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Abstract The state-of-art of polyaluminosialates is

reviewed in terms of inorganic hmersi showing the com-

position, degree of netting, function of modifying atoms

and the role of non-bridging oxygen as well as hydroxyl

groups (biocompatibility). The polymeric condensation is

compared with the vitrification of glasses upon cooling.

The replacement of Si by P is discussed as well as the

analogous precipitation process of amorphous hydrous

silica (opal). Progress of geopolymers and biopolymers

usefulness is shown within the framework of generalized

world of macromolecules screening hundred contemporary

citations. Pultrusion technology is presented, capable to

produce composite geopolymers reinforced by basalt fibers

staying suitable for mechanical applications.
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Reviewing geopolymers and their links

with the classical state of quenched glasses

As a matter of curiosity the novel so-called geopolymeric

materials were introduced about 10 years ago on the pages

of this journal [1, 2] by Davidovits (cf. Fig. 1).

Geopolymers—X-ray-amorphous inorganic polysialates

[1–5] are cementitious composites, which are commonly

produced by idiosyncratic wet copolymerization (i.e.,

synthesis via solution) of the individual alumina and silica

components [1–14]. Such a room-temperature synthesis

process takes place when aluminosilicate source materials

are dissolved in aqueous solution at very high pH yielding

thus mostly non-crystalline zeolitic-like precursor, which is

also termed as copolymer. The reactive Si–OH-based easy-

soluble monomers in water-glass rather easily penetrate

into the structure of inserted solid Al-compounds. This can

be compared with the case of a high-temperature melting

process of precursor glass batch, where conversely the rigid

structure of quartz sand is diffusion-disintegrated by the

penetration of Ca, Na, Al atoms from their more easily

melted compounds thus braking up the original –Si–O–Si–

structure. Both routes factually represent a mutually com-

parable type of vitrification reactions equally facilitating

ionic interactions by either the movable hydrated ions or

the diffusible atoms in the melted viscous state.

Aluminosilicate gels (zeolite precursors) are mostly

synthesized [14–23] with the composition characterized by

general formula Mm[–(Si–O)z–Al–O]n�wH2O, where Mm are

modifying cations (mostly Na, K, Ca, Mg), n is the degree of

polycondensation and z is structural ranking (1, 2, 3,…).

Configurationally tetrahedrons SiO4 and AlO4 are mutually

bonded by oxygen bridges forming thus Si–O–Al-based

chains and rings. The positively charged Mm ions ought to be

compensated by the negative charge of four coordinated Al.

Generated gel-like structure is partially amorphous or nano-

crystalline depending on both the amount of initial solid

matter and its nature (character of raw materials) as well as

on the condition of the reaction conditions (pH). The

amorphous state is primarily favored for a higher concen-

tration of solid precursor in the preparatory suspension.

The gel subsequently hardens into rigid geopolymers

(resembling the glass formation upon the melt solidifica-

tion), which may be characterized in a number of ways,
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correspondingly applicable to classical glasses. For exam-

ple, the description in terms of principal constituents

(alumina and silica) [22–26], their structure (tetrahedral

Al–O and Si–O units in random three-dimensional frame-

work), charge-balancing role of the tuning metallic (often

alkali) ions, thermal glass-formation characteristics [27,

28] and their macroscopic properties (moderately strong

and hard, stable up to 1000 �C, etc.). The specific cir-

cumstances of the low temperature synthesis [14–28] such

as the condensation temperature of alumina and silica

resources at high pH and distinctiveness of various sorts of

water-glasses [29] are worth of a further clarification. XRD

patterns of commercial melted glass and wet synthesized

inorganic polymer were compared [29] showing broad

peaks between 17� and 34� 2h (typical for amorphous

phases) which for inorganic polymer is slightly shifted to

the higher 2h revealing questioningly its relatively more

‘‘dense’’ structure than that for analogous commercial

glass. Further deconvolution of such broad peaks in XRD

patterns can enable a more quantitative estimation of the

degree of amorphicity.

Certain formalism was developed in order to investigate

structural units involved, mostly in the terms of fragments

such as [–Si–O–Al–O–] called sialate units [1–14] (or

polysialate when condensed concurrently). Further suggested

units contain different Si:Al ratios, such as [–Si–O–Al–O–Si–

O–] (sialate-siloxo [1–4, 8, 14–16]) and [–Si–O–Al–O–Si–O–

Si–O–] (sialate-disiloxo). The Si:Al atomic ratio implies 1, 2,

and 3, however, non-integer ratios intermediate between 1:1

and 1:3 may be anticipated as changeable combinations of

basic units, provided that the content of charge-balancing

cations is appropriate (often water content controlled). The

units with Si:Al [ 3 are designated as sialate and polysialate

geopolymers. In the sense of majority of the Earth’s crust,

which is composed of siloxo-sialates and sialates, the common

feldspar series are albite–anorthite (NaAlSi3O8–CaAl2Si2O8)

describable as poly(sialate-disiloxo) for albite to poly(disia-

late) for anorthite.

Hypocrystalline materials and their ‘mers’ framework

So far not enough attention has been paid to the basic

structural disposition though detailed studies on reaction

mechanism are available [30–39]. The inherent stoichiom-

etry can be understood analogously to organic and/or inor-

ganic –mers (known in classical polymeric chains) [39–47].

Such generalized spheres of the so-called hypocrystalline

materials (an newly coined term more appropriate for an

approved terminology) are specific of possessing the regular

polyhedrons AOn (such as SiO4, AlO3, AlO4, BO4, BO3,

PO4, etc.) [33, 47]. Important is the linking function of

bridges formed by all n atoms of oxygen. If oxygen is

bridged with two central cations, A- (e.g., {SiO4/2} as AOn/2)

then i atoms of oxygen become bridged with A by a double

bond (the so called terminal bonds, known from a single

component glass composed, for example, of phosphorus

oxides containing –mers of {O=P(–O–)3}. The adequate

coordination formula ensues as {AOi/1O(n-i)/2}, where

{PO1/1O3/2} may serve as an illustrative example of coin-

ciding multifaceted stoichiometry. In the analogy with

organic polymers, the group {AOi/1O(n-i)/2} can be consid-

ered as (n-i)-functional—mer. Similar attitude can be

applied to geopolymers based on aluminosilicates composed

of tetrahedral alumina and silica units. When condensed at

ambient temperature the mer—units of AOn/2 become re-

positionable because of their concoction long lifetime this is

comparable with the degree of immovability at the high

temperature state of melts. Similarly to oxide glasses of a

randomly interconnected web (continuous random network

[40–47]) a relatively more complex copolymer system

(containing supplements of moderating electropositive ele-

ments typically alkaline oxides, M2O, or other metallic

oxides) persevere the function of modifying oxides. In oxide

systems (melts/glasses/macromolecules) such additions to a

single-component (tetragonally netted) solution result in the

breakdown of bridging bonds A–O–A and formation of the

so-called non-bridging oxygen. They can be described by set

of equations: M2O ) 2 M? ? O2- and M0O ) M02? ?

O2- and A–O–A ? O2- ) 2A–O-, which are factually

responsible for the dissociation concerning a single mole-

cule of modifying oxide and the subsequent breakdown of

bridging bonds (A–O–A). In the case of typical modifying

oxides the equilibrium [42, 46] shifts toward the products

and the arrangement can be easily derivable from melt/glass/

polymer initial stoichiometry.

The cation distribution affects the species in the silicate

solution, i.e., the amount of monomers, dimers, etc. [19, 29,

32, 33, 48–50]. Water-glass enforced by few percent of

Fig. 1 Animated discussion between two pioneers of geopolymeric

materials, French professor Joseph Davidovits and Czech professor

Jiřı́ Brandštetr (VUT Brno, 2007)
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Al-ions [50] or partly substituted by P2O5 increases its

penetrating reactivity. The study of vitrification of silicate

solution indicates that the reaction commencement becomes

associated with a concentration decrement as a result of

separate phase growth [29, 30]. Comparing the molecular

structure of reactants (metakaolinite and silicate solution)

with the geopolymers, a complete rearrangement of

molecular environment (short-range order of Al and Si) is

evident [33]. Alumina is likely altered from their distorted

crystal order via certain intermediate species (associated

with valences IV, V, and VI) and linked to one SiO4 unit in

metakaolinite forming the regular AlIV{Q4(4Si)} [33, 44–

46] where Q’s are the standard representation of Si-based

configurationally motives [44–46], see below. However,

the Al atoms seem to attain a more symmetrical environ-

ment in final geopolymers than in the original metakaoli-

nite. The most reactive species in silicate solution is likely

the hydroxyl anion OH- (or H3SiO4
-), which can draw

parallel thoughts toward the basis of bioactivity of inor-

ganic materials [51–56] and the coupled effect of non-

bridging oxygen [47, 54]. It may even catch the attention of

an innovative conception toward life creation on the Earth

[51, 52] providing geopolymers as a new target biomaterial

[57].

Accounting for the specificity of geopolymers, the

charge-balancing metal ions factually make feasible the

crucial polymerization in (–Si–O–Al–O–Si–O–) sialate-

silixo chains where the atomic ratio remains Si:Al = 1:1

(however, capable to increase up to 3:1). When reaching

the value above 3, generalized polysilicates became com-

parable to melted (counter-partner) glass. This approach,

however, has not been applied to a geopolymeric state due

to yet unacquainted methodology. The difference between

melted glass and condensed sialate-silixo polymers endures

in the subsistence of a certain coordination of (–Si–O–Al–

O–Si–O–) with both Si4? and Al3? cations in the fourfold

coordination, which is unavoidably balanced by the pres-

ence of modifying cations. It is ranging from fully amor-

phous up to partly organized (modulated) compositions of

hyper-crystalline states thus exhibiting definite nano-crys-

talline regions. Single and multiple Al–O–Al bridging

cannot carry on to subsist, nevertheless, alternatively can

survive in minerals such as above-mentioned albite

(NaAlSi3O8) and anortite (CaAl2Si2O8).

Worth another attention is still an apparent analogy with

generalized (even organic) polymers mentioning the so-

called mean degree of netting. Structural motives, Q, which

appear throughout the melt–glass–polymers [33, 44, 45,

47] can be characterized by a coordination formula

{AO(i?j)/1O(n-i-j)/2}, where j is the number of bridging

oxygen atoms associated with a single central atom being

ripped away by the action of oxygen produced through the

dissociation of modifying oxides (j B n-i). In the case of

silica glasses (i = 0, n = 4) there is a direct link between

the concept of the so called Q-notation (i.e., Qk, k = 0, 1,

2, 3, 4) and a coordination formula, Qk : {SiO(4-k)/1Ok/2}.

Similar approach may become welcome for its alternative

implementation to the circumstances of geopolymers,

which fashion is still under prospect. Nonetheless, it was

shown from NMR data [58, 59] that Q4Si(2Al) and

Q4Si(3Al) components can exist in alkaline geopolymers,

the latter being the highest for the Si/Al ratio of 1.5. For

higher concentration of Na and consequently lower Si/Na

ratio in the activating water-glass (and with Si/Al ratio

measured in the polymer support) a feasible scheme points

up that the hydrated sodium aluminosilicates bears a three-

dimensional structure in which Q4Si(3Al) predominates.

Some prospective studies

An alternative attitude to geopolymers can be anticipated

when assuming a wider stoichiometry range by, e.g., the

incorporating phosphates in addition or even instead sili-

cates (where Si is totally or partially replaced by P) and/or

borates as an alternative to aluminates. On the contrary to

the needed alkaline environment for polyaluminosialates

the phosphates are formed by an acid–base reaction

between a metal oxide and an acid phosphate. Virtually any

divalent or trivalent oxide that is sparingly soluble may be

used to form these phosphate geopolymers. Berlinite

(AlPO4) may serve as a good example, which is formed by

the reaction between alumina and phosphoric acid

(Al2O3 ? 2H3PO4 ) 2AlPO4 ? 3H2O). It was also dem-

onstrated that phosphate geopolymers of trivalent oxides

such as Fe2O3 and Mn2O3 may possibly be produced by the

oxide reduction and then acid–base reaction of the reduced

oxide with phosphoric acid. Such wide-ranging phosphate

materials represent another variety of mineral geopolymers

[60–63] possibly promoting the incorporation of Fe cations

for magnetic applications [48, 63, 82].

Relevance of bridging and non-bridging oxygen [45–47] to

polysialate–polyphosphate geopolymers overlapping tetra-

hedral alumina/silicate/phosphate units has not been so far

studied nor analysed so that this would become a target of

future investigations. Notwithstanding the addition of acids,

which occasionally accelerates the formation of gels, may

support an idea that the gelling mechanism involves a cross-

linking of preexisting (often linear) polymers someway

analogous to organic polymeric systems. A range of other

activation processes were also investigated [63, 64], however,

any indistinct integration of theory of organic polymers,

occasionally applied even to soluble silicates, may not assist a

better interpretation of such aqueous inorganic systems.

Strategy for geopolymers applicability as a matrix for

reinforced composites (fibers, foam, and/or ceramic) is
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different from the practice in similarly activated cements

[25, 65] producing, however, analogous materials that

possesses ‘cementitious’ property. It is foreseeable that the

structures of these alkali-activated cement, alkali-activated

slag, fly ash, etc., are different resulting from different

chemical-mechanistic paths. The calcium silicate hydrate is

a major binding phase in Portland cements holding also

somewhat unstable ettringite. In dissimilarity the binding

property of geopolymers results from the formation of a

three-dimensional (mostly amorphous) aluminosilicate

network containing tetrahedral unit with diminishing

transport properties (causing thus a low mobility of parti-

cles). Therefore, the viscosity of such dispersal heteroge-

neous system tolerates systematical formation of a required

shape by slow rearrangement. The rates of partial poly-

merization reactions are in agreement with the rate of

structure ordering processes. Depolymerization requires

the formation of zeolite nuclei within a geopolymer micelle

in the hydrous aluminosilicate gel. The time needed for

such crystallization varies from a few hours to several

days; aging time at room temperature is about one day and

crystallization time at 100 �C up to 100 h (for the relevant

glassy Na2O/K2O–Al2O3–SiO2 system the crystallization

temperature is in the range from 150 to 230 �C). The

structure of amorphous silica is of a more open arrange-

ment than that of closely related cristobalite. Spaces/sites

on the reaction surface are worth of extra attention being

capable to accommodate hydroxyl ions. Such a reactive

surface bears an ionic charge and particularly silica is

under continual switching process of equilibration between

solution and interfaces, which thus enables better physical–

chemical interaction even with the enforced fillers.

Some practical aspects of geopolymeric composites can

be seen from the matrix primary properties exhibiting the

compressive strength of 100 MPa, which is about twice that

of cement but having only one-half its density. Filling with

all-length polypropylene fibers increases its strength up to

about 200 MPa. For a plausible technological application

we brought in a special so-called pultrusion technology [66]

in which the enforcing material is a yarn bundle, better a

rowing of basalt fibers [67, 68] (2520 TEX, / = 13 lm),

which is enforced through an extrusion nozzle to harden,

see Fig. 2. For a weight ratio of rowing of about 80%, with

commercial matrix (Baucis FG), the resulting banding

strength reaches 360 MPa, which becomes reliable for

mechanical applications (when expensive classical epoxy

analogous composite is not more than twice stronger)

[67–69]. The advantage of this geopolymeric composite is

its excellent fire resistance (so-called fire–smoke-toxicity).

There are some unclear points as the determinability of

glass transition temperature of polysialates. It is often

accomplished from the position of loss modulus apex

(resolved by DMA) [39] but for many amorphous materials

the glass transition temperature becomes overlapped by

crystallization upshots [70]. Better solid phase identifica-

tion is needed [70–74]. So far there were no attempts to

look for a glass-formation coefficient, common in other

types of glassy materials [75], which may provide a better

insight to the structure of geopolymers (and their modeling

challenge [76–79]) as well as for some new applicability

[80, 81].

Further interrelation aspects of far-reaching polymeric

materials

Another extension of a generalized understanding of inor-

ganic polymeric materials can be located in the sphere of

amorphous hydrous silica—opals [82–88], which is a

remarkable material with the general formula SiO2�nH2O,

but is precipitated as mono-dispersed colloidal particles

(from 150 to 400 nm in diameter). In the most common

weathering model [83–85, 87, 88] it is formed analogously

to the gel process [67, 68] via geopolymers-like formation

Fig. 2 Newly employed pultrusion technology showing from the left

yet dry rowing of basalt fibers, in the middle the rowing which is

already dipped to the suspension matrix (kaolin Baucis FC; water

glass Bindzil) finally hardened in the furnace under tension to form

final oblong chips about 20 9 20 mm
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through gelatinous state of approximate stoichiometry

(Mm(SiO2)Z (AlO2)Y nMOH�wH2O). Sandstones are a

common source of silica where the process of chemical

weathering (of relatively soluble silicates such as the

feldspars contained in these sediments) results in the for-

mation of an alkaline silica solution. An example of such a

mineral is potassium feldspar which weathers through the

idealized stoichiometry (e.g., 2KAlSi3O8 ? 3H2O )
Al2Si2O5(OH)4 ? 2KOH ? 4SiO2) by the permeation of

ground water through the sediments resulting in kaolin,

dissolved silica, and an increase in pH through the release

of potassium hydroxide.

The process of cross-linking via sol–gel processes is

characteristic of possible incorporating a substantial amount

of organic compounds as additives [88]. Thus, the charac-

teristic property of a more broadly viewed naturally occur-

ring geopolymers can involve a substantial amount of

organic/humid materials. The term geopolymers can thus be

understood by geochemical communities as macromolecu-

lar organic-containing polymers (or biopolymers) indicating

the geological transformation of various geo-molecules

through geochemical processes [89–93] during diagenesis.

Consequently, such a mineralization path provides a stable

material as the final (alternating) products in the Earth, such

as kerogen, asphalt, etc. Such an attitude is also cross-

boundary to an assortment of geo- and bio-polymers along

with a generalized comprehension of existence of various

biomaterials (for example biological glasses [94–97]) rep-

resenting innumerable organic macromolecules accountable

for life, their nucleation and transformation records, where

an important role plays common states of low ordering,

either forming glasses, amorphous matter, modulated, and

nano-crystalline structures [98]. It incorporates basic ques-

tions of the determinability of such glassy and amorphous

states [70–75, 98], adequate structure analysis [76–78, 99],

search for a wide-ranging material applicability [11, 61, 99],

etc. It involves a huge sphere of biological life, its diverse-

ness, and also its curiosity to ever appear [51, 52].
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Dubaj T, Cibulková Z, editors. The proceedings of the 3rd joint

Czech–Hungarian–Polish–Slovak thermoanalytical conference—

TERMANAL. Bratislava: Slovak Chemical Society; 2011. p. SL7
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73. Queiroz C, Šesták J. Aspects of the non-crystalline state. Phys

Chem Glasses Eur J Glass Sci Technol B. 2010;51:165–72.

74. Hutchinson JM. Determination of the glass transition tempera-

ture: methods correlation and structural heterogeneity. J Therm

Anal Calorim. 2009;98:11–579.
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97. Šesták J, Mareš JJ, Hubik P, editors. Glassy, amorphous and nano-

crystalline materials: thermal physics, analysis, structure and

properties. Berlin: Springer; 2011 (ISBN 978-90-481-2881-5).

98. Provis JL, Lukey GC, van Deventer JSJ. Do geopolymers actually

contain nanocrystalline zeolites? Chem Mater. 2005;17:3075–85.

99. Zhang J, Provis JL, Feng D, Van Jannie JSJ. Geopolymers for

immobilization of heavy metals. J Hazard Mater. 2008;157:587–98.

Some aspects of composite inorganic polysialates 517

123

http://dx.doi.org/10.1007/s10973-011-1926-6

	Some aspects of composite inorganic polysialates
	Abstract
	Reviewing geopolymers and their links with the classical state of quenched glasses
	Hypocrystalline materials and their ‘mers’ framework
	Some prospective studies
	Further interrelation aspects of far-reaching polymeric materials
	Acknowledgements
	References


