
Introduction

Processes in condensed phase are extensively studied

by thermoanalytical methods. Mechanisms of these

processes are very often unknown or too complicated

to be characterised by a simple kinetic model. They

tend to occur in multiple steps that have different

rates. To describe their kinetics, the methods based on

the single-step approximation are often used, either

the model-free or model-fitting ones.

In the previous paper [1], fundamentals of the

isoconversional methods based on the Arrhenius ex-

pression of the temperature function have been sum-

marised. The physical meaning of the activation pa-

rameters has been analysed and it was concluded that

the parameters are apparent quantities, in general

without a mechanistic interpretation. In paper [2] the

idea of single-step approximation has been intro-

duced and application of non-Arrhenius temperature

functions has been justified. It has been demonstrated

that the use of these functions removes the problems

with calculation of the temperature integral. In the

very latest paper of this series [3] it has been reasoned

that the main contribution of the single-step approxi-

mation is that it enables a mathematical description of

the kinetics of solid-state reactions without an insight

into their mechanism. In this paper the main

attributes, strengths and weaknesses of the single-step

approximation are identified and analyzed.

Attributes of the single-step approximation

Complex mechanisms and the single-step

approximation

It is generally recognized that the rate of the processes

in condensed state is a function of temperature and

conversion:
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The single-step kinetics approximation employs

the assumption that the function : in Eq. (1) can be

expressed as a product of two separable functions in-

dependent of each other, the first one, k(T), depending

solely on the temperature T and the other one, f(�),

depending solely on the conversion of the process, �:

�( , ) ( ) ( )T k T f� �� (2)

Combining Eqs (1) and (2), the rate of the com-

plex multi-step condensed-state process can be for-

mally described as [1]
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Equation (3) is mostly called the general rate

equation. It resembles a single-step kinetic equation,

even though it is a representation of the kinetics of a

complex condensed-phase process. The single-step

approximation thus resides in substituting a generally

complex set of kinetic equations by the sole sin-
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gle-step kinetic equation. This is the first attribute of

the single-step approximation.

The temperature function in Eq. (3) is mostly

considered to be the rate constant and the conversion

function is considered to reflect the mechanism of the

process. It was discussed in [2] that this interpretation

of the both functions may be incorrect. Since Eq. (3)

is a mathematical formulation of the single-step ap-

proximation, the functions k(T) and f(�) represent, in

general, just the temperature and conversion compo-

nents of the kinetic hypersurface. The kinetic

hypersurface is a dependence of conversion as a func-

tion of time and temperature [2].

With only for few exceptions, the temperature

function is expressed by the Arrhenius equation
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where A and E are considered the preexponential fac-

tor and the activation energy, respectively, T is the ab-

solute temperature and R stands for the gas constant.

In [2, 3] it has been justified that, since k(T) is not the

rate constant, there is no reason to be confined to the

Arrhenius relationship and use of two non-Arrhenius

temperature functions was suggested:

k T AT( ) � m (5)

k T A( ) � e DT (6)

where m and D are parameters. A great advantage of

the application of Eqs (5) and (6) is that, in contrary to

Eq. (4), the temperature integral can be expressed in a

closed form [2]. Unlike the temperature functions,

there is a wide range of conversion functions applied.

Practically every function is connected with a certain

idea of reaction mechanism [2, 3].

Imperative of the function separability

The importance of function separability in the sin-

gle-step approximation has been first pointed out

in [2] and analyzed more in detail in [3]. Especially

for the isoconversional methods it is generally recog-

nised that they lead to the dependence of adjustable

parameters in the temperature function on conversion.

For example, when solving Eq. (3) using the

Arrhenius temperature function, E is considered to be

constant. Subsequently, after the separation of vari-

ables and integration, one can obtain the result:
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If E is a function of conversion, A also varies

with conversion. Equation (3) then can be rewritten as
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where A(�) and E(�) are the parameters A and E de-

pending on the conversion. Equation (7) thus does not

represent the formal solution of Eq. (3) since the vari-

ables are not separated (A and E are functions of con-

version). From the variations of activation energy

quite often the conclusions are drawn on the change

of the reaction mechanism. This would mean that the

conversion function is also a function of temperature

so that Eq. (3) would take the form
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Equation (9) emphasizes even more strongly that

Eq. (7) does not represent the formal solution of Eq. (3).

Hence, in the case of variable activation energy the ba-

sic assumption of the single-step approximation (i.e., the

separability of the both functions) is violated and the de-

scription of the experimental kinetic data is inadequate.

The concept of variable activation energy thus appears

mathematically incorrect and inherently self-inconsis-

tent. Deductions drawn from the dependence of activa-

tion energy on conversion can hardly be considered

trustworthy and should be judged very critically and

carefully. The same conclusion on the inseparability of

the temperature and conversion functions has been

made in [2] for the case of parameters m and D in

Eqs (5) and (6) depending on conversion.

For the application of single-step approximation,

a couple of separable functions with constant parame-

ters should be found. The separability of temperature

and conversion functions means that the values of ad-

justable parameters should be unvarying in the whole

range of conversions and temperatures. This is the sec-

ond attribute of the approximation. Variable parame-

ters indicate that the choice of either the temperature

function or the conversion function is inappropriate.

Additivity

Separation of variables in Eq. (3) leads to the result

d
d

�

�f
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( )
( )� (10)

Temperature is generally a function of time. The

existence of additivity in the single-step approxima-

tion is best illustrated using the two temperature re-

gimes composed of two isothermal parts as shown in

Fig. 1a. In the regime (A) the sample is heat-stressed

at temperature T1 for time ts and subsequently at a

higher temperature for the same time. In the re-

gime (B), the order of temperatures is swapped. Inte-
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gration of Eq. (10) for the first part of the temperature

regime (A), i.e. for the time interval <0;ts>, gives

F T F k T t( , ) ( ) ( )� s s1 10� � (11)

where F(�) is a primitive function of 1/f(�) and

F(�s,T1) is the value of the function F at temperature

T1 and time ts. Integration for the second part, i.e. for

the time interval <ts;tf=2ts>, gives

F F T k T t( ) ( , ) ( )� �f s s� �1 2 (12)

The overall result of integration of Eq. (10) over

the temperature regime (A) is obtained as a sum of

Eqs (11) and (12):

F F k T t k T t( ) ( ) ( ) ( )� f s s� � 
0 1 2 (13)

It can be very simply shown that the integration of

Eq. (10) over the temperature regime (B) leads to the

same overall result as Eq. (13). The situation is demon-

strated in Fig. 1b where it can be seen that, although

the integration paths for the both temperature regimes

are different, the final result is the same. Hence, within

the single-step approximation the effect of individual

heat stresses can be expressed as a sum of correspond-

ing increments of the function F. The overall effect is

the same irrespective of the order of the heat stresses. It

can be theoretically deduced that this additivity takes

place if and only if Eq. (1) can be written in the factor-

ized form of Eq. (3) [4]. A kinetic differential equation

in the form of Eq. (3) is thus said to be additive

whereas the kinetic equation in the form of Eq. (1) is

called semi-additive [4–6]. The additivity rule can be

generalized also for the prediction of the effects of

other variables besides temperature on the rate of

nonisothermal transformations [7].

In the field of material stability, the additivity of

the effects of various ageing stresses has led us to the

concept of depleted and residual stability [8, 9] and to

the determination of the equivalence of various age-

ing methods [10, 11].

Description of complex processes by the

single-step approximation

When using thermoanalytical methods, we observe

changes of aggregate physical properties, i.e.

enthalpy and mass in the case of DSC, DTA and TG.

In chemical kinetics, the conversion of the compo-

nent A is defined as

� A

A A

A

i

i

�
�n n

n
(14)

where nA i
and nA are the initial and actual moles of

the compound A. In thermal analysis, the definition of

conversion is

� �
X

X

part

tot

(15)

where Xpart and Xtot are either the aggregate reaction

enthalpy or the mass loss corresponding to the actual

time (or temperature for nonisothermal processes)

and to the end of the process. In the description of the

kinetics studied by thermoanalytical methods it is

necessary to distinguish between the two definitions

of the conversion. This analysis is limited to the sim-

plest case of the first-order reaction steps and constant

volume of the reacting system. The first-order steps of

the process are assumed to be elementary reactions

where the temperature dependence of their rate con-

stants obeys the Arrhenius relationship.

Reversible reactions

In this case the reaction scheme is

A B
k

k

1

1

� ��
� ��

–

(16)

Provided that the reacting system is composed

only of the compound A at the beginning of experi-
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ment, it can be very easily derived that the reaction

rate can be expressed as

d

d

A
A

�
�

t
k K� � 
1 1 1[ ( ) ] (17)

where K is the equilibrium constant of the reac-

tion (16). At the end of the process, the reaction rate

equals zero so that the final conversion of the com-

pound A, is

� A

f

f
�




1

1 K
(18)

If the process is isothermal then Kf=K. In the

case of a nonisothermal process (with increasing tem-

perature) Kf is the equilibrium constant at the final

temperature.

If the change in �A is proportional to the change

of properties measured by thermoanalytical instru-

ment and taking into account Eq. (15), the

‘thermoanalytical’ conversion is expressed as

�
�

�
� A

A f

(19)

Combining Eqs (17)–(19), the reaction rate in

the case of reversible reactions determined by thermal

analysis is

d

d
f

�
�

t
k K K� 
 � 
1 1 1 1( )[ ( ) ] (20)

This equation can be separated and solved in the

case of an isothermal process. For a nonisothermal

process, the equilibrium constant K depends on tem-

perature and Eq. (20) cannot be expressed in the fac-

torized form of Eq. (3).

Parallel reactions

The reaction scheme in this case is

A B

A C

k

k

1

2

� ��

� ��
(21)

The kinetic equation can be written as

d

d
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At any instant, the products are formed in the ra-

tio of the rate constants. Thus, the thermoanalytical

conversion is expressed as
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where X1 and X2 are the changes in the reaction

enthalpy or mass corresponding to the first and the

second step of the process (21). It is a matter of course

that the total change is given as

X
k X k X

k k
tot Ad�
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Taking into account Eqs (23) and (24), from

Eq. (22) one can get the ‘thermoanalytical’ rate

equation:
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For an isothermal process, the rate constants are

constant and Eq. (25) degenerates into

d

d

�
�

t
k k� 
 �( )( )1 2 1 (26)

Comparing Eqs (22) and (26) it can be seen that

for an isothermal process the ‘kinetic’ and

‘thermoanalytical’ conversions are identical. For a

nonisothermal process, the rate constants depend on

temperature and, consequently, the thermoanalytical

rate equation given by Eq. (25) cannot be in general

expressed in the factorized form of Eq. (3).

If the temperature range is not too wide or if the

temperature dependence of the rate constants is not

very steep, the ratio of the rate constants in the inte-

gral at the right-hand side of Eq. (25) can be consid-

ered constant and Eq. (25) obtains the form of

Eq. (26) also for this case. The sum of the rate con-

stants gives the effective rate constant of the aggre-

gate process measured by thermal analysis:

k k k� 
1 2 (27)

As mentioned above, the rate constants of the el-

ementary first-order reaction steps are considered to

obey the Arrhenius relationship. The question is

which relationship should be used for the temperature

dependence of the effective rate constant. The quality

of the fit of the effective rate constant by using

Eqs (4)–(6) for various combinations of the Arrhenius

parameters related to the rate constants of both ele-

mentary steps is given in Table 1. The fit is carried out

by the linear least-squares method for the linearized

forms of Eqs (4)–(6). It is considered that the higher is

the absolute value of the correlation coefficient, the

better is the fit. The best fit is marked by two asterisks

and the satisfactory one by one asterisk. From Table 1

it can be seen that, despite the two elementary steps

obey the Arrhenius equation, the Arrhenius equation

represents the worst choice for the description of the

temperature dependence of the effective rate constant.
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Consecutive reactions

The reaction scheme in this case is

A B Ck k1 2� �� � �� (28)

The kinetics of consecutive reactions attracts at-

tention of thermoanalysts for long time as docu-

mented in [12] and in the references cited therein.

Ozawa treated the general case of the nonisothermal

consecutive reactions [12]; it is needless to repeat his

procedure. Two reduced times were involved in the

solution of the nonisothermal equation so that the

consecutive reactions were a system of multiple di-

mensions of time and the relation between them was

dependent on the temperature regime. The main result

regarding the topic of this paper is that the rate equa-

tion describing the kinetics of the consecutive reac-

tions cannot be in general expressed in the factorized

form of Eq. (3).

Strengths and weaknesses of the single-step

approximation

Use of the single-step approximation for the complex

processes

The parameters in Eqs (20) and (25) have a clear

physical meaning. However, as shown in the previous

section, for a complex process the equation describ-

ing the reaction rate cannot be factorized in the form

of Eq. (3). It is necessary to underline that only the

simplest cases of the complex processes have been in-

vestigated involving just two elementary first-order

reaction steps as shown in the reaction schemes (16),

(21) and (28). It is a matter of course that the exis-

tence of factorization can hardly be expected for more

complex reaction schemes.

The impossibility to find a couple of separable

functions k(T) and f(�) with the parameters possess-

ing a physical meaning does not mean that the sin-

gle-step approximation could not be used for the de-

scription of thermoanalytical kinetic data. Mostly it is

possible to find a couple of the separable temperature

and conversion functions satisfactorily describing the

experimental kinetic data. As discussed in [3], Eq. (3)

is not a true kinetic equation in this case. It is just an

empirical equation enabling to describe the experi-

mental data and the parameters occurring in the tem-

perature and conversion functions have no physical

meaning. Regarding the choice of the functions, any

couple of the functions leading to a satisfactory de-

scription of the experimental data, is suitable to be

employed. This approach enables to reproduce the

values of reaction rate, conversion, temperature and

time observed experimentally. Also, the interpolation

of the results should be trustworthy, i.e. the reaction

rates, conversions, temperatures and times can be reli-

ably estimated within the range of the measured data.

Once the kinetic description is carried out, modeling

of the kinetics of the process is feasible without a

deeper insight into its mechanism [1]. This can be

considered the strongest side of the single-step ap-

proximation.

Thermoanalytical techniques (DSC, TG) provide

an aggregate, overlapped signal of all reaction steps

occurring in the sample. It is indicated for example by

Eq. (25) that, for the same process and time-tempera-

ture regime, the values of conversions and reaction

rates obtained by various thermoanalytical methods

may be different [2]. Hence, in the kinetic description

of DSC experimental data, analysis of the rate and

quantity of heat released/absorbed is done. Analo-

gously, in the kinetic description of TG data, rate and

quantity of mass loss is analysed [2].
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Table 1 Fit of the temperature dependence of the effective rate constant given by Eq. (27) where k1 and k2 obey the Arrhenius
relationship. Kinetic parameters related to k1 are A1=1·1013 min–1, E1=120 kJ mol–1 and those related to k2 are:
a – A2=1·108 min–1, E2=80 kJ mol–1; b – A2=1·104 min–1, E2=40 kJ mol–1; c – A2=0.1 min–1, E1=0 kJ mol–1. The fit is
carried out for the temperature range 50–250°C using the linearized forms of Eqs (4)–(6). The linear dependence is ex-
pressed as y=ax+b

Combination Eq. a b Correlation coefficient

(a)

(4) 24.38±0.40 –11698±163 –0.99815*

(5) –176.42±0.24 28.583±0.040 0.99998**

(6) –32.79±0.47 0.0684±0.0011 0.99758

(b)

(4) 13.92±0.71 –6530±291 –0.98161

(5) –98.95±2.96 16.08±0.49 0.99129*

(6) –18.26±0.29 0.03879±0.00068 0.99706**

(c)

(4) 7.05±1.43 –3419±585 –0.80146

(5) –53.77±7.89 8.71±1.31 0.83679*

(6) –1.60±0.21 0.00438±0.00050 0.89537**

*Satisfactory fit, **best fit



Equation (3) can become the true kinetic equa-

tion in the following particular cases: (i) the process

involves just one elementary step, (ii) a sole rate-lim-

iting step exists in the process; (iii) only one step of

the multi-step process is detected by the

thermoanalytical technique (for example, when using

TG for the study of the process involving two consec-

utive steps - isomerization and decomposition). In

these cases, k(T) would likely obey the Arrhenius re-

lationship and f(�) would be closely connected with

the reaction mechanism. However, one never can be

sure that he deals with this case. No mechanistic con-

clusions based only on the thermoanalytical kinetic

measurements should be drawn. For mechanistic con-

siderations, additional supporting information from

other methods is inevitable.

It can be summarized that, in general, Eq. (3) is

the mathematical formulation of the single-step ap-

proximation and the functions k(T) and f(�) represent

the temperature and conversion components of the ki-

netic hypersurface. The adjustable parameters occur-

ring in the both functions have no obvious physical

meaning and they can vary with the range of experi-

mental data so that the extrapolation of the results

measured too far outside the experimental range can-

not be considered trustworthy. The impossibility of

far-reaching extrapolation is a weakness of the sin-

gle-step approximation.

Recommendations

Since the parameters in the temperature and conversion

functions have generally no physical meaning, it cannot

be considered trustworthy to draw any conclusions just

from their values (for example, it is not trustworthy to

draw conclusions just from the values of activation en-

ergies). For drawing the conclusions, the physical prop-

erties accessible to measurement, i.e. the reaction rate,

conversion, temperature and time, should be calculated

using the parameters. Also, use of the relative criteria,

such as the protection factor or the residual stability [9],

should be preferred. Both criteria are given as ratios of

isoconversional times. The temperature dependence of

these criteria is much less steeper compared to the

dependences of isoconversional times. The extrapola-

tion of the criteria outside the region of the measure-

ments is thus less risky.

When applying the single-step approximation,

one has to bear in mind that it is just an approxima-

tion. The only essential requirement for the functions

k(T) and f(�) is that they have to be separable. The

function separability is implicitly involved also in

other kinetic considerations, for example in the con-

cept of reduced time introduced by Ozawa [13]. If a

couple of separable functions cannot be found, it indi-

cates that the single-step approximation is too crude

and another approach should be chosen for processing

the experimental data [3]. Dependence of the adjust-

able parameters on � or T indicates an ill choice of the

temperature or conversion function.

It is a frequently encountered opinion that a sin-

gle non-isothermal experiment provides information

on both k(T) and f(�). A kinetic curve represents a

projection of the time-temperature line to the kinetic

hypersurface [2]. In order to completely map the

hypersurface, a single kinetic curve is not sufficient, a

set of curves is necessary covering entire part of the

hypersurface of our interest. A single kinetic curve

represents only a very limited part of the kinetic

hypersurface and, therefore, the methods based on the

processing just a single curve should be obviated.

Conclusions

Processes in condensed phase tend to occur in multi-

ple steps that have different rates. The first attribute of

the single-step kinetics approximation is the substitu-

tion of a generally complex set of kinetic equations

describing the complex process by the sole sin-

gle-step kinetics equation. The second attribute is the

separability of the temperature and conversion func-

tions. A plausible kinetic description should provide

unvarying values of adjustable parameters both for

temperature and conversion functions over the whole

range of experimental data. The third attribute is the

additivity of the primitive function of 1/f(�).

The main strength of the single-step kinetics ap-

proximation is that it enables a mathematical descrip-

tion of the kinetics of solid-state reactions. The cor-

rect mathematical description should recover the val-

ues of conversion and the rate of the reaction under

study for a given couple of time and temperature. In

general, the functions k(T) and f(�) represent the tem-

perature and conversion components of the kinetic

hypersurface so that the adjustable parameters occur-

ring in the both functions have no obvious physical

meaning. They may vary with the range of experi-

mental data so that the extrapolation of the results

measured too far outside the experimental range can-

not be considered trustworthy. The impossibility of

far-reaching extrapolation is a weakness of the sin-

gle-step approximation. The temperature function for

the best description of experimental data may not be

the Arrhenius relationship.

When applying the single-step kinetics approxi-

mation, one has to bear in mind that it is just an approx-

imation. It is a very useful tool for the description of

the kinetics of processes studied by thermoanalytical

methods. For its correct application, it is necessary to

recognize its attributes, strong and weak sides.
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