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Abstract Samples of flexible PU foam were prepared
from a polyol (Elastoflex W 5516/115) and an isocyanate
prepolymer (Iso 145/8), both commercial Elastogram
products. For the thermooxidative stabilization, two phe-
nolic compounds were used, separately or in mixture.
These compounds were: 2,6-di-t-butyl-4-methyl-phenol
(non-reactive) (AO-1), 3,5-di-t-butyl-4-hydroxy-benzyl
alcohol (reactive, AO-2), used in total mass% of 0.3/1.5.
The TG/DTG/DTA curves were drawn up in dynamic air,
with a heating rate of 10 °C min~', until 500 °C. For the
unstabilized sample a single thermodegradative TG step,
with a maximum rate at 268-270 °C was observed,
whereas for the stabilized samples, supplementary steps at
higher temperature were observed. The changes in the
TG/DTG/DTA parameters are not in a single relationship
with the mass% of the stabilizator, due to the following:

concentrations. But the most remarkable effect is the syn-
ergetic effect of a 1:1 mixture of AO-1 and AO-2.

Keywords Thermal stability - Thermal analysis -
Stabilized polyol polyisocyanate

Introduction

The polyurethanes have a special place among the industrial
polymers, due to a large variety of materials. So, flexible
foams with very good physico-mechanical properties can be
obtained from aromatic isocyanates and polyetheric polyols.
But a major disadvantage of these polymers is a rapid deg-
radation due to self-oxidation [1-3]. The example of
methyliden-diphenyl-diisocyanate (MDI) is significant:
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AO-1 is easily migrated out from PV, especially, at higher
concentrations. AO-2 had positive effect at all studied
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Therefore, the antioxidants are compulsory additives in
each polyurethane composition. There are two types:
reactive (which are inserted in the polymeric chain during
the synthesis) and non-reactive antioxidants. The last one
has the advantage of no influence on the designed prop-
erties of the polyurethane but also the major disadvantage
of migration to the polymer surface due to the huge dif-
ference of the molecular mass.

In some recent paper [4-6] the kinetic analysis of
thermoanalytical data (TG and/or DSC) prove its utility in
estimation of the antioxidant efficiency.
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The aim of the present paper is to perform a study on the
thermal behaviour of an MDI type polyurethane stabilized
with reactive and/or non-reactive additives. The effect of
the concentration of added stabilizator, as well as a pos-
sible synergism by using a mixture of reactive/non-reactive
stabilizators were the main objectives.

Experimental
Polyurethane synthesis

The raw materials were:

— MDI isocyanate prepolymer (ISO 145/8 from Elasto-
gran, Hungary)

— Polyesteric polyol (Elastoflex W 5516/115 from Elas-
togran, Hungary

— Catalyst 1,4-diazabiciclo [2,2,2] octan (Dabco from Air
Products and Chemicals, USA)

— Thermooxidative stabilizators: a non-reactive type 2,6-
di-t-butyl-4-methyl-phenol (AO-1) and a reactive type
3,5-di-t-butyl-4-hydroxy benzyl alcohol (AO-2), both

Table 1 Stabilizator content of the prepared samples

Sample symbol Stabilizator content/mass%

AO-1/(non-reactive) AO-2/(reactive)

MS - -
281 0.3 -
282 0.6 -
283 0.9 -
254 1.2 -
2S5 1.5 -
3S1 - 0.3
352 - 0.6
3S3 - 0.9
354 - 1.2
3S5 - 1.5
4S1 0.15 0.15
452 0.30 0.30
483 0.45 0.45
454 0.60 0.60
485 0.75 0.75

@ Springer

from Fluka, Switzerland. The structural formulas are
presented in Scheme 1.

The reaction components were added, under intense
stirring, into a polyethylene vessel, and the reaction mass
was allowed to expand for 90 min. In all samples the
volume ratio of isocyanate to polyol was ‘2, with
0.03 mass% of catalyst. The stabilizator content of the
prepared samples is presented in Table 1.

Thermal analysis

The TG/DTG/DTA curves were drawn up on a Perkin
Elmer DIAMOND devices, in dynamic air atmosphere
(100 mL min~ "), with a heating rate of 10 °C min~! until
500 °C.

The evolved gas analysis (EGA) was carried out by a
coupled TG/FT-IR technique, using a Perkin Elmer
SPECTRUM 100 devices with an IR gas chamber con-
nected to the exit of the DIAMOND furnace. The same air
flow of 100 mL min~" and a heating rate of 20 °C min~"
were used. The FT-IR spectra were processed by the
Sadtler Gas Vapor Library. The thermal degradation was
discussed on the basis of these data and the FT-IR-UATR
spectra of the initial samples.

Results and discussions

In Fig. 1
presented.
In all samples, the thermodegradation due to an exo-
thermic process (thermooxidation) and the maximum of the
reaction rate corresponds to the maximum of the evolved
reaction heat. In comparison with the unstabilized polymer,
all the other samples present a more complicated ther-
modegradation process, first of all observed by the
appearance of two or more DTG/DTA maximums.

A better estimation of stabilizator’s effect was possible
on a comparative mass loss versus temperature diagram.
For example, in Fig. 2 such diagrams for a total stabilizator
concentration of 0.6 mass% are presented.

Some observations are noticeable:

some typical thermoanalytical curves are

(i) By all sample the degradation began near 250 °C
(i) The differences in thermal stability can be estimated by:

— the mass loss at a certain temperature: the smaller
the mass loss is, the more stable the sample is;
according to Fig. 2, the mass loss was in the
following order:

MS > 3S ~ 2S > 48 (1)

— the slope at a certain temperature 0m/0Tis a
measure of the thermo-degradation rate: also the
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smaller it is, the more stable the sample is; the

order is as follows:

MS >35S =~ 2S > 4S

(2)

(iii) Both Eqgs. 1 and 2 indicate the MS as the less stable

sample and 4S the most stable one. By comparison with
2S and 3S, itis obvious that a synergism occurs by using
a mixture of reactive and non-reactive stabilizator. The
effect of concentration will be discussed. According to
Fig. 3, the non-reactive stabilizer had a positive effect

Temperature/°C

only at concentrations lower than 0.6%, especially in
the range of 250 to 300 °C. At higher temperatures,
even if the concentration is higher, these are favourable
conditions for stabilizator migration out from the
polymeric mass.

In the reactive stabilizator a different behaviour is

observed. According to Fig. 4, AO-2 had a positive effect
at all studied concentrations. The concentration depen-
dence of this effect is rather insignificant. However the best
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behaviour in the range of 250 to 320 °C was obtained at
concentrations of 1.2-1.5 mass%.

The thermal behaviour of the polyurethane stabilized with
a 1/1 mixture of AO-1 and AO-2 proved the synergism,

@ Springer

especially at low concentrations (see Fig. 5). Probably the
decreasing of the stabilization effect at higher concentrations
is in connection with the mentioned tendency of AO-1 for
migration out from the polymeric mass.
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Fig. 5 Mass loss versus

temperature for a 1/1 mixture of
AO-1 and AO-2, at different

total concentration of
stabilizator
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Fig. 6 Thermoanalytical curves for heating rate of 20 °C/min and spectra obtained at different moments for unstabilized polymer and for

stabilized polymers with 1.5 total mass% of stabilizators
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Table 2 Assignment of peaks of evolved gases

Wave number Assignment
1745,71 i Vce=o esters
1171,74 1 Formates
1230,44 1 Acetates
1693,59 m Aldehydes alif.
1230,44 m Ketones alif.

Spectroscopic analysis
EGA

The FT-IR spectra (see Fig. 6 and Table 2) confirmed that
more than 80% of the evolved gases are the same by the
non-stabilized as well as by the stabilized samples. This is
an argument that the stabilizators are included in the

Fig. 7 UATR-FT-IR spectra of S
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Table 3 Assignment of peaks for MS

Wave number Assignment
798,29 i ycu benzene disubstituted in positions 1,
1029 i Uc-o Sim esters
131435 1 Uc_o as esters
1560 i ONH, amides
1653,58 i ONH, amines,
1688,48 i

1734 s

3329,60 m

3450,57 s

3626,06 s

4

Uce=o characteristic bands for urethanes unsubstituted or monosubstituted which have amidic bands by 1560 i

vou large bands specific to "OH from polymers (hydrogen intermolecular bond)

Table 4 Assignment of peaks for 2S5

Wave number Assignment

Obs.

1146,97 i vc_on characteristic bands for phenolic OH

1187,46 i

2880,88 i v-on large bands (hydrogen intermolecular bond >C=0)
3000,43 1 Vcu, as bands specific to CHj

Phenolic -OH from AO-1

Hydrogen intermolecular bond under —OH and >C=0 from COO™
CH; from AO-1

Table 5 Assignment of peaks for 3S5

Obs.

Wave number Assignment
3666,21 1 v-on characteristic bands for OH unassociated
2900,77 i vcn, as specific bands CH,

—OH alcohols from AO-2
CH, from AO-2
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polymer structure playing the role of stabilization and not
of chain extender.

UATR

The UATR-FT-IR spectra of the initial samples (Fig. 7.)
confirmed (see Table 3) that the polymer was obtained
from a polyesteric polyol and aromatic diisocyanate using
an aminic catalyst. It was confirmed that the polyurethane
contains —OH as the end chain.

Bands presented in Tables 4 and 5 show the differences
between AO-2 bifunctional (contains one phenolic —OH
blocked non-reactive, implied in process of stabilization,
and one reactive alcoholic —OH binding with polyurethane
in reactive stabilization process) and AO-1 that contain
only phenolic —OH blocked and non-reactive. For mixed
stabilization all characteristic bands appear.

Conclusions

A versatile way for obtaining and processing data regard-
ing the thermooxidative stabilization of polyurethane
foams was suggested.

The best results were obtained by the mixed reactive non-
reactive stabilization, which allowed low concentrations of
stabilizator. This low quantity avoided a significant

migration (by the non-reactive) or an important influence on
the polymeric chain.

The obtained results will be useful by designing prac-
tical recipes for thermostable elastic polyurethane foams.
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