallite sizes of the products from calcining precursor can be obtained. Besides, the crystallinity of cubic $CuFe₂O₄$ can be calculated via MDI Jade 5.0 software [[28\]](#page-7-0). The results are shown in Fig. [3.](#page-3-0) From Fig. [3,](#page-3-0) it can be seen that the crystallite sizes of the products increase with increasing calcination temperature. However, the crystallinity of cubic $CuFe₂O₄$ decreases with increasing calcination temperature, which is attributed that the cubic $CuFe₂O₄$ can decompose into CuO and $Fe₂O₃$ above 400 °C. In other words, cubic $CuFe₂O₄$ is thermodynamically more stable at 400 \degree C.

IR spectroscopic analysis of $CuFe₂(C₂O₄)₃ \cdot 4.5H₂O$ and its calcined samples

The FT-IR spectra of $CuFe₂(C₂O₄)₃ \cdot 4.5H₂O$ and its calcined sample are shown in Fig. [4](#page-3-0). The CuFe₂(C₂O₄)₃. $4.5H₂O$ exhibits a strong and broad band at about

Table 1 Correlative data of thermal process of CuFe₂ $(C_2O_4)_3$ -4.5H₂O for step 1

α	β /K min ⁻¹					
	5(T/K)	10(T/K)	15 (T/K)	20(T/K)		
0.2	405	415	419	422		
0.3	420	432	437	442		
0.4	429	441	447	453		
0.5	436	448	455	462		
0.6	441	454	461	469		
0.7	445	459	467	476		
0.8	449	464	473	482		

Table 2 Correlative data of thermal process of $CuFe₂(C₂O₄)₃$. $4.5H₂O$ for step 2

α	β /K min ⁻¹					
	5(T/K) 10(T/K)		15(T/K)	20(T/K)		
0.1	477	485	494	502		
0.2	484	491	499	508		
0.3	487	494	501	511		
0.4	489	496	504	513		
0.5	491	498	505	516		
0.6	493	499	508	517		

 $3,400$ cm⁻¹ that can be assigned to the stretching OH vibration of the water molecule. The weak band at about 827 cm^{-1} is the water libration (hindered rotation). The strong band, which appears at $1,643$ cm⁻¹ in the spectrum of the precursor, can be ascribed to the bending mode of the HOH [[6,](#page-7-0) [19](#page-7-0), [28](#page-7-0)]. The bands at $1,338$ cm⁻¹ can be assigned to either the appearance of new M –OC₂O₃ $(M = Cu, Fe)$ bonds and/or to the combinations of OH librations and lattice modes $[6, 24]$ $[6, 24]$ $[6, 24]$ $[6, 24]$. When CuFe₂ $(C_2O_4)_3$ 4.5H₂O is calcined at 400 °C, the bands at 2,361 and 1,453 cm⁻¹ are attributed to the absorption of CO_2 and absorption of water from air, respectively.

SEM and EDS analyses of the calcined samples

The morphologies and EDS spectrum of the calcined samples are shown in Fig. [5](#page-3-0). From Fig. 5a, it can be seen that the calcined sample obtained at 600 \degree C is composed of irregular grains, there is a soft agglomeration phenomenon in the particles of sample, and the observed particles sizes are between 100 and 300 nm. With the increase in calcination temperature, the calcined sample is aggregated into larger grains further. Figure [5](#page-3-0)c shows the SEM micrographs of sample obtained at 800 $^{\circ}$ C. It can be seen that the calcined sample obtained at 800 °C becomes lamellar shape. The average crystallite sizes of the calcined samples determined by X-ray diffraction are significantly smaller than the values determined by SEM. This is attributed that values observed by SEM technique give the size of the secondary particles, and the X-ray line broadening analysis discloses only the size of primary particles. Figure [5](#page-3-0)d shows EDS spectrum of the calcined product obtained at 700 \degree C, and the result shows that mole ratio of Cu/Fe is equal to 0.95:2.15, which closes to that obtained by XRD analysis.

Magnetic properties of the calcined samples

Figure 6 shows the hysteresis loops of the $CuFe₂O₄$ particles obtained at different calcination temperatures. From

Table 3 The activation energies (E_a) and intercept (B) for thermal decomposition of CuFe₂(C₂O₄)₃.4.5H₂O at different conversion degree and calculating procedure for step 1

Conversion degree/ α	E_a /kJ mol ⁻¹				B	
	KAS method	OFW method	$\ln[q/(h(x)T^2)] \sim 1/T$	$\ln[q/H(x)] \sim 1/T$	Eq. 3	Eq. 4
0.2	108	109	108	108	21.78798	35.39991
0.3	93	95	93	93	16.22387	29.53228
0.4	88	90	88	88	14.17575	27.36788
0.5	81	84	82	82	12.09366	25.13863
0.6	77	80	77	77	10.52195	23.44680
0.7	73	77	73	73	9.336010	22.16611
0.8	70	74	71	71	8.433090	21.19028
Average	84 ± 24	87 ± 22	85 ± 23	85 ± 23	13.22461	26.32027

 $\ln[q/(h(x))] \sim 1/T$ and $\ln[q/H(x)] \sim 1/T$ are the iterative results of KAS method and OFW method, respectively. B is the intercept of the plots of Eqs. [3](#page-1-0) and [4](#page-1-0)

Fig. [6](#page-4-0), it can be observed that specific saturation magnetizations of powders calcined at 400, 600, 700, and 800 $^{\circ}$ C for 1 h are 33.5, 31.9, 21.8, and 22.0 emu g^{-1} , respectively. That is, specific saturation magnetization decreases with increasing calcination temperature. In other words, the smaller the crystallinity of the particles, the smaller is the specific saturation magnetizations. The smaller Ms values associated with smaller crystallinity can be explained as follows: First, $CuFe₂O₄$ can decompose into CuO and $Fe₂O₃$ particles with weak magnetic intensity above 400 °C, and weak magnetic CuO and $Fe₂O₃$ particles can reduce the net magnetic moment in the samples. Second, the magnetocrystalline anisotropy of the particles is dependent on the crystallinity of $CuFe₂O₄$. When the calcination temperature increases, the crystallinity of particles decreases, which increases magnetocrystalline anisotropy distortion and decreases magnetic moment within the particles of $CuFe₂O₄$ [\[10](#page-7-0)].

Kinetics of thermal decomposition of $CuFe₂(C₂O₄)₃·4.5H₂O$

In accordance with TG/DSC and XRD analyses of $CuFe₂(C₂O₄)₃·4.5H₂O$ and its calcined products mentioned

Conversion degree/ α	$E_{\rm s}/kJ$ mol ⁻¹				B	
	KAS method	OFW method	$\ln[q/(h(x)T^2)] \sim 1/T$	$\ln[q/H(x)] \sim 1/T$	Eq. 3	Eq. 4
0.1	99	102	100	100	14.57970	28.02413
0.2	104	107	105	105	15.44839	28.98788
0.3	109	112	109	109	16.49216	30.12324
0.4	112	114	112	112	16.91024	30.58370
0.5	107	110	107	107	15.76294	29.35658
0.6	110	113	111	111	16.41293	30.06367
Average	107 ± 8	110 ± 8	107 ± 7	107 ± 7	15.93439	29.52320

Table 4 The activation energies (E_a) and intercept (B) for thermal decomposition of CuFe₂(C₂O₄)₃.4.5H₂O at different conversion degree and calculating procedure for step 2

above, thermal process of $CuFe₂(C₂O₄)₃ \cdot 4.5H₂O$ below $400 \degree$ C consists of three steps, which can be expressed as follows, respectively.

$$
CuFe2(C2O4)3 · 4.5H2O(cr) \rightarrow CuFe2(C2O4)3(cr) + 4.5H2O(g)
$$
 (8)

$$
\text{CuFe}_2(\text{C}_2\text{O}_4)_3(\text{cr}) + 2\text{O}_2(\text{g}) \rightarrow \text{CuFe}_2\text{O}_4(\text{am}) + 6\text{CO}_2(\text{g}) \tag{9}
$$

$$
CuFe2O4(am) \rightarrow CuFe2O4(c)
$$
 (10)

According to non-isothermal method, the basic data of α and T collected from the TG curves of the thermal decomposition of $CuFe₂(C₂O₄)₃$.4.5H₂O at various heating rates $(5, 10, 15, \text{ and } 20 \text{ K min}^{-1})$ $(5, 10, 15, \text{ and } 20 \text{ K min}^{-1})$ $(5, 10, 15, \text{ and } 20 \text{ K min}^{-1})$ are illustrated in Tables 1 and [2.](#page-4-0)

According to Eqs. [1](#page-1-0) and [2](#page-1-0), the isoconversional calculation procedures of KAS and OFW are used. The corresponding KAS and OFW lines obtained at different conversion degrees α and different heating rates q are shown in Figs. [7](#page-5-0) and [8](#page-5-0), respectively.

The values of the activation energies associated with the thermal process of $CuFe₂(C₂O₄)₃·4.5H₂O$ for the first thermal process step corresponding to different conversions α are obtained by the KAS and OFW calculation procedure and the iterative method mentioned above. The results are shown in Tables [3](#page-5-0) and 4, respectively.

From Tables [3](#page-5-0) and 4, E_a values for thermal decomposition of step 1 obtained by iterative method are very close to those obtained by KAS method (differing about 1 kJ mol^{-1}), and those by OFW method is higher than those obtained by iterative method (differing about 2 kJ mol⁻¹). E_a values for thermal decomposition of step 2 obtained by iterative method are very close to those obtained by KAS method (differing about 0 kJ mol⁻¹), and those by OFW method is higher than those obtained by iterative method (differing about 3 kJ mol⁻¹). However, it can be discovered that the E_a values obtained from the plot of $\ln[q/H(x)]$ versus $1/T$ or $\ln[q/(h(x)T^2)]$ versus $1/T$ by iterative procedure are very close to each other. From Tables [3](#page-5-0) and 4, the activation energies change in the step 1 with α is higher than 10%, and that in the step 2 with α is lower than 10%, so that we draw a conclusion that the dehydration of the crystal water of $CuFe₂(C₂O₄)₃·4.5H₂O$ could be multistep reaction mechanism, and decomposition of $CuFe₂(C₂O₄)₃$ into $CuFe₂O₄$ could be simple reaction mechanism [\[19](#page-7-0), [27](#page-7-0), [29](#page-7-0), [30\]](#page-7-0).

According to Eq. [2](#page-1-0) and Table [2](#page-4-0), conversion degree and temperature corresponding to heating rate are put into twenty-six types of mechanism functions, respectively. The slope k , correlation coefficient r , and intercept B of linear regression of ln $[g(\alpha)]$ versus ln q are obtained. Mechanism function, in which the value of k is closest to -1.00000 and the correlation coefficient r^2 is higher, is chosen as mechanism function of thermal decomposition of $CuFe₂(C₂O₄)₃$. The results show that probable mechanism function integral form of thermal decomposition of $CuFe₂(C₂O₄)₃$ is determined to be $g(\alpha) = 1 - (1 - \alpha)^{1/4}$.

The pre-exponential factor A is estimated from the intercept of the plots of Eq. [2](#page-1-0) by inserting the most probable $g(x)$ function determined. The results show that the range of pre-exponential factor A is 1.86×10^{10} min⁻¹.

Conclusions

We have successfully synthesized nanocrystalline $CuFe₂O₄$ via a novel and simple method. XRD analysis shows that precursor is a solid solution containing $CuFe₂(C_2O_4$)₃.4.5H₂O. Crystalline CuFe₂O₄ with cubic structure is obtained when the precursor is calcined above 400 $^{\circ}$ C in air for 1 h. Magnetic characterization indicates that the specific saturation magnetization of $CuFe₂O₄$ obtained at 400 °C is 33.5 emu g^{-1} . The thermal process of the precursor in the range of ambient temperature to 400° C experiences three steps, which involves the dehydration of the waters of crystallization at first; then the decomposition of $CuFe₂(C₂O₄)$ ₃ and formation of amorphous $CuFe₂O₄$; and at last crystallization of cubic $CuFe₂O₄$. The kinetics of

the thermal process of the precursor is studied using TG/ DSC technique. The values of the activation energy for the thermal process of $CuFe₂(C₂O₄)₃·4.5H₂O$ are determined to be 85 ± 23 and 107 ± 7 kJ mol⁻¹ for the first and second thermal process steps, respectively. Dehydration of $CuFe₂(C₂O₄)₃·4.5H₂O$ is multistep reaction mechanisms, and decomposition of $CuFe₂(C₂O₄)₃$ into $CuFe₂O₄$ could be simple reaction mechanism.

Acknowledgements This study was financially supported by the National Nature Science Foundation of China (Grant no. 21161002) and the Guangxi Nature Science Foundation of China (Grant no. 2011GXNSFA018036).

References

- 1. Sugimoto M. The past, present, and future of ferrites. J Am Ceram Soc. 1999;82:269–80.
- 2. Raj K, Moskowitz B, Casciari R. Advances in ferrofluid technology. J Magn Magn Mater. 1995;149:174–80.
- 3. McMichael RD, Shull RD, Swartzendruber LJ, Bennett LH, Watson RE. Magnetocaloric effect in superparamagnets. J Magn Magn Mater. 1992;111:29–33.
- 4. Sun ZP, Liu L, Jia DZ, Pan WY. Simple synthesis of $CuFe₂O₄$ nanoparticles as gas-sensing materials. Sens Actuators B. 2007; 125:144–8.
- 5. Li JJ, Yuan HM, Li GD, Liu YJ, Leng JS. Cation distribution dependence of magnetic properties of sol–gel prepared $MnFe₂O₄$ spinel ferrite nanoparticles. J Magn Magn Mater. 2010;322: 3396–400.
- 6. Wu XH, Wu WW, Zhou KW, Cui XM, Liao S. Products and nonisothermal kinetics of thermal decomposition of $MgFe₂(C₂O₄)₃$. 6H2O. J Therm Anal Calorim. 2011. doi:[10.1007/s10973-](http://dx.doi.org/10.1007/s10973-011-1968-9) [011-1968-9](http://dx.doi.org/10.1007/s10973-011-1968-9).
- 7. Li FS, Wang HB, Wang L, Wang JB. Magnetic properties of $ZnFe₂O₄$ nanoparticles produced by a low-temperature solid-state reaction method. J Magn Magn Mater. 2007;309:295–9.
- 8. Wu WW, Cai JC, Wu XH, Li YN, Liao S. Magnetic properties and crystallization kinetics of $\text{Zn}_{0.5}\text{Ni}_{0.5}\text{Fe}_2\text{O}_4$. Rare Met. 2011. doi:[10.1007/s12598-011-0439-6.](http://dx.doi.org/10.1007/s12598-011-0439-6)
- 9. Satyanarayana L, Madhusudan Reddy K, Manorama SV. Nanosized spinel NiFe₂O₄: a novel material for the detection of liquefied petroleum gas in air. Mater Chem Phys. 2003;82:21–6.
- 10. Zhang K, Holloway T, Pradhan AK. Magnetic behavior of nanocrystalline CoFe₂O₄. J Magn Magn Mater. 2011;323: 1616–22.
- 11. Wu WW, Cai JC, Wu XH, Liao S, Huang AG. $Co_{0.35}Mn_{0.65}$ $Fe₂O₄$ magnetic particles: preparation and kinetics research of thermal process of the precursor. Powder Technol. 2011. doi: [10.1016/j.powtec.2011.09.048](http://dx.doi.org/10.1016/j.powtec.2011.09.048).
- 12. Goya GF, Rechenberg HR. Superparamagnetic transition and local disorder in CuFe₂O₄ nanoparticles. Nanostruct Mater. 1998;10:1001–11.
- 13. Jiang JZ, Goya GF, Rechenberg HR. Magnetic properties of nanostructured CuFe₂O₄. J Phys Condens Mater. 1999;11: 4063–78.
- 14. Bomio M, Lavela P, Tirado JL. Electrochemical evaluation of CuFe2O4 samples obtained by sol–gel methods used as anodes in lithium batteries. J Solid State Electrochem. 2008;12:729–37.
- 15. Pandya PB, Joshi HH, Kulkarni RG. Magnetic and structural properties of $CuFe₂O₄$ prepared by the co-precipitation method. J Mater Sci Lett. 1991;10:474–6.
- 16. Tao SW, Gao F, Liu XQ, Sørensen OT. Preparation and gassensing properties of $CuFe₂O₄$ at reduced temperature. Mater Sci Eng B. 2000;77:172–6.
- 17. Zhang YS, Stangle GC. Preparation of fine multicomponent oxide ceramic powder by a combustion synthesis process. J Mater Res. 2004;9:1997–2004.
- 18. Vanetsev AS, Ivanov VK, Tret'yakov Yu D. Microwave synthesis of lithium, copper, cobalt, and nickel ferrites. Dokl Chem. 2002;387:332–4.
- 19. Wu XH, Wu WW, Li SS, Cui XM, Liao S. Kinetics and thermodynamics of thermal decomposition of $NH_4NiPO_4.6H_2O$. J Therm Anal Calorim. 2011;103:805–12.
- 20. Chrissafis K. Kinetics of thermal degradation of polymers. Complementary use of isoconversional and model-fitting methods. J Therm Anal Calorim. 2009;95:273–83.
- 21. Chen ZP, Chai Q, Liao S, He Y, Wu WW, Li B. Preparation of LiZnPO₄·H₂O via a novel modified method and its non-isothermal kinetics and thermodynamics of thermal decomposition. J Therm Anal Calorim. 2011. doi:[10.1007/s10973-011-1799-8](http://dx.doi.org/10.1007/s10973-011-1799-8)
- 22. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.
- 23. Flynn JH. The 'temperature integral'—its use and abuse. Thermochim Acta. 1997;300:83–92.
- 24. Vlaev L, Nedelchev N, Gyurova K, Zagorcheva M. A comparative study of non-isothermal kinetics of decomposition of calcium oxalate monohydrate. J Anal Appl Pyrolysis. 2008;81:253–62.
- 25. Senum GI, Yang RT. Rational approximations of the integral of the Arrhenius function. J Therm Anal. 1977;11:445–7.
- 26. Liqing L, Donghua C. Application of iso-temperature method of multiple rate to kinetic analysis. Dehydration for calcium oxalate monohydrate. J Therm Anal Calorim. 2004;78:283–93.
- 27. Genieva SD, Vlaev LT, Atanassov AN. Study of the thermooxidative degradation kinetics of poly(tetrafluoroethene) using iso-conversional calculation procedure. J Therm Anal Calorim. 2010;99:551–61.
- 28. Liu C, Wu XH, Wu WW, Cai JC, Liao S. Preparation of nanocrystalline $LiMnPO₄$ via a simple and novel method and its isothermal kinetics of crystallization. J Mater Sci. 2011;46:2474–8.
- 29. Boonchom B, Danvirutai C. Kinetics and thermodynamics of thermal decomposition of synthetic AlPO₄.2H₂O. J Therm Anal Calorim. 2009;98:771–7.
- 30. Wu WW, Li YN, Zhou KW, Wu XH, Liao S, Wang Q. Nanocrystalline $Zn_{0.5}Ni_{0.5}Fe₂O₄$: preparation and kinetics of thermal process of precursor. J Therm Anal Calorim. 2011. doi[:10.1007/s](http://dx.doi.org/10.1007/s10973-011-2027-2) [10973-011-2027-2](http://dx.doi.org/10.1007/s10973-011-2027-2).