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Abstract
Developing sustainable synthesis method of versatile zeolites to overcome the shortcoming of traditional process is of
significant for development of green chemistry and environmentally friendly techniques. In this work, MFI zeolite (ZSM-5)
was synthesized through organotemplate-, solvent- and seed-free sustainable process comprising physical grinding and quasi-
solid state crystallization and utilizing commercial silica gel or Stöber colloidal SiO2 as silica source. The key influencing
factors to this sustainable synthesis process, such as starting material composition, crystallization temperature and time, had
been unambiguously investigated by combining a series of characterization techniques. It is revealed that the starting material
with SiO2/Al2O3 and Na2O/SiO2 at 30–40 and 0.072, respectively, is suitable to obtain zeolite product with high crystallinity.
The presence of right amount of water (or alcohol) is also crucial. In addition, this green synthesis method can be extended into
the fabrication of encapsulated metal-zeolite bifunctional catalyst, which is effective in hydroisomerization of n-heptane. These
results are instructive for development of sustainable synthesis of aluminosilicate zeolites and derived heterogeneous catalysts.
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Highlight
● SiO2/Al2O3 of 30–40 and Na2O/SiO2 of 0.072 are crucial for sustainable synthesis of ZSM-5.
● The key role of water can be replaced by alcohol for successful synthesis of ZSM-5.
● The sustainable synthesis strategy is used to fabricate Pt-ZSM-5 bifunctional catalysts.
● The catalysts with encapsulation structure will be promising in hydroisomerization of n-heptane.
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1 Introduction

Zeolites of crystalline aluminosilicate have attracted tre-
mendous attentions for their prominent characters of large
surface areas, uniform and abundant porosities, tunable
acidity and excellent thermal/hydrothermal stability, which
endow them wide application in the field of catalysis,
adsorption and separation, ion exchange, energy transfor-
mation and so on [1–8]. Among those hundreds of reported
zeolites, the MFI-type ZSM-5 zeolite is undoubtedly one of
the most popular members because of its special three-
dimensional channel system with 10-rings channel window,
which can be used as catalysts and catalyst supports in oil
refining, petrochemical and fine chemicals processing and
exhibit outstanding performance [9–21]. Heavy use of
zeolite materials has led to creased demand of reasonable
zeolite preparation. However, the conventional preparation
method of ZSM-5, as well as some other important zeolites,
is hydrothermal process that consuming organic structural
directing agents (OSDA) and plenty of water as solvent,
usually existing the cost and environment problems
[22–27]. For example, the consumption of expensive
organic templates will result in high cost of synthesis pro-
cess. Both the template and the decomposition products of
template (NOx, CO2) are almost noxious. In addition, large
amount of water in hydrothermal system not only produce
lots of waste liquid, but the dissolution of Si- and Al-
nutrients in solvent lead to the loss of zeolite product yield.
Therefore, the development of sustainable economic and
green synthesis routes without organic template and solvent
for important zeolites is of significance and much-
anticipated [28–33].

In general, the functions of templates in the zeolite
synthesis involve structure-directing, channel-filling and
charge-balance [34]. So, other alternatives with similar
roles are necessary in OSDA-free zeolite synthesis system.
Fortunately, the ZSM-5 zeolite can be synthesized by
various templating routes. Except the most commonly
used tetrapropyl ammonium templates (TPAOH and
TPABr), other organic amines such as n-butylamine and
ethanediamine, alcohols and alkali metal ions can also act
as templates for successful preparation of ZSM-5 zeolite
[25–27, 35–39]. To pursue the goal of OSDA-free
synthesis, the utilization of alkali metal ions and alco-
hols are seemed to be more promising. The most typical is
sodium ions, which can induce the synthesis of ZSM-5 in
template-free hydrothermal system and the obtained pro-
ducts possessing open channel even without calcination
treatment. But the drawback of low yield still exists for the
use of large amount of water solvent in synthetic system
[40–44].

Until Xiao and coworkers pronounced sustainable
synthesis strategy for ZSM-5 and some other zeolites by

conflating organotemplate-free and solvent-free routes, the
green synthesis of zeolites had made further substantial
progress [29, 45–49]. The solid raw materials are first
mixed and ground well and then suffered crystallization
treatment, the crystalline zeolite can be prepared. Because
there is no use water solvent, the crystal water in raw
materials plays a crucial role in formation of zeolite pro-
ducts. The raw materials of this green OSDA-free synthesis
process can be expanded from conventional commercial
reagent to natural mineral, such as kaolin and illite, which
further reduce the synthesis cost [50–53]. However, the
metal impurities in natural materials have significant effect
on synthesis of zeolites, hampering the clarification of key
synthetic conditions in synthesis process. In addition, it
worth noting that most aforementioned green synthesis
process are assisted by pre-synthesized target zeolites as
seed. As Wu et al. had stated, same synthetic system will
generate amorphous product without seed [47]. Therefore, it
is obvious that the sustainable synthesis strategy for ZSM-5
zeolite can be further optimized.

Herein, a sustainable OSDA-, solvent- and seed-free
synthesis for ZSM-5 with commercial silica gel or prepared
Stöber-derived silica spheres as raw materials is researched.
The influences of system composition and crystallization
parameters on product are investigated to clarify the crucial
synthetic conditions of this sustainable synthesis process.
The synthesized ZSM-5 zeolites are characterized. In
addition, this sustainable synthesis method can be applied to
fabricate metal-zeolite bifunctional catalysts for hydro-
isomerization of linear alkane.

2 Experimental

2.1 Chemicals

Silica gel (specific surface area: 350–460 m2/g, pore size:
8–12 nm, SiO2: 99%.) was purchased from Qingdao
Xinchanglai Silica Gel Ltd. Tetraethylorthosilicate (TEOS),
polyvinylpyrrolidone (PVP K30, M.W.= 38,000) and
dihydrogen hexachloroplatinate (H2PtCl6·6H2O) were pur-
chased from Shanghai Aladdin Biochemical Technology
Co. Sodium aluminate (NaAlO2), aluminium sulphate
(Al2(SO4)3·18H2O), sodium hydroxide, sodium carbonate,
ethanol, ammonium chloride and ammonia hydroxide
(NH3·H2O, 25–28 wt %) were purchased from Tianjin
Damao Chemical Co. The distilled water was homemade.
All the reagents were used without further purification.

2.2 Synthesis of Pt nanoparticles

The Pt nanoparticles was synthesized by alcohol reduction
process [54]. Firstly, 85.7 mg PVP and 1.08 mL H2PtCl6
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aqueous solution (38.6 mM) were dissolved in 45 mL
ethanol and 5 mL water. Then, the synthetic mixture was
refluxed at 80 °C under stirring for 2 h. Finally, the gener-
ated black Pt nanoparticles were collected by centrifugation
and were redispersed in ethanol for further use.

2.3 Synthesis of SiO2 spheres and Pt@SiO2

The SiO2 colloidal spheres were synthesized by a well-
known Stöber method with slight modification. In typical,
70 mL ethanol, 15 mL water and 4 mL NH3·H2O were
mixed together, followed by the addition of 3.5 g TEOS.
After stirring constantly at room temperature for 24 h, the
SiO2 colloidal spheres were obtained by centrifugation and
dried at 100 °C. The synthesis process of Pt@SiO2 is similar
to SiO2 spheres except for the additional introduction of
recommended amount of Pt nanoparticles (0.025 mmol)
preceding the addition of TEOS.

2.4 Sustainable synthesis of ZSM-5 and derived
catalysts

The synthesis of ZSM-5 zeolite was performed by reported
solid-state conversion. In a typical run, 1.5 g of silica source
(silica gel or Stöber SiO2 sphere), 0.10 g of NaAlO2, 0.09 g
of NaOH and 0.90 g of water were mixed by grinding for
10 min. Then the mixture was transferred into 25 mL
Teflon-lined autoclave and heated at 170 °C for 24 h and the
crystalline product can be obtained. For the synthesis of
Pt@ZSM-5 catalyst, Pt@SiO2 was used as silica source and
other conditions remained unchanged. The H-form zeolites
were obtained by ion-exchange of as-synthesized Na-form
products in 1M NH4Cl aqueous solution at 80 °C for 8 h,
followed by calcination process (550 °C, 4 h). This ion-
exchange process needs to be repeated once.

For comparison, supported Pt/ZSM-5 catalyst was pre-
pared with H-form ZSM-5 from Stöber SiO2 sphere as
carrier via incipient-wetness impregnation method.

2.5 Characterization

Powder X-ray diffraction (XRD) pattern was recorded in a
Bruck D8 Advance powder X-ray diffractometer using Cu
Kα radiation in 2θ range of 4–50o. Scanning electronic
microscopy (SEM) images were taken on SU8010 field-
emission scanning electronic microscope operating at 5 kV.
Transmission electronic microscopy (TEM) and high reso-
lution transmission electronic microscopy (HRTEM) ima-
ges were taken on a JEM-2100 electronic microscope with
an accelerating voltage of 200 kV. Nitrogen physical
adsorption/desorption isotherms were measured on Quan-
tachrome Autosorb-IQ2-MP physical adsorption apparatus.
The specific surface areas were calculated using the BET

method. Ammonia temperature programmed desorption
(NH3-TPD) measurements were performed on Quanta-
chrome TPD/TDR-Pulsar chemisorption analyzer in the
range of 150–600 °C at a ramp rate of 20 °C min−1. The
SiO2/Al2O3 ratio in the samples was calculated according to
the analysis results on Bruker D8 Tiger X-ray fluorescence
(XRF) spectrometer. The Pt content in metal-zeolite
bifunctional catalysts were analyzed by inductively cou-
pled plasma spectrometry (ICP) on Agilent ICP-OES 725
instrument. X-ray photoelectron spectroscopy (XPS) was
measured on Thermo Fisher Scientific ESCALAB Xi+
spectrometer (Al Kα, hv= 1480 eV).

2.6 Catalytic tests

Catalytic performance of the prepared catalysts for hydro-
isomerization of n-heptane were operated on a fixed-bed
stainless steel reactor at atmospheric pressure. Before reac-
tion, the catalyst (0.5 g) was reduced by H2 flow at 400 °C for
2 h, and then was cooled to reaction temperature. The n-
heptane was fed into reactor with HPLC pump at a weight
hourly space velocity (WHSV) of 2.0 h−1 and the H2/n-
heptane molar ratio was fixed at 10. The reaction products
were detected on Techcomp GC7890 equipped with a TM-
PONA capillary column (50 m × 0.2 mm × 0.5 μm) and FID
detector.

3 Results and discussion

3.1 Sustainable synthesis for ZSM-5 zeolite

The absolute green synthesis for ZSM-5 zeolite without
using organotemplate, solvent and zeolite seed is described
in Fig. 1. The starting materials are mixed by grinding in the
absence of adequate solvent and further crystallize into
zeolite. Figure 2 shows the XRD patterns of prepared zeo-
lites with various SiO2/Al2O3 molar ratio from commercial
silica gel and sodium aluminate. It can be observed that the
SiO2/Al2O3 ratio of starting materials has significant influ-
ence on the synthesis. Only suitable SiO2/Al2O3 ratio
(30–40) can produce the MFI-type zeolite with highly
crystallinity and the lower Al content of starting materials
(SiO2/Al2O3= 50–60) have generated the zeolite product

ZSM-5Green raw material Sustainable synthesis approach

H2O

Fig. 1 Schematic representation for the sustainable synthesis of ZSM-5
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accompanied by amorphous phase (Table S1), which con-
firmed by the broad reflection of XRD pattern in 2θ of
20–25o. Further decreasing the Al content of starting mate-
rials (SiO2/Al2O3= 100) has led to the formation of tetra-
gonal SiO2 impurity, which is dominant in the product from
Al-free synthesis system (Fig. S1). Therefore, well crystal-
line ZSM-5 zeolite can be formed in narrow SiO2/Al2O3

ratio region and the SiO2/Al2O3= 40 was used in follow-up
research. The SEM images of products with different SiO2/
Al2O3 ratio are showed in Fig. 2. It can be found that the

synthesized ZSM-5 zeolite possesses uneven morphology
with micrometer size. Except the hexagonal crystal main
body, most samples contain some needle-like particles that
might be the associated impurity (Fig. 3).

It is well known that the sodium ions not only work as
charge balancing in aluminosilicate zeolites, but also play a role
of templating in OSDA-free synthesis process [48, 51, 52]. So,
the Na2O/SiO2 ratio is another important factor affecting our
OSDA-free synthesis of ZSM-5. Figure 4 shows the XRD
patterns of samples synthesized with different Na2O/SiO2 ratio.
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Fig. 2 XRD patterns of as-synthesized products prepared from the
starting materials with SiO2/Al2O3 ratio at (a) 30, (b) 40, (c) 50, (d) 60
and (e) 100. Synthesis condition: Na2O/SiO2= 0.072, H2O/SiO2=
2.0, 170 °C, 24 h

Fig. 3 SEM images of as-
synthesized products prepared
from the starting materials with
SiO2/Al2O3 ratio at (a) 30, (b)
40, (c) 50 and (d) 60. Synthesis
condition: Na2O/SiO2= 0.072,
H2O/SiO2= 2.0, 170 °C, 24 h
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Fig. 4 XRD patterns of as-synthesized products prepared from the starting
materials with Na2O/SiO2 ratio at (a) 0.036, (b) 0.108 and (c) 0.144.
Synthesis condition: SiO2/Al2O3= 40, H2O/SiO2= 2.0, 170 °C, 24 h
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Compared to the well crystalline product synthesized with
Na2O/SiO2 ratio at 0.072 (Fig. 2), whether increasing or
decreasing the sodium amount are unfavorable to the crystal-
lization of product. At the Na2O/SiO2 ratio of 0.108, the pro-
duct also exhibits well-defined MFI-type diffraction peaks with
lower relative crystallinity (54%, Table S1), which will be
further decreased by increasing the sodium amount. When the
Na2O/SiO2 ratio was decreased to 0.036, no appreciable dif-
fraction peaks can be found in the product. So, the Na2O/SiO2

ratio of 0.072–0.108 is suitable for this sustainable synthesis of
ZSM-5. It should be noted that the sodium in our synthesis
system is provided by NaOH and alumina source (NaAlO2). If
the NaOH is replaced by NaHCO3 or the NaAlO2 is replaced
by aluminum sulfate while remaining the total Na2O/SiO2 ratio
at 0.072, no MFI zeolite can be formed (Fig. S2), which may
be due to the variation of the basicity of synthesis system. It
follows that under premise of suitable Na2O/SiO2 ratio, ade-
quate basicity is necessary to successful synthesis of MFI
zeolite.

Even in the so-called solvent-free synthesis of zeolites, the
water is significant and necessary. In previous reports, the
crystal water of raw materials usually plays a crucial role in
solvent-free synthesis of zeolites without consuming addi-
tional water, which lead to the ambiguity of the lowest level
of water content for successful synthesis of zeolite [29, 48].
Herein, the employed solid silica gel contains only tiny
amount of water (Fig. S3) and needs assistance of additional
water with specific dosage to ensure the successful synthesis
of zeolite. As a result, the dose threshold of water for suc-
cessful synthesis of zeolite might be ascertained.
Figure 5 indicates the effect of water amount on the synthesis
of ZSM-5. As expected, MFI zeolite cannot be prepared in

the water-free system. When a small amount of water was
added into the synthesis system (H2O/SiO2= 1.0), MFI
crystal appeared in the product, but the relative crystallinity
is lower (48%) and the amorphous phase also exists. By
comparison, the H2O/SiO2 ratio at 2.0 generated highly
crystalline ZSM-5 zeolite (Fig. 2) and the products remain
well MFI structure with further increasement of water. These
results confirmed the importance of water for zeolite crys-
tallization. However, it seems that the crucial role of water is
not irreplaceable. When water is replaced with an equal
amount of ethanol, ZSM-5 zeolite with well crystallinity can
also be synthesized (Fig. S4), which confirms the availability
of organic solvent in this OSDA and solvent-free zeolite
synthesis process.

Similar to the conventional hydrothermal synthesis, this
sustainable synthesis process uses the common crystal-
lization temperature at 170 °C for more than 18 h (Fig. 6).
When the crystallization time is less than 12 h, or the
crystallization temperature is lower (150 °C), only amor-
phous products can be obtained. After crystallized at 170 °C
for 18 h, the product displays typical MFI structure with
relative crystallinity of 61%. Further increasing the crys-
tallization time to 24 h, the XRD of product shows the
strongest peaks in intensity (Fig. 2, Table S1). When the
crystallization time reaches to 48 h, the relative crystallinity
of sample slightly decreased (88%). Moreover, the SEM
analysis (Fig. S5) also shows that the 48h-crystallized
sample contain some needle-like impurity, which cannot be
found in the sample crystallized for 18 h, indicating that
long crystallization time is not necessary for this sustainable
synthesis for MFI zeolite. In addition, it had been reported
that the pre-reactions of raw materials °Ccurred during
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Fig. 5 XRD patterns of as-synthesized products prepared from the
starting materials with H2O/SiO2 ratio at (a) 0, (b) 1.0, (c) 3.0 and (d)
4.0. Synthesis condition: SiO2/Al2O3= 40, Na2O/SiO2= 0.072,
170 °C, 24 h
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Fig. 6 XRD patterns of as-synthesized products crystalized at (a)
150 °C for 24 h, (b) 170 °C for 12 h, (c) 170 °C for 18 h and (d) 170 °C
for 48 h. Synthesis condition: SiO2/Al2O3= 40, Na2O/SiO2= 0.072,
H2O/SiO2= 2.0
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grinding are referential to the solvent-free synthesis of
zeolite products [55]. In current sustainable synthesis, no
identifiable crystallized products are formed in grinding
stage and suitable thermal treatment is necessary to the
formation of zeolite crystal, which indicates that the
mechanochemical reaction in solvent-free synthesis process
is associated with raw materials.

The above experiments were performed with solid silica
gel as silica source. In fact, the SiO2 spheres prepared by
Stöber method are also available in this sustainable synthesis
for ZSM-5. As Fig. 7 has shown, XRD pattern of the sample
synthesized from Stöber SiO2 spheres displays highly crys-
talline MFI structure. The SEM image exhibits irregular
crystals with micrometer size regardless of the starting raw
materials with uniform diameter (Fig. S6), which indicates
that the Stöber SiO2 spheres aggregate and crystallize into
micro-size zeolite particles at the expense of losing original
morphology. The micro scale particles and crystalline char-
acter of prepared zeolite are also confirmed by TEM and
HRTEM images, respectively (Fig. S7).

Figure 8 presents the N2 physical adsorption-desorption
isotherms of the prepared ZSM-5 zeolites and correspond-
ing textural properties are listed in Table 1. Owing to the
template-free synthesis route, the as-synthesized samples
without any thermal treatment possess open porous struc-
ture. It can be found that both the zeolites from solid silica
gel and Stöber SiO2 sphere exhibit adsorption at low P/P0
( < 0.01), confirming the presence of open micropores in the
samples. Compared to the type-I isotherm of silica gel-
derived sample, the zeolite from Stöber SiO2 sphere shows a
hysteresis loop at high relative pressure (0.5–0.9), which
indicates that the sample contains some larger pores and
leading to higher total pore volume (Table 1). In addition,
the total surface areas of sustainable synthesized zeolites
herein are less than that of sample from conventional
hydrothermal synthesis, which may be related to the
blocked effect of sodium ions and other impurities in the
channel of zeolites and is in accordance with previous
report [52].

The as-synthesized Na-type zeolites had been converted
into H-type ones through NH4

+- exchanging process to
obtain acid properties. Figure 9 shows the NH3-TPD pro-
files of the obtained H-type zeolites synthesized from solid
silica gel and Stöber SiO2 sphere. Both the samples display
profiles with two intensive desorption peaks at temperature
of 200–220 and 425–435 °C, indicating the weak and strong
acid sites in the samples, respectively. Compared to the
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(a) (b)Fig. 7 XRD pattern (a) and SEM
image (b) of as-synthesized
samples from Stöber SiO2 spheres.
Synthesis condition: SiO2/
Al2O3= 40, Na2O/SiO2= 0.072,
H2O/SiO2= 2.0, 170 °C, 24 h
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Fig. 8 N2 physical adsorption-desorption isotherms of as-synthesized
samples from (a) solid silica gel and (b) Stöber SiO2 sphere. Synthesis
condition: SiO2/Al2O3= 40, Na2O/SiO2= 0.072, H2O/SiO2= 2.0,
170 °C, 24 h

Table 1 Textural properties of prepared samples

No. Silica
source

SiO2/Al2O3
a

(mol/mol)
ST

b

(m2/g)
SM

c

(m2/g)
VM

d

(cm3/g)
VT

e

(cm3/g)

1 Silica gel 53 237 196 0.08 0.14

2 Stöber
SiO2

62 227 136 0.06 0.26

aSiO2/Al2O3 molar ratio in H-type zeolites analyzed by XRF
bTotal surface area from BET analysis
cMicropore surface area from t-plot analysis
dMicropore volume from t-plot analysis
eTotal pore volume calculated from the adsorption at P/P0 of 0.99
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zeolite from solid silica gel, the SiO2 sphere-derived sample
shows lower acid amounts, which might be associated with
the difference on actual Al2O3 content in two samples
(Table 1).

3.2 Fabrication of Pt-ZSM-5 catalysts and catalytic
performance

The availability of Stöber SiO2 spheres has expanded this
sustainable synthesis route into fabrication of metal-zeolite
composites, which benefit from the universality of Stöber
process in constructing metal@SiO2 hybrids [56, 57].
Herein, PVP-stabilized Pt nanoparticles from alcohol
reduction process were incorporated into Stöber system, and
then Pt@SiO2 core-shell hybrid had been obtained. By
utilizing this Pt@SiO2 as silica source, the Pt@ZSM-5
composite can be synthesized through aforementioned
sustainable synthesis approach. For comparison, the

supported Pt/ZSM-5 was prepared via incipient-wetness
impregnation with solid silica gel-derived ZSM-5 as carrier.
The fabrications of Pt-zeolite catalysts are schematically
described in Fig. 10.

The TEM analysis shows that the original Pt nano-
particles and Pt@SiO2 hybrid possessing the metallic parti-
cles with size of 2 ~ 3 nm (Fig. 11a, b). By contrast, the
prepared Pt@ZSM-5 (H-form) exhibits that slightly
increased metallic nanoparticles (~5 nm) embedded in ZSM-
5 matrix (Fig. 11c), which can be attributed to the thermal
treatment during ion-exchange procedure. After all, serious
aggregation of metal particles was avoided for the zeolite
confinement effect. However, the supported Pt/ZSM-5
exhibits uneven sized metal particles with some individuals
exceed 10 nm (Fig. 11d), indicating that the agglomeration
of Pt nanoparticles occurred in calcination process. Even so,
the XRD pattern of both Pt@ZSM-5 and Pt/ZSM-5 only
displays MFI diffraction peaks with high crystallinity and no
characteristic peaks associated with Pt or PtOx phase are
visible (Fig. 11e), which maybe due to the low Pt content in
the samples (0.36% for Pt@ZSM-5 and 0.57% for Pt/ZSM-
5). Highly crystallinity of Pt@ZSM-5 suggests that Pt
nanoparticles embedded in colloid SiO2 spheres did not
hamper the formation of zeolite. When the Pt nanoparticles
were directly mixed with SiO2 spheres and other raw
materials, nevertheless, a poor crystalline product had been
obtained (Fig. S7). This result indicates that the OSDA and
solvent-free synthesis process is susceptible to other external
factors. The Pt species in the prepared catalysts were iden-
tified by XPS and is showed in Fig. 11f. Because of different
synthesis approaches for the two Pt-zeolite catalysts, their Pt
state is different. The XPS spectrum of Pt@ZSM-5 synthe-
sized from Pt nanoparticles exhibits doublet signals at
71.3 eV and 74.6 eV, which are assigned to metallic Pt 4 f7/2
and Pt 4 f5/2, respectively [58]. The crystallization of zeolite
and subsequent treatment did not change the oxidative state
of Pt species. However, the Pt species in Pt/ZSM-5 prepared
by impregnation method are mainly oxide (PtO). It should
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Fig. 9 NH3-TPD profiles of H-type zeolites synthesized from (a) Solid
silica gel and (b) Stöber SiO2 sphere

Fig. 10 Schematic
representation for the synthesis
of Pt-zeolite bifunctional
catalysts
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be noted that the Al 2p signal is also comprised in Pt 4f XPS
spectra.

The catalytic performance of prepared Pt-ZSM-5 cata-
lysts had been investigated in hydroisomerization of n-
heptane, which is a typical reaction catalyzed by bifunc-
tional metal-acid catalysts [59–61]. As Fig. 12a has shown,
both Pt@ZSM-5 and Pt/ZSM-5 show low n-heptane con-
version (<5%) at lower reaction temperature (<220 °C).

With the reaction temperature increasing, the n-heptane
conversion for two catalysts also increases and is over 90%
at 300 °C. However, the selectivity to isomers for both
catalysts decline with the increase of temperature (Fig. 12b).
For the Pt@ZSM-5, whose isomer selectivity is more than
50% when reaction temperature is below 260 °C and
cracked products are predominant under higher temperature.
Detailed products distribution listed in Table S2 indicate
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Fig. 12 Conversion (a) and products selectivity (b) of prepared Pt-ZSM-5 catalysts in hydroisomerization of n-heptane
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that mono-branched 2-/3-methylhexanes and propane/iso-
butane dominate isomerization and cracking products,
respectively, which are accordance with previous report
[62]. It is generally acknowledged that acid and redox metal
sites of catalysts governing the activity and product selec-
tivity respectively for the hydroisomerization of alkane.
Especially, the acid site-catalyzed isomerization reaction is
considered as rate-determining step [63, 64]. Compared to
the Pt/ZSM-5 catalyst, however, Pt@ZSM-5 exhibits
superior n-heptane conversion and isomer selectivity at
main investigated temperature range, regardless of its lower
acid amount and Pt content. Therefore, suitable synergistic
effect between acid and metal sites of bifunctional catalysts
is probably more significant for hydroisomerization of
alkane [65]. In addition, the different spatial organization
two catalysts may be one of critical factor for different
catalytic performance. The encapsulation structure of
Pt@ZSM-5 may provide better metal-acid sites intimacy
and excellent thermal stability [60], which is favorable to
catalytic reaction. These results are instructive for prepara-
tion of highly effective bifunctional catalysts for hydro-
isomerization of n-heptane. For comparison, Pt-zeolite
catalyst with conventional hydrothermal synthesized ZSM-
5 nanocrystal as acid support was also prepared and tested
in this reaction (Fig. S9). It can be found that the catalytic
performances of both Pt@ZSM-5 and Pt/ZSM-5 are inferior
to the conventional synthesized one, which may be due to
the excellent accessibility of latter. Therefore, sustainable
synthesis of zeolites with controllable particle size will be
significant and promising.

4 Conclusion

In summary, the sustainable synthesis for ZSM-5 zeolites
without organotemplates, solvents or seeds have been further
developed. By using highly purity of silica sources (com-
mercial silica gel and Stöber colloidal silica), the crucial
influencing factors to the successful synthesis such as raw
materials composition, crystallization temperature and time,
have been obtained unambiguously. In addition, this green
sustainable synthesis can also be extended to the construction
of Pt-ZSM-5 bifunctional catalysts for hydroisomerization of
n-heptane. It is revealed that the encapsulated Pt@ZSM-5
catalyst possessing excellent thermal stability and metal-acid
sites intimacy, which is instructive for fabrication of effective
catalysts for hydroisomerization of n-alkane. Despite the
problems of limited Al content, relative lower surface areas
and sensitive synthetic conditions, the merits on cost and
environment of green synthesis determine its good prospect
of application in heterogeneous catalysis.
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