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Abstract The precursor of nanocrystalline BiFeO3 was

obtained by solid-state reaction at low heat using

Bi(NO3)3�5H2O, FeSO4�7H2O, and Na2CO3�10H2O as raw

materials. The nanocrystalline BiFeO3 was obtained by

calcining the precursor. The precursor and its calcined

products were characterized by differential scanning calo-

rimetry (DSC), Fourier transform-infrared spectroscopy

(FT-IR), X-ray powder diffraction (XRD), scanning electron

microscopy (SEM), and vibrating sample magnetometer

(VSM). The data showed that highly crystallization BiFeO3

with rhombohedral structure (space group R3c (161)) was

obtained when the precursor was calcined at 873 K for 2 h.

The thermal process of the precursor experienced three

steps, which involve the dehydration of adsorption water,

hydroxide, and decomposition of carbonates at first, and then

crystallization of BiFeO3, and at last decomposition of Bi-

FeO3 and formation of orthorhombic Bi2Fe4O9. The mech-

anism and kinetics of the crystallization process of BiFeO3

were studied using DSC and XRD techniques, the results

show that activation energy of the crystallization process of

BiFeO3 is 126.49 kJ mol-1, and the mechanism of crystal-

lization process of BiFeO3 is the random nucleation and

growth of nuclei reaction.

Keywords BiFeO3 � Nanocrystalline � Crystallization

process � Kinetics � Solid-state reaction at low heat

Introduction

BiFeO3 has many unique properties, such as ferroelectric-

ity with high Curie temperature (TC = 820–850 �C) [1, 2]

and antiferromagnetic properties below Néel temperature

(TN = 350–380 �C) [3, 4]. These excellent properties

make BiFeO3 suitable for many applications in the field of

radio, television, satellite communication, bubble memory

devices, audio–video, and digital recording [5–8], etc.

BiFeO3 with pseudocubic or rhombohedral structure shows

antiferromagnetic G-type spin configuration along the

[111]c or [001]h directions. BiFeO3 has a superimposed

incommensurate cycloid spin structure with a periodicity

of 620 Å along the [110]h axis at room temperature. This

structure cancels the macroscopic magnetization and

inhibits observation of the linear ME effect [9–11]. It was

reported that cycloid structure of BiFeO3 could be sup-

pressed by decreasing particle size of BiFeO3, and its

magnetic moment was enhanced [12, 13]. Doping [14] and

preparation of high-quality samples [15] have been gen-

erally considered to improve the electrical properties of

BiFeO3.

Since BiFeO3 was proposed in 1960s [16], various

methods have been developed to synthesize nanocrystalline

BiFeO3 compounds, including solid-state reaction at high

temperature [17, 18], co-precipitation [19], sonochemical

and microemulsion techniques [20], mechanochemical

synthesis [21], hydrothermal method [22, 23], combustion

synthesis [24, 25], ferrioxalate [26], sol–gel [11, 27, 28],

polymeric precursor methods [29, 30], EDTA complexing

gel process [31], polyacrylamide gel route [32], molten-salt

method [33], and thermal decomposition of the inorganic

complex [34], etc. It was found that crystallite diameter

and crystalline phases of BiFeO3 associated with magnetic

and electrical properties were highly dependent on the
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synthesis and processing methods. Such as, Yuan et al. [17]

obtained crystalline BiFeO3 by solid-state reaction at high

temperature, but this technique easily produce impurities

BixFeyO1.5x?1.5y-d(x = y, d C 0) which results in low

electrical resistivity and high porosity in the multi-phase

samples. Ke et al. [19] obtained crystalline BiFeO3 by

controlling the chemical co-precipitation process. Xu et al.

[28] synthesized high purity BiFeO3 with rhombohedral

structure by sol–gel process at a temperature as low as

450 �C. However, these two processes easily produce

impurities phase Bi2Fe4O9.

The aim of this work is to prepare pure phase nano-

crystalline BiFeO3 via solid-state reaction at low heat [35]

and to study the kinetics of the crystallization process of

BiFeO3 using DSC and XRD technique. Non-isothermal

and isothermal kinetics of the crystallization process of

BiFeO3 were described by Kissinger [36] and JMA equa-

tion [37–39], respectively. Avrami exponent, n, was used to

estimate mechanism of crystallization process.

Experimental

Reagent and apparatus

All chemicals were of reagent grade purity. DSC measure-

ments were made using a Netsch 40PC thermogravimetric

analyzer. X-ray powder diffraction (XRD) was performed

using a Rigaku D/max 2500 V diffractometer equipped with

a graphite monochromator and a Cu target. Fourier trans-

form-infrared (FT-IR) spectra of the precursor and its cal-

cined products were recorded on a Nexus 470 FT-IR

instrument. The morphology of the calcined samples was

examined by S-3400 scanning electron microscopy (SEM).

The saturation magnetizations of the calcined sample pow-

ders were carried out at room temperature using a magnetic

property measurement system (SQUID-MPMS-XL-5).

Preparation of nanocrystalline BiFeO3

The nanocrystalline BiFeO3 with rhombohedral structure was

prepared by solid-state reaction at low heat [35] using

Bi(NO3)3�5H2O, FeSO4�7H2O, and Na2CO3�10H2O as start-

ing materials. In a typical synthesis, Bi(NO3)3�5H2O

(46.52 g), FeSO4�7H2O (26.66 g), Na2CO3�10H2O (68.8 g),

and surfactant polyethylene glycol (PEG)-400 (3.0 mL) were

put in a mortar, and the mixture was fully ground by hand with

a rubbing mallet for 40 min. The grinding velocity was about

90 circles/min, and the strength applied was moderate. The

reactant mixture gradually became damp, and then a paste

formed quickly. The reaction mixture was kept at 303 K for

1 h. The mixture was washed with deionized water to remove

soluble inorganic salts until SO4
2- ion could not be visually

detected with a 0.5 mol L-1 BaCl2 solution. The solid was

then washed with a small amount of anhydrous ethanol and

dried at 363 K for 3 h. Nanocrystalline BiFeO3 was obtained

via calcining the precursor above 873 K for 2 h.

Method of determining kinetic parameters

Determination of activation energy and pre-exponential

factor by Kissinger method [36]

According to DSC curve and the Kissinger equation

(Eq. 1), the activation energy and pre-exponential factor of

crystallization of BiFeO3 can be obtained.

ln
b

T2
P

¼ � Ea

RTP

þ ln
AR

Ea

ð1Þ

where b is the heating rate (K min-1), TP is the peak

temperature of DSC curve (K), Ea is the activation energy

(kJ mol-1) of crystallization process, R is the gas constant

(8.314 J mol-1 K-1), and A is the pre-exponential factor.

The dependence of lnðb=T2
PÞ on 1/TP must give rise to a

straight line. Thus, reaction activation energy Ea can be

obtained from linear slope (k = –Ea/R), and the pre-

exponential factor A can be obtained from linear intercept

(h = ln (AR/Ea)).

Kinetic study of crystallization process by JMA

equation [37–39]

Isothermal crystallization process of BiFeO3 could be

described by Eq. 2

v ¼ 1� exp �ðktÞn½ � ð2Þ

The double logarithm equation of Eq. 2 can be rewritten

in the Eq. 3:

ln[� ln(1� vÞ� ¼ n ln kþn ln t ð3Þ

where v is the crystallized fraction of BiFeO3 at a given

temperature time, t, k is the rate constant of crystallization,

and n is the Avrami exponent that is related to the crys-

tallization mechanisms. The dependence of ln(-ln(1 - v))

on ln t must give rise to a straight line. Thus, the Avrami

exponent (n) can be obtained from linear slope (that is:

linear slope = n), and the rate constant (k) of crystalliza-

tion can be obtained from linear intercept (h = ln k).

The rate constant (k) can be calculated according to

Arrhenius Eq. 4:

k ¼ k0 exp
�Ea

RT

� �
ð4Þ

where k is the rate constant of crystallization, Ea is the

activation energy (kJ mol-1), k0 is the pre-exponential
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factor, R is the gas constant (8.314 9 10-3 kJ mol-1 K-1),

and T is reaction temperature (K).

By a series of transforms, thus Eq. 4 can be rewritten in

the Eq. 5:

Ea ¼ R ln
k2

k1

� �
T1T2

T2 � T1

� �
ð5Þ

k1 and k2 are the rate constants of crystallization corre-

sponding to reaction temperature T1 and T2, respectively.

Thus, the activation energy (Ea) of the crystallization

process of BiFeO3 can be obtained according to Eq. 5.

Results and discussion

DSC analysis of the precursor

Figure 1 shows the DSC curves of the precursor at four

heating rates of 5, 10, 15, and 20 K min-1 from ambient

temperature to 1,050 K. The DSC curve shows that the

thermal process of the BiFeO3 precursor below 1,050 K

experienced three steps. The weak endothermic DSC peak

below 450 K is attributed to the dehydration of adsorption

water, hydroxide, and decomposition of carbonates. The

strong endothermic DSC peak between 600 and 750 K is

related to phase transition from a mixture of Bi2O3 and

Fe2O3 to rhombohedral phase BiFeO3. The broad and

strong exothermic DSC peak, which is located between 800

and 1,000 K, can be assigned to the decomposition of

rhombohedral phase BiFeO3. From Fig. 1, the peak tem-

perature of phase transition between 600 and 750 K is the

temperature at which it attains its maximum, which is the

endothermic peak temperature in the DSC curves. There is

an upward shift in TP with increasing heating rate, peak

temperatures from heating rate of 5, 10, 15, and

20 K min-1 are 653, 669, 681, and 689 K, respectively.

IR spectroscopic analysis of the precursor

and its calcined samples

FT-IR spectra of the precursor and calcined samples are

shown in Figure 2. From Fig. 2a, the band at 670 cm-1 is

the water libration (hindered rotation), while the band at

about 3,393 cm-1 is assigned to the stretching O–H

vibration of the water molecule [35, 40, 41]. The strong

band at 1,384 cm-1 is attributed to v3 mode of carbonate,

and the band at 848 cm-1 is assigned to v2 mode of car-

bonate [42].

From Fig. 2b, FT-IR spectra of two samples obtained at

673 and 773 K are similar. The bands at about 1,384 and

848 cm-1 are attributed to the absorption of CO2 from

calcined samples. With the increase of calcined tempera-

ture, the band at 1,384 cm-1 becomes weak, and disappers

at 973 K. The band of calcined sample at 670 cm-1 is

assigned to absorption water from air. The band located at

848 cm-1 appears with more intensity in the spectrum at

the highest temperature, the exact cause is not clear.

XRD analysis of the calcined products

Figure 3a shows the XRD patterns of the calcined products

at different temperature for 2 h. The results show that the

calcined sample at 673 K is a mixture of tetragonal Bi2O3

and hexagonal Fe2O3. When the precursor was calcined at

773 K for 2 h, a wide and low diffraction pattern, which
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has a great difference in comparison with that of calcined

sample at 673 K, is observed. Except weak part diffraction

peaks of tetragonal Bi2O3 are still observed, all other the

diffraction peaks in the pattern of sample obtained at 773 K

are in agreement with that of rhombohedral BiFeO3, with

space group R3c (161), lattice parameters a = 5.588 Å,

b = 5.588 Å, c = 13.867 Å, a = b = 90o, c = 120o,

density = 8.311 g cm-3, from PDF card 71-2494. Inten-

sity of diffraction peaks of Bi2O3 decreases with increasing

calcination temperature, which indicates that purity of

BiFeO3 increases. The sample obtained at 873 K almost

becomes pure rhombohedral BiFeO3.

However, when the sample is heated at 973 K for 2 h,

characteristic diffraction peaks of Bi2Fe4O9 appear, sug-

gesting that the rhombohedral BiFeO3 decomposes into

thermodynamically more stable orthorhombic Bi2Fe4O9 at

973 K, which has a few difference in comparison with that

reported by Navarro et al. [34] and Carvalho et al. [43].

Such as the thermal decomposition of Bi[Fe(CN)6]�4H2O

above 823 K produces Bi2Fe4O9 phase [34], thermal

decomposition of precursor from the sol–gel combustion

method forms Bi25Fe4O39 phase at 773 K, and BiFeO3

phase decomposes into Bi2Fe4O9 and Bi25FeO39 phases

when the precursor is heated at 973 K [43]. The exact

cause of difference is not clear.

The XRD diffraction patterns for the powders isother-

mally calcined at 823 and 873 K for various periods of

time are shown in Fig. 3b and c, respectively. From Fig. 3b

and c, intensity of diffraction peaks increases with

increasing calcination time, which indicates that degree of

crystallization of BiFeO3 increases with increasing calci-

nation times.

According to the Scherrer formula [41]: D = Kk/

(bcosh), where D is crystallite diameter, K = 0.89 (the

Scherrer constant), k = 0.15406 nm (wavelength of the

X-ray used), b is the width of line at the half-maximum

intensity, and h is the corresponding angle. The resulting

crystallite sizes of the products from calcined precursor at

the temperatures of 673, 773, 873, and 973 K for 2 h, are

40, 28, 42, and 58 nm, respectively.

SEM analysis of the calcined samples

The morphologies of the calcined samples are shown in

Fig. 4. From Fig. 4a and b, it can be seen that the calcined

samples at 673 and 773 K are composed of approximately

spherical particles, which contain particles having a dis-

tribution of small particles (30–50 nm) and large particles

(50–200 nm). With the increase of calcining temperature,

the calcined samples are aggregated into larger particles

further. Figure 4c and d shows the SEM micrographs of

samples obtained at 873 and 973 K, respectively. It can be

seen that the calcined sample obtained at 873 K can still

keep spherical morphology. However, the calcined sample

obtained at 973 K become uniform polyhedral grains with

particle size of about 400 nm. The average crystallite sizes

of calcined samples determined by X-ray diffraction are

significantly smaller than the values determined by SEM.

This attributed that the values observed by SEM technique

give the size of the secondary particles, and the X-ray line
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broadening analysis discloses only the size of primary

particles. In comparison with other methods of synthesis,

morphology and size distribution of BiFeO3 have a great

difference, such as the powder prepared from combustion

method using urea as fuel exhibits uniform and rather

isolated agglomerates, and the particle aggregates of the

powder prepared using glycine as fuel show a non-

homogenous morphology and are strongly interconnected

in a kind of three-dimensional, porous skeleton [44]. Sol–

gel process can obtain nearly cubic morphology of BiFeO3

with the size of 110–160 nm [31].

Magnetic properties of the calcined samples

The hysteresis loop of the calcined sample at 873 K is

shown in Fig. 5. It can be observed that rhombohedral

BiFeO3 exhibits a weak ferromagnetic order at room

temperature, and the saturation magnetizations (Ms) of the

powder is 0.032 emu g-1, which is smaller than values of

BiFeO3 samples from other synthesis methods [11, 16, 19].

The larger the particle size, the weaker is the saturation

magnetization [11]. The particle size of calcined sample at

873 K is larger than that from other synthesis methods

mentioned above, and thus, the calcined sample at 873 K

has smaller saturation magnetizations.

Kinetics of thermal process of the precursor

In accordance with DSC, FT-IR, and XRD analysis of the

precursor and its calcined products mentioned above,

thermal process of the precursor below 1,050 K consists of

three steps, which can be expressed as follows:

Precursor (s)! Bi2O3ðt) + Fe2O3ðh) + xCO2ðg)

þ xH2O (g) ð6Þ
1

2
Bi2O3ðt) +

1

2
Fe2O3ðh)! BiFeO3ðrÞ ð7Þ

8BiFeO3ðrÞ ! 2Bi2Fe4O9ðo) + 4BiO (g) + O2ðg) ð8Þ

Figure 6 shows Kissinger plot of the crystallization

process of BiFeO3. From the slope of the straight lines, the

activation energy value of the crystallization process of

BiFeO3 is determined to be 132.11 kJ mol-1, and pre-

exponential factor A is equal to 7.04 9 109 s-1.

In accordance with XRD analysis in Fig. 3b and c, the

crystallized fraction of BiFeO3 at a given time, t, is cal-

culated via MDI Jade 5.0 software at first, and then the plot

of the crystallinity (v) of BiFeO3 versus ln t is plotted. The

dependence of v on ln t is shown in Fig. 7, the result shows

that the dependence of v on ln t gave a linear relation.

Figure 8 shows the dependence of ln[–ln(1 - v)] on ln t, it

Fig. 4 SEM micrographs of the

calcined samples for 2 h

a 673 K, b 773 K, c 873 K,

d 973 K
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is found that the dependence of ln[–ln(1 – v)] on ln t gives

rise to a straight line. In accordance with JMA Eq. 3, the

slope and intercept of the straight line can be determined,

and then the rate constant (k), the Avrami exponent (n) are

obtained, and the activation energy (Ea) of the crystalli-

zation process of BiFeO3 can be obtained by Eq. 5. Table 1

shows the kinetic parameters of the crystallization process

of BiFeO3. From Table 1, it is seen that the activation

energy value calculated by the JMA method is close to that

obtained by Kissinger method, so the result is credible.

The mechanism of crystallization process can be deter-

mined by the value of Avrami exponent (n). Smaller n values

indicate that the crystallization is dominated by a surface

crystallization mechanism rather than by volume crystalli-

zation, and that the crystallization dimension is low. On the

other hand, larger n values are expected only in the case of

increasing nucleation rates, i.e., n [ 2.5 in diffusion-con-

trolled reaction or n [ 4 in polymorphic transformation [45].

For the crystallization process of BiFeO3, the value of the

Avrami exponent (n) was smaller than 1, which suggests that

crystallization process of BiFeO3 is the random nucleation

and growth of nuclei reaction [41, 46, 47].

Conclusions

We have successfully synthesized nanocrystalline BiFeO3

using solid-state reaction at low heat. XRD analysis sug-

gests that highly crystallization BiFeO3 with rhombohedral

structure is obtained when the precursor is calcined at

873 K for 2 h. Magnetic characterization indicates that

rhombohedral BiFeO3 sample exhibits a weak ferromag-

netic order at room temperature. The thermal process of the

precursor of BiFeO3 in the range of ambient temperature—

1,050 K is a complex process, which involves the dehy-

dration of adsorption water, hydroxide, and decomposition

of carbonates at first, and then crystallization of rhombo-

hedral BiFeO3, and at last decomposition of BiFeO3 and

formation of orthorhombic Bi2Fe4O9. The kinetics of the

crystallization process of BiFeO3 was studied using DSC

and XRD techniques. The activation energy of crystalli-

zation process for the BiFeO3 is 126.49 kJ mol-1. The

Avrami exponent, n, is smaller than 1, which suggests that

crystallization process of BiFeO3 is the random nucleation

and growth of nuclei reaction.
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