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Abstract
In this investigation, the incorporation of Gd3+ ions into ZMF-spinel ferrites through the citrate sol-gel auto-combustion
method significantly modified their structural, magneto-optical, and gamma-ray attenuation properties. Doping levels were
varied across samples labeled ZMF0 to ZMF4 with Gd3+ concentrations ranging from 0.000 to 0.100. Advanced
characterization techniques such as XRD, SEM, TEM, FT-IR, Raman spectroscopy, and XPS, alongside UV-vis
spectroscopy and VSM measurements, highlighted the profound impact of Gd3+ doping. Notably, the incorporation of Gd3+

led to nano-sized cubic structures with an optimized crystallite size of 19.82 nm in the ZMF4 sample, and a notable reduction
in the band gap from 3.21 eV to 2.99 eV was observed, indicative of enhanced electronic properties. Magnetic analysis
revealed a transition towards superparamagnetic behavior, with a decrease in coercivity and squareness ratios, suggesting
applications in areas such as data storage and optical waveguides. Furthermore, the study leveraged FLUKA Monte Carlo
simulations to assess the gamma-ray shielding efficiency of these materials. It was found that increasing Gd3+ concentration
or sample thickness markedly improved radiation attenuation, highlighting the material’s enhanced shielding capabilities
against a range of photon energies. The most significant findings included the optimized sample (ZMF4) displaying superior
magneto-optical characteristics and outstanding gamma-ray shielding performance, especially at higher Gd3+ levels. This
investigation underlines the critical role of Gd3+ doping in advancing the functional properties of ZMF-spinel ferrites for
technological and radiation protection applications, showcasing the potential of tailored nanomaterials in addressing
complex challenges in material science.
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Monte Carlo simulations

Highlights
● Gd3+ ion doping in ZMF-spinel ferrites reduced crystallite sizes to an optimal 19.82 nm, significantly enhancing their

magneto-optical properties.
● Spectral analysis showed a noticeable blue shift in band edge absorption, with optical band gaps narrowing from 3.21 eV

to 2.99 eV, indicating improved electronic properties.
● Magnetic assessments revealed a transition to soft magnetic behavior and identified superparamagnetic regions,

broadening potential technological applications.
● FLUKA Monte Carlo simulations demonstrated that increased Gd3+ concentration and sample thickness significantly

boost the material’s gamma-ray shielding efficiency.
● The study’s comprehensive analysis establishes ZMF-spinel ferrites doped with Gd3+ ions as promising candidates for

advanced applications, including radiation protection and energy systems.

1 Introduction

Great interests are devoted to spinel ferrite materials (SFs),
particularly with the commencement of the second millen-
nium. Chemically formulated, MFe2O4 is a sub-class from
the spinel structures which displayed quite remarkable
superparamagnetic, electrical, and optical characteristics
reflecting their unique composition [1–5]. Reducing the
crystalline size in the nanoscale region plays a key role in
enhancing the structural, magnetic, electronic, and optical
properties of SFs [6]. The MFe2O4 classification commonly
relies upon the location of M2+ cations relative to Fe3+ ones
in tetrahedral and/or octahedral sites [7]. While M2+ cations
are tetrahedral and Fe3+ cations are octahedral, normal
spinels are obtained; meanwhile, M2+ cations are octahedral

and Fe3+ cations are octahedral/tetrahedral, inverse spinels
show up, and for random distribution [8] of M2+ and Fe3+

cations, complex spinels are found. Concurrently, metal
cations’ locations are dependent upon their affinity and
consequently the stabilization energy, their ionic radii, the
synthesis technique that controls the morphology of the
resultant specimen, and the reaction conditions. Many [9]
Ni2+ [10], Co2+ [11], Zn2+ [12], Mn2+ metal-based SFs
have been investigated revealing amazing magnetic, electric
and optical properties that are highly appropriate for dif-
ferent critical industries. Many researchers have synthesized
and characterized different spinel ferrite structures such as
MFe2O4 (M=Co [13], Cu [14], Mn [15], and Zn [16]). As a
consequence of their ultimate resistivity and Curie tem-
perature, SFs are interesting magnetic materials with a wide
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range of technological applications and environmental sta-
bility. It is essential to adopt the proper crystalline char-
acteristics as well as the proper choice of synthesis routine
that will define the crystal lattice structure and its chemical
composition, which would eventually produce quite
enhanced properties for the new structure. Different tech-
niques such as the sol-gel [17], co-precipitations [18],
hydrothermal [19], mechanical method [20], facile sol-gel
approach [21], micro-emulsion method [22], and thermal
decomposition [23] method have been applied.

Radiation protection is paramount across various sectors
such as nuclear energy, diagnostic radiology, and aerospace
missions, given the detrimental health impacts linked to
ionizing radiation exposure, including acute radiation syn-
drome and carcinogenesis [24, 25]. In the quest for superior
radiation shielding solutions, Gd3+ doped
Zn0.5Mg0.5Fe2O4 spinel ferrite nanoparticles have gar-
nered significant interest for their potential in mitigating
ionizing radiation risks. These nanoparticles, enhanced with
rare earth Gd3+ ions, exhibit exceptional magneto-
crystalline anisotropy and magnetic characteristics, posi-
tioning them as a promising material for effective radiation
attenuation [26–28]. Gd3+ doping can modify the properties
of Zn0.5Mg0.5Fe2O4 spinel ferrite for specific applications.
Its large ionic radius allows it to substitute for Fe3+ ions
without distortion. Although not magnetic, Gd3+ can
influence magnetic interactions between Fe3+ ions. It can
introduce additional functionalities like magnetostrictive or
magneto-optical properties. Gd3+ doping affects the lattice
parameter, crystallinity, saturation magnetization, coerciv-
ity, and band gap of the ferrite. The impact depends on the
concentration and synthesis method used. Doping levels
should be controlled to achieve desired properties without
introducing secondary phases or degrading the material’s
performance. The inclusion of Gd3+ ions notably advances
the gamma-ray shielding capabilities of Zn0.5Mg0.5Fe2O4

spinel ferrites, offering a path to refine and optimize these
materials for critical radiation protection roles. Nanomag-
netic materials, like Gd3+ doped Zn0.5Mg0.5Fe2O4, are at the
forefront of research for radiation shielding due to their
distinctive properties and adaptability, indicating a sig-
nificant step forward in the development of advanced
functional composites for safeguarding against ionizing
radiation hazards [29–31].

Throughout this work, the Zn0.5Mg0.5Fe2O4 spinel ferrite
(ZMF) composite was prepared by the citrate sol-gel auto-
combustion method. The structure and its crystalline prop-
erties have been examined by using the XRD technique.
The surface morphology was obtained by scanning electron
microscopy, SEM. HR-TEM analysis was also performed.
Fourier transform infrared, FT-IR, spectra were also
obtained. RAMAN spectroscopy was adopted to study the
internal structure. The X-ray photoelectron, XPS,

investigated the binding energy. Also, the structures’
absorption spectra were examined using a UV Spectro-
photometer over the range of 340–500 nm. The magnetic
properties were investigated using the VSM technique and
the dM/dH was calculated. The novelty of this work is
conducted throughout the doping of ZMF-spinel ferrite
structure by the rare earth element Gd3+ ions at con-
centration ratios x= 0.025, 0.050, 0.075, and 0.100,
respectively. The substitution of Gd3+ ions could strongly
evolve further enhanced magneto-optical structure for SFs
materials as the net magnetic moment of the rare earth Gd3+

ions, 7.94 μB [32], is larger than its corresponding of other
rare-earth cations such as Lu3+ (0 μB) [33], Nd3+

(3.855 μB) [34], Yb3+ (4.63 μB) [35], and Pr3+ (3.4 μB)
[36].

This study looks into what happens when Gd3+ ions are
added to Zn0.5Mg0.5Fe2O4 spinel ferrite nanoparticles. It
focuses on their structure, magneto-optical properties, and
ability to block gamma rays. The novelty is that adding
Gd3+ to the ZMF4 sample created nano-sized cubic struc-
tures with an ideal crystallite size of 19.82 nm. This meant
that the electronic properties were better. Magnetic analysis
revealed a transition towards superparamagnetic behavior,
suggesting potential applications in data storage and optical
waveguides. The study also showed that increasing Gd3+

concentration or sample thickness significantly improved
radiation attenuation, highlighting the material’s enhanced
shielding capabilities against various photon energies. A lot
of different advanced techniques were used by the authors,
such as XRD, SEM, TEM, FT-IR, Raman spectroscopy,
XPS, UV-vis spectroscopy, and VSM measurements, to get
a full picture of the shielding properties. We chose the
citrate sol-gel auto-combustion method for its precise con-
trol of composition and microstructure, which enables the
fabrication of nanostructured materials with improved
homogeneity and purity. The citrate sol-gel auto-combus-
tion method, used in this study, produces highly homo-
geneous and fine powders with controlled stoichiometry and
particle size. However, it faces challenges in precise control
of combustion conditions, which can affect product con-
sistency. The method’s scalability for industrial applications
is also a concern due to difficulties in maintaining uniform
heating and reaction conditions. Future work should focus
on optimizing combustion parameters, exploring alternative
synthesis techniques, and investigating the long-term sta-
bility and performance of Gd3+-doped Zn0.5Mg0.5Fe2O4

spinel ferrites in practical applications to fully understand
their potential and limitations. This work provides a pro-
mising path towards the development of advanced func-
tional materials for high-tech applications and radiation
protection. Many potential applications could be considered
for such enhanced superparamagnetic ZMF-spinel ferrite
like Biomedicine [37], Magnetic Resonance Imaging (MRI)
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[38], Environmental Remediation [39], Data Storage [40],
and Energy Harvesting [41].

2 Experimental procedure

ZMF-spinel ferrite composite was successfully prepared
by the citrate sol-gel auto-combustion technique. Aqueous
solutions of Zn(NO3)2.6H2O, Mg(NO3)2.6H2O Gd(NO3)3.
6H2O, and Fe(NO3)3.9H2O were dissolved in deionized
water under stirring. Citric acid was weighed as 1:1 (g/
mol) molar ratio then dissolved in deionized water under
stirring with mild heating. All salts and Citric acid were
mixed with continuous, uniform stirring at a 400 r/min
rate for 1 h and 80 °C to prepare a homogeneous solution.
The gel form was obtained when drops of NH4OH solu-
tion were added to the homogeneous solution and then
heated at 110 °C for gel combustion while the PH was
controlled at around 10. After that, the gel was kept at
110 °C until burnt, and the gray ashes were obtained.
These ashes were calcinated at 600 °C for 4 h to obtain
Zn0.5Mg0.5Fe2O4 samples. Five samples at different Gd3+

concentrations; x= 0.000, 0.025, 0.050, 0.075, and 0.100,
respectively were formed and were denoted as ZMF0,
ZMF1, ZMF2, ZMF3 and ZMF4.

3 Samples characterization

Crystallinity and phase structure results of the synthesized
SFs were obtained using X-ray diffraction analysis, XRD,
Maxima.7000, Shimadzu. The test was performed with the
aid of Cu-Kα radiation at wavelength of λ= 1.5418 Å and
diffraction angles, 2θ, between 20°–70°. The surface mor-
phology is captured and magnified by scanning electron
microscopy, SEM; JEOL, the working conditions include
15 kV high voltage, 5.5 mm distance, 5 nm spot size, and
3000× magnification power. Also, Transmission Electron
Microscopy (HR-TEM) is used to study the internal struc-
ture and morphology of the ZMF-spinel ferrite samples at
very High Resolution, JEOL JEM-2100Plus. The FT-IR
(Fourier Transform Infrared) module manufactured by
Shimadzu, was used to acquire the infrared spectra. The
spectra were collected over the wavenumber range of
250–4000 cm−1. RAMAN spectroscopy was also used
to study the internal structure in the range from 25 to
2000 cm−1, Horiba Jobin Yvon LabRAM HR. The binding
energy was investigated by X-ray Photoelectron Spectro-
scopy, XPS, Kratos AXIS Ultra DLD. The absorption spectra
of ZMF-spienel ferrites were examined over 340–500 nm
using UV/vis/NIR-spectrometer V-570, Jasco Inc. Finally,
the magnetic properties were investigated with the aid of
Vibrating Sample Magneto, VSM -Lakeshore 7400.

4 Results and discussions

4.1 XRD analysis

The results obtained by the XRD for all ZMF-spinel ferrite
samples confirmed the formation of cubic spinel structures
according to card number JCPDS #82-1049 [42], Fig. 1a.
The preferred oriented peaks at angle 2θ were 29.64°,
34.14°, 34.56°, 54.52°, 60.85°, 65.91° and 67.03° corre-
sponding to the miller indices as (220), (113), (400), (412),
(511), (404) and (421) respectively. For more details,
Fig. 1b, c represent 25 ≤ 2θo ≥ 40 and 50 ≤ 2θo ≥ 65,
respectively, where the vertical dashed lines on each graph
show clearly the deviation of the doped samples’ peaks,
towards positive x-axis direction. This behavior explains the
diffusion of the Gd3+ ions through the structure. The lattice
parameters a=b=c (Å) and the crystallite size D (nm) were
determined using Scherrer’s equation [43]:

D ¼ kλ

β cos θ
ð1Þ

dhkl ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h2 þ k2 þ l2
p ð2Þ

Where D is the crystallite size (nm), β is the full width at half
maximum, θ is the Bragg’s angle, and d is the interplanar
distance of the crystal planes. Table 1 shows the Lattice
parameter a (Å), crystallite size D (nm), volume V (Å3), X-ray
density (ρx) and Lattice strain (ε) for ZMF-spinel ferrite
samples. Figure 1d shows a remarkable increase in the lattice
parameter, a (Å), at ZMF1 (x= 0.025) with about 0.01 Å
while decreasing for the rest of the concentration ratios. On
the other side, the crystallite size D (nm) was found to
decrease ≈ 2.11 nm for all ZMF-spinel ferrite samples. The
Retiveld XRD refinement for all ZMF-spinel ferrite samples
was fulfilled using FullProf software, Fig. 2. Among all
structures, ZMF4 sample is claimed to be the optimized one
since it possesses smallest crystallite size, 19.82 nm. Con-
cluding that the Gd3+ doping mechanism has primarily
enhanced the ZMF-spinel ferrite’s structure would probably
modify the other magneto-optical properties of the composite
as will be seen in the next sections. The absorption bands
observed in our study are indicative of the presence of certain
crystalline phases within the material. These bands corre-
spond to specific vibrational modes associated with the
crystalline structure of the material. In the case of spinel
structures, the characteristic absorption bands can be directly
correlated to the distinct atomic arrangements and bonding
within the crystal lattice. For example, the bands around
400 cm−1 and 650 cm−1 are typically associated with the
stretching and bending vibrations of the M-O bonds (where M
represents the metal ions) in spinel oxides. These bands serve
as fingerprints for the spinel structure, confirming the
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successful crystallization into this phase. The agreement
between the absorption bands and the XRD data further
supports the crystallization into the spinel structure. The
absorption bands not only confirm the phase but also give
insights into the purity and quality of the crystalline structure.
The TEM and SAED analyses complement these findings by
providing visual confirmation of the crystalline phases,
showing clear lattice fringes and diffraction patterns consis-
tent with spinel structures as we will see in the next section.

Table 1 Lattice parameter a (Å), crystallite size D (nm), volume V
(Å3), X-ray density (ρx) and Lattice strain (ε) for ZMF-spinel ferrite
samples

Samples Lattice parameter a
(Å)

D (nm) V (Å3) ρx (g.cm−3) Lattice
Strain
ε (%)

ZMF0 8.5180 22.35 618.03 4.741 0.00029

ZMF1 8.5298 20.03 620.61 4.773 0.00027

ZMF2 8.5267 21.64 619.93 4.833 0.00026

ZMF3 8.5207 21.05 618.62 4.898 0.00029

ZMF4 8.5188 19.82 618.21 4.959 0.00031
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Fig. 1 XRD for (a) All ZMF-spinel ferrite samples ZMF0, ZMF1, ZMF2, ZMF3 and ZMF4, (b) 25 ≤ 2θo ≥ 40, (c) 50 ≤ 2θo ≥ 65, and (d) lattice
parameter a (Å) and crystallite size D (nm)
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4.2 Morphology

4.2.1 Scanning electron microscopy (SEM) and particle size

The surface morphology and the particle size of the ZMF-
spinel ferrite samples were examined using Scanning Elec-
tron Microscopy, SEM, Fig. 3. The SEM images showed the
particles’ enhancement [44] into spherical-like shape as the
Gd3+ ions doping ratio was increased. This enhancement
will be explained later in more details in the FT-IR and XPS
analysis. Such results show that the optimized combination
was obtained for the doped Gd3+ ZMF4 sample. Moreover,
the average particles’ diameters were diminishing from 22.3
to 20.5 nm reflecting the presence of the Nano-sized scale
for all samples. These results are in consistent with that
obtained for the crystallite size determined from XRD.

4.2.2 HR –TEM and SAED analysis

Figure 4 illustrates the HR-TEM, and SAED micrographs of
ZMF-spinel nanoferrites for the pure ZMF0 and the opti-
mized ZMF4 samples. The HR-TEM micrographs have
proven the particles’ nano-sized aggregated cubic structure.
Such accumulated structure may be customized as a result
of larger surface area and magnetic dipole interaction of the

constituent ZMF-nanoparticles which increasing with
increasing Gd3+ dopant ions [45]. Additionally, such
behavior is referenced to the magnetic merit of Gd 3d being
lower compared with Fe 3þ ions [46]; as will be explained
in the next sections. Moreover, the diffraction rings iden-
tified by SAED images are analogous to the peaks (220),
(113), (400), and (412) obtained by the XRD; see Fig. 1.
These results emphasize the integrity between the HR-TEM
and the XRD techniques in confirming the formation of
pure cubic spinel phase of Gd 3d doped ZMF-nanoferrites.

4.3 FT-IR analysis

Figure 5 shows the FT-IR transmittance spectra obtained for
ZMF0, ZMF1, ZMF2, ZMF3 and ZMF4 at room tem-
perature in the range of 200–4000 cm−1. The observed
representative peaks confirmed the presence of the oxygen-
containing functional groups at different Gd3+ ion con-
centrations of the composite and the characteristic absorp-
tion bands were obtained as well. The presence of these
bands are mainly due to the vibrations of tetrahedral and
octahedral metal–oxygen ions. The pure sample lies in
frequency ν1 equal 552.66 cm−1, while the optimized
sample ZMF4 lies at ν1, ν2 and νA cm−1 551.14, 381.36 and
836.32, respectively [47, 48]. The first absorption band of

Fig. 3 SEM and particle size distribution images of ZMF-spinel ferrite samples
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the tetrahedral site, lied below 300 cm−1, belongs to the
stretching vibration of Zn–O [49], whilst, the second
absorption band was confined by the range
440.14–575.68 cm−1 and corresponding to Fe3+–O2− [50]
stretching vibrations. The third absorption band lied within
the range 1557–1650 cm−1, representing the Mg–O [51]
stretching vibrations. Furthermore, the peaks obtained for
different concentration ratios within the range
3300–3680 cm−1 which are assigned to O–H [52] defor-
mation and O–H stretching vibrations in H–O–H [53]
groups. The results of the FT-IR are presented in Table 2.
The positions of the absorption bands were characterized by

frequencies shift as the concentration ratio changed due to
the cations redistribution and the distortion of crystal
resulting from the substitution process [54]. When the Gd3+

ions were doped in the crystal structure, the replacement of
Fe3+ by Gd3+ led to decrease in metal-oxygen bonds
lengths that caused octahedral sites shifting towards higher
frequencies as the Gd3+ ions have larger radii [55].

4.4 RAMAN analysis

RAMAN spectra of ZMF0, ZMF1, ZMF2, ZMF3 and
ZMF4 spinel ferrite samples in the range of 25–2000 cm−1

Fig. 5 FT-IR spectra for ZMF0, ZMF1, ZMF2, ZMF3 and ZMF4 spinel ferrite samples

Fig. 4 HR-TEM and SEAD images of the ZMF0 and ZMF4 samples
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are shown in Fig. 6. The Figure shows different modes at
79.67, 311.56, 663, 1340 and 1580 cm−1 for all doping
ratios of Gd3+. The presence of the RAMAN band at
311.56 cm−1 was due to zinc ferrite nanoparticles associated
with the α-Fe2O3 phase [56]. The Gd2O3 was synchronized
in mode at 663.4 cm−1 [57]. A remarkable increase, high
peaks, in RAMAN intensity as the Gd3+ doping ratios
increased were found in the range between 1250–1750 cm−1

[58]. The presence of these peaks are attributed to the
stretching vibration modes of the Gd2O3. This is a significant
result showing the successful doping of Gd3+ ions within the
structure which would affect its magneto-optical properties
that will be discussed next in Sections 4.6 and 4.7.

4.5 X-ray photoelectron spectroscopy (XPS) analysis

The XPS spectra of Zn, Mg, Fe and O elements for ZMF0 and
ZMF4 spinel ferrite samples are presented in Fig. 7. The cation
distributions at different sites and binding energies obtained for
ZMF0 and ZMF4 samples confirmed the presence of Zn(2p3),
Mg(1 s), Fe(2p) and O(1 s) peaks, respectively. In the case of
the A-site (tetrahedral) and B-site (octahedral) cation dis-
tributions, the analyses focus on the elements Zn and Fe. The
Zn spectra exhibit two major peaks along with a satellite peak
at a higher binding energy (BE) level. The Zn 2p3/2 peak,
along with the satellite peak [59], indicate the presence of
Zn2+ in the synthesized nanoparticles. The spectra obtained for
Mg presented Mg 1 s peak for ZMF0 and ZMF4 confirming

the presence of Mg2+ within the structure of the samples. On
the other hand, the Fe 2p [60] spectra reveal the Fe 2p3/2 and
Fe 2p1/2 peaks at higher (BE) levels. The existence of the Fe
2p3/2 peak suggests the presence of Fe3+ states in the syn-
thesized nanoparticles. A sensitive variation in the binding
energy of Fe3+ and Fesat peaks is observed when comparing
the spectrum of ZMF4 to that of ZMF0. The spectral peak of
O-2 1S1/2 [61] at 529.61 eV for ZMF0 has been shifted to a
higher binding energy as the Gd3+ content was increased in
the optimized sample ZMF4 to 533.64 eV.

In Fig. 8 illustrated XPS spectra of the Gd3+ ions of
ZMF1, ZMF2, ZMF3 and ZMF4 spinel ferrite samples. The
shifting observed in the deconvoluted Gd 4d3/2 spectra pro-
vides compelling evidence that Gd3+ ions has been success-
fully doped within the synthesized structure where they’ve
replaced the Fe3+ ions [62]. These results should affect the
magneto-optical properties for the structure which will be
discussed in the following sections. The XPS spectra survey
of the ZMF0 and ZMF4 samples illustrated the elements Zn,
Mg, Fe, C and O very clear, see Fig. 9. The basic spectrum for
the pure sample ZMF0 confirmed the presence of Mg 1 s, Zn
2p3, Fe 2p, O 1 s and C 1 s, respectively. The Peaks obtained
at around 712 eV and 1022 eV were found to characterized
the Fe 2p and the Zn 2p3 electrons, respectively, meanwhile,
the peak at 1304 eV was belonging to the Mg 1 s. This is in
addition to the peaks observed in the spectrum found at 285,
531 identifying the C 1 s, O1s, respectively. Normally that,
the Gd 4d peak is only observed for ZMF4 spectra at about
100 eV. All the XPS results are tabulated in Table 3.

4.6 UV spectroscopy analysis

The UV-VIS absorbance, absorption coefficient (α),
Extinction coefficient K spectra were plotted as a function
of the wavelength. Also, (αhvÞ2 was plotted against hv for
the ZMF-spinel ferrite samples, Fig. 10a–d. The magnitudes
elevations confirm the success doping of Gd3+ ions within
the structure since they demonstrated the raise in energy
absorbed by electrons offered by the dopant Gd3+ ions.

4.6.1 Absorption coefficient (α)

The spectral results obtained from UV-VIS spectroscopy
within 340–500 nm range for the ZMF-spinel ferrite

Table 2 FT-IR absorption band
positions for ZMF-spinel ferrite
samples

Sample ν1 ðcm�1Þ ν2ðcm�1Þ ν3ðcm�1Þ ν4ðcm�1Þ νAðcm�1Þ νBðcm�1Þ

ZMF0 552.66 390 – – 1033.37 1119.71

ZMF1 552.88 380.64 – 242.41 861.65 929.75

ZMF2 553.31 393.64 283.51 – – 1128.1

ZMF3 555.68 393.91 277.38 242.79 – 930

ZMF4 551.14 381.36 – – 836.32 –
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samples were used to calculate the absorption coefficient (α)
using Eq. (3)

α ¼ � lnð1� AÞ
τ

ð3Þ

Where A is the absorbance and τ is the optical length of the
samples. According to Fig. 10b, “α” was increasing as the
doping Gd3+ ions were raised within the structure of the
samples. All samples showed superposed profiles for the
intensity of absorbance hovering around 340 nm wave-
length. This behavior was dramatically decreased to reach
minimum value at 460 nm for all samples. Post 460 nm
wavelength, the absorbance rate started to increase forming
plateau behavior between 450 nm and 500 nm. The above
results reveal that the ZMF-spinel ferrites working wave-
length is 300–350 nm range. The Gd3+ ions have modulated
the absorption properties of the spinel ferrite structure and
the absorption magnitude depends upon the concentration
ratio of the rare earth material. The enhancement of the
electronic conduction within the structure has improved the
electrical conduction of the material and hence approached
probable electronic applications in use [63]. High energy
photons capable of traveling between the valence and
conduction bands could be generated according to the
photo-excitation phenomena [64]. As the wavelength
increased above 300 nm, the incident photons’ energy
became less, resulting in lower probabilities for electrons
transitions between bands causing a drop in absorbance
magnitude [65]. The maximum absorbance at ZMF4 leads
to high ultraviolet photocatalytic [66] effective ability and
vice-versa.

4.6.2 Extinction coefficient, k

The variations in the extinction coefficient (k) with respect
to the incident light wavelength were calculated for all
ZMF-spinel ferrite samples, Fig. 10c, using Eq. (4):

k ¼ αλ

4π
ð4Þ

“K” determines the radiation absorption/scatter percentage
by the samples at certain wavelength. The values of “K” lie
within 300 nm < λ < 500 nm range depending upon the
concentration ratios of the Gd3+ within the samples. It is
clear that (K) recorded a maximum value at a wavelength of
340 nm.
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4.6.3 Optical energy band gap, Eg

The optical band gaps were calculated according to Tauc’s
relation represented by Eq. (5). Moreover, the results
obtained were plotted between αhν vs. hν in Fig. 10d:

αhν ¼ Aðhν� EgÞn ð5Þ
Where A is a constant, h (J.s) is the Planck’s constant, ν
(Hz) is the incident light frequency, Eg (eV) is the optical
band gap energy and “n” is a power factor that equals to 1/2
for the direct band gap semiconductor materials [67]. The

results obtained for the optical band gaps of ZMF-samples
were found to decrease from 3.21 eV to 2.99 eV as the
doping ratios of the Gd3+ ions were increased, Table 4. The
resulting blue shift [68] of the band edge absorption in
ZMF-spinel ferrites can be explained following the
probabilities of both charge transfer and d-d transitions
[69] within the iron (Fe) d-orbitals. A smaller band gap
promotes such transitions, potentially leading to bluer light
emission. This can be complex and vary depending on Gd+3

ions substitution probabilities. These results are in con-
sistent with those obtained in the previous XPS section.

Table 3 XPS results for ZMF-spinel ferrite samples

Sample Spectra Peak BE Height
(CPS)

FWHM
(eV)

Area
CPS.eV

Atomic% Sample
name

Peak BE Height
(CPS)

FWHM
(eV)

Area
CPS.eV

Atomic%

ZMF0 Zn2p 1021.3 7785.9 2.01 16953.5 59.74 ZMF4 1021.3 6689.3 2.01 14604.6 59.05

Zn2p- A 1044.4 3800.6 2.24 9228.2 33.53 1044.4 3331.5 2.27 8186.37 34.13

Zn2p- B 1039.6 511.3 3.37 1864.72 6.73 1039.7 451.41 3.37 1646.29 6.82

Mg1s 1303.4 1707.0 2.15 3979.9 100 1303.3 1107.9 2.4 2879.73 100

Fe2p 714.16 941.31 3.37 3432.92 12.83 713.72 1197.3 3.37 4366.81 16.33

Fe2p-A 726.93 678.83 3.37 2475.67 9.34 724.07 1491.1 3.37 5437.96 20.5

Fe2p-B 724.06 1395.1 3.37 5088.06 19.16 718.92 947.8 3.37 3456.58 12.98

Fe2p-C 719.03 942.77 3.37 3438.22 12.89 732.33 470.25 3.37 1714.97 6.51

Fe2p-D 732.74 445.11 3.37 1623.28 6.15 727.17 701.72 3.37 2559.14 9.67

Fe2p-E 710.91 3070.6 3.2 10633.4 39.63 710.79 2932.1 2.87 9114.29 34.01

O1s 529.78 4092.6 1.37 6056.45 33.05 529.78 5242.4 1.46 8294.81 46.87

O1s-A 531.22 2904 2.34 7347.88 40.13 531.39 2304.3 2 4998.13 28.27

O1s-B 529.61 2303.1 1.97 4914.71 26.82 533.64 102.46 2.72 302.01 1.71

O1s-C 529.86 1506.2 2.51 4097.36 23.15

Binding energy for Gd3+

Sample Spectra Peak BE Height (CPS) FWHM
(eV)

Area
(CPS.eV)

Atomic%

ZMF1 Gd4d 148.52 68.54 3.39 249.95 100

ZMF2 Gd4d 151.05 45.85 3.37 167.2 100

ZMF3 Gd4d 149.36 45.17 3.46 164.72 100

ZMF4 Gd4d 148.85 76.14 3.37 277.67 100

Survey

Sample Specta Peak BE Height CPS FWHM eV Area CPS.eV Atomic %

ZMF0 Zn2p3 1022.01 41649.55 3.21 163308.3 9.3

Mg1s 1303.95 11248.89 3.75 58479.58 9.87

Fe2p 712.1 22615.73 4.99 240278.46 11.61

O1s 531.02 43426.58 3.66 180467.22 43.07

C1s 285.33 9252.21 3.62 42897.16 26.15

ZMF4 Zn2p3 1022.06 35914.86 3.29 142864.66 8.81

Mg1s 1304.03 7540.71 3.54 32936.25 6.02

Gd4d 148.85 76.14 3.37 277.67 020

Fe2p 711.99 21324.71 5.56 246326.13 12.87

O1s 531.03 41350.14 3.7 172600.18 44.57

C1s 285.41 9712.59 3.46 42048.16 27.73
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4.7 Magnetic measurements

The hysteresis loops of the prepared spinel nano-ferrites
ZMF0, ZMF1, ZMF2, ZMF3 and ZMF4 at room tem-
perature under the magnetic field in the range of ±20 KOe
were shown in Fig. 11. The magnetic parameters including
saturation magnetization, Ms, coercivity, Hc and remnant
magnetization, Mr obtained from the hysteresis loops are
listed in Table 5. In addition, the squareness ratio, Mr/Ms,
anisotropy constant, K, and the magnetic moment, μB, were
calculated using the following equations and presented in

Table 5 as well:

K ¼ HcMs

0:96
ð6Þ
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ZMF3 and ZMF4 spinel ferrite samples

Table 4 The Energy Gap values for ZMF-spinel ferrite samples

Sample Band gap (eV)

ZMF0 3.21

ZMF1 3.11

ZMF2 3.07

ZMF3 3.02

ZMF4 2.99
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Fig. 11 The magnetic hysteresis loops (M-H loop) for ZMF0, ZMF1,
ZMF2, ZMF3 and ZMF4 spinel ferrite samples
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S ¼ MR

Ms
ð7Þ

μB ¼ MWxMs

5585
ð8Þ

Where 5585 is the magnetic factor and MW is the molecular
weight. It is noticed that the coercivity, HC, values have
decreased from 110.95 Oe to 87.69 Oe as the Gd3+ ions
were increased. The decrease in HC is interpreted as a
consequence of the cation arrangements over the tetrahedral
A and octahedral B sites [70]. The magnetocrystalline
anisotropy constant (K) is a crucial parameter that describes
the dependence of magnetic properties on a material’s
crystallographic orientation. It is essential for understanding
the magnetic behavior and performance of ferrites,
especially when rare earth (RE) elements are introduced.
RE elements possess large single-ion anisotropy due to their
unpaired 4f electrons, which, when substituted into the
octahedral sites of the ferrite lattice, contribute significantly
to the overall magnetocrystalline anisotropy of the material,
resulting in an increased K. This enhancement enhances the
magnetic hardness and stability of the ferrite, making it
suitable for high-performance magnetic applications. RE-
substituted ferrites exhibit a higher magnetocrystalline
anisotropy constant compared to pure ferrites, due to strong
spin-orbit coupling and the large orbital contributions of RE
ions. In conclusion, RE-substituted ferrites are ideal for
high-performance magnetic applications due to their
enhanced anisotropic properties. The magnetic order in
spinel ferrites is mainly referenced to the superexchange
interactions built up among these tetrahedral and octahedral
sites through oxygen ions [71]. Rare earth metals have
always been recognized as strong paramagnetic in normal
temperature conditions [72]. As a result of having larger
ionic radii, Gd3+ ions (0.938 Å) become competent to
occupy the B sites in trade with smaller Fe3+ ions (0.67 Å).
Such trading lead to reduce the total magnetic moment at
these sites that yield finally a net reduction in coercivity as
the non-magnetic Gd3+ doped ions were increased.

Furthermore, MS and Mr were found to decrease from
30.04 to 21.99 and 2.99 to 1.63 for pure sample and ZMF4
respectively. Also, the squareness ratio was found to fall
from 99.70 × 10−3 to 67.69 × 10−3 for these two samples as
well. All magnitudes drops were noticed to occur as
increasing the Gd3+ concentration ratios within the samples.
The results obtained for MS is ascribed to the attenuation of
the Fe3+– Fe3+ interactions in parallel with the weak Gd3+–
Fe3+ and Gd3+– Gd3+ interchanges [72].

The dM/dH curves for ZMF-spinel ferrite samples
ZMF0, ZMF1, ZMF2, ZMF3 and ZMF4 are shown in
Fig. 12. The width of dM/dH curves was kept constant and
overlapped for all of Gd3+ ions doping ratios. Further-
more, the magnitude of the dM/dH peaks were dropped
from 0.035 for ZMF0 to about 0.025 for the rest of all
doped samples. This behavior is mainly referenced to the
presence of the superparamagnetic [73, 74] regions within
the structure as the Gd3+ ions concentrations were raised
which, in turn, enhanced the magnetic properties of the
composite in the direction of soft magnetic. It is noted that
the magnetization has improved at higher field of 20 KOe
which can be attributed to the superparamagnetic behavior
of nanoparticles [75, 76]. Based on the enhanced magne-
tization status observed in the ZMF-spinel ferrite samples
by changing the doping of rare earth Gd3+ratios, several
high-tech applications can be envisioned such as trans-
formers, inductors, magnetic recording media, and mag-
netic sensors.

4.8 Radiation properties

4.8.1 FLUKA simulation study

In this study, the potent Monte Carlo method called
FLUKA (FLUktuierende KAskade) is used to calculate the
radiation shielding efficacy of the given nanomaterial. The
robust Monte Carlo technique may be helpful in many
disciplines due to the expensive costs of laboratory equip-
ment and, of course, the lack of access to it. This code
exploits the FLAIR (FLUKA Advanced InteRface) [77–80]
to simplify the editing process, running code, and visuali-
zation of the outcomes. This program can simulate the
transportation of over sixty particles, including electrons,
neutrinos, neutrons, photons, heavy ions, and muons, in
wide energy ranges. The FLUKA code version 2011.2x-4
and FLAIR version 2.3 have been used in this work to
investigate the radiation shielding efficiency of the selected
nanomaterial. In the FLUKA environment, an isotropic
spherical photon source spanning from 0.1 to 10MeV is
simulated using BEAM and two BEAMPOS cards. Type:
positive, and Type: SPH-VOL with the inner and outer
radius of rin= 0, rout= 0.5 cm are selected for the first and
second BAMPOS cards, respectively. Additionally, three

Table 5 Saturation magnetization (Ms), Remanent magnetization
(Mr), Coercivity (Hc), Squareness ratio (Mr/ MS), Effective magnetic
anisotropy (Keff) and Bohr magneton (µB)

Sample MS

(emu/g)
Mr

(emu/g)
HC (Oe) Mr/ MS �10-3 K� 10-3

(erg/Oe)
β
(μB)

ZMF0 30.04 2.99 110.95 99.70 3.47 1.186

ZMF1 24.03 2.01 103.52 87.15 2.49 0.932

ZMF2 23.08 1.91 101.33 83.13 2.43 0.940

ZMF3 23.02 1.73 95.69 78.76 2.19 0.909

ZMF4 21.99 1.63 87.69 67.69 2.19 0.959
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cm thick lead volumes are simulated around the source and
sample. The dimensions of the simulated equipment have
been derived from an experimental sample in the reference
[81–83] that was previously used to test the protection

properties of samples. All geometry is encased within
BLKBODY shell, with a radius of 13 cm from GEOBEGIN
to GEOEND. Ten centimeters away from the photon
source, the nanomaterial with a radius of 900 nanometers is

Fig. 13 Front and left views of
the simulation study
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simulated. The density of the samples has been entered into
the MATERIAL card, and the weight percentages of the
material have been added using COMPOUNDS (f1: to f6:)
in the FLUKA input file. The simulation system used in this
experiment for front and left views are depicted in Fig. 13.
Furthermore, spheric volumes are created before and after
the sample, and the flux is obtained by applying the USR-
TRACK (type: linear, part: photon) card. The attenuation
factors can be calculated by comparing the initial flux
(before the sample) and final flux (after the sample) using
Beer Lambert’s Law. The aforementioned cards ensure that
the properties and behavior of the simulated nanomaterials
closely resemble those of their real-world counterparts,
resulting in reliable and relevant radiation shielding
predictions.

To obtain the Cs-137 and Co-60 spectra using FLUKA
Monte Carlo code, Hi-PROPE card is used [84, 85]. In this

card, the atomic number and mass number of the radioactive
source should be added. This card will be used with
RADDECAY and DCYSCORE card for each scoring cards
and particles. Adding a Semi-analog and kind of the scor-
ing, the gamma photon spectrum can be obtained for each
sample. Additionally, USRTRACK scoring cards have been
used for wide energy ranging from 0.001 to 1.5 MeV, 100
million primaries, and 5 cycles to minimize errors.

4.8.2 Radiation shielding study

The Ln (Io/I) ratio of the samples at 356 keV is shown
against the sample thickness Fig. 14. In the beginning, the
ratio is −0.02, which is the largest value. This indicates that
all radiation is able to pass through the samples; however, as
the thickness of the samples increases, the ratio significantly
falls. These samples have a larger thickness, which causes a
bigger proportion of the incoming photons to get trapped
inside the material, which ultimately results in a greater
attenuation. At each and every thickness, the sample that
has the maximum amount of Gd has the ratios that are the
lowest (more attenuation). To put it another way, increasing
the concentration of Gd in the samples means that the Io/I
ratio of the samples may be reduced even more at a certain
thickness. As a consequence of this, the sample that has the
greatest Gd (1 weight percent) also has the lowest Io/I value
across all thickness groups.

In Fig. 15, the variations in GLAC are shown in relation to
the concentration of Gd. This figure serves as a sample
example for the lower and higher energy ranges of
0.356–1.333MeV. The data that has been provided
demonstrates that Gd additives have a significant impact on
the values of the GLAC, which demonstrate an upward trend
in the range of energies that range from 0.356 to 1.333MeV
between the small and high energies. In point of fact, these
behaviors may be rationalized by the influence that Gd has
on the structural features of samples, such as raising the
densities of the samples. The density of a medium has been
considered an important factor that plays a role in the
medium’s capacity to reduce the amount of radiation pho-
tons that it absorbs. It is also important to note that the GLAC

is dependent not only on the mass of the photons but also on
their energy. To go into further detail, the photon energy
had an effect on the rate at which the GLAC altered in
response to changes in density.

For each of the varied Gd concentrations, the GMAC

findings for the samples were computed and presented in
the form of a photon energies function shown in Fig. 16.
For all samples, the GMAC values decrease with increasing
the photon energy. In addition, the sample that has 1.0 wt%
of Gd has the highest value of GMAC.

According to the data that are provided in Fig. 17, it is
clear that the GHVL values decrease as the concentration of

Fig. 14 The Io/I ratio of the samples at 356 keV against the thickness
of the samples

Fig. 15 The linear attenuation coefficient (GLAC) versus Gd content for
samples
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Gd increases from 0 to 1 weight percent within the range of
low and high photon energy, which is from 0.356 to
1.333MeV. One possible explanation for these reductions
is that the shielding material densities have an inverse
reliance on both GHVL and the shielding material density. It
is clear that the GHVL values have decreased as a direct
consequence of the rise in density values. In addition, the
lower GHVL values indicate that the barrier against nuclear
radiation dangers has been increased in effectiveness and
efficiency. Based on this discovery, it seems that the pre-
sence of Gd has a considerable influence on the shielding
capability of the samples that are currently known to exist.

Furthermore, the nuclear photon build-up factor must be
taken into consideration when dealing with nuclear data, such
as radiation shielding and dosimetry. The build-up factor is
equivalent to the proportion of the target that is contributed by
photons that collide with one another. To this investigation, the
geometry progressive (G-P) approach was used to ascertain the
values of the exposure build-up factor (EBF) and the energy
absorption build-up factor (EABF). You may get the specific
details on the G-P approach in a publication that was con-
ducted in the past [86]. For this reason, the fluctuation of EBF
and EABF with incoming photon energies is shown in
Figs. 18a, b and 19a, b, respectively, for samples ZMF0 and
ZMF4, with penetration depths of 5, 10, 20, and 40 mfp (as an
example). As the input energy declines, the depth-dependent
absorption increases until it reaches a maximum value in the
intermediate energy field, at which point it decreases. This
continues until it achieves a constant value. The majority of
gamma-ray absorption takes place in the low (photoelectric
dominating) and high (pair formation dominating) energy
ranges, which are conditions in which the accumulation of
particles is restricted significantly. On the other hand,

Fig. 18 Exposure buildup factor (EBF) versus photon energy at different mean free path of ZMF0 and ZMF4 samples

Fig. 17 The half value layer (GHVL) versus Gd content for samples

Fig. 16 The mass attenuation coefficient (GMAC) versus photon energy
for samples
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Compton scattering is the mechanism that is seen the most
often for photon-matter interaction at intermediate energies;
nevertheless, it is not the mechanism that is observed for

absolute photon loss. Therefore, the EBF values are highest in
the Compton area as a consequence of this. In addition to the
fact that EBF levels vary from area to region, it was discovered

Fig. 19 Energy absorption buildup factor (EABF) versus photon energy at different mean free path of ZMF0 and ZMF4

Table 6 (EBF and EABF) G–P
fitting coefficients (b, c, a, Xk

and d) of ZMF0 sample

E (MeV) Zeq EBF EABF

a b c d Xk a b c d XK

0.015 13.69 0.245 1.025 0.363 −0.167 13.059 0.205 1.024 0.399 −0.106 12.065

0.020 14.06 0.179 1.050 0.426 −0.106 17.411 0.180 1.050 0.425 −0.107 17.396

0.030 14.49 0.214 1.160 0.394 −0.116 14.201 0.217 1.160 0.392 −0.120 14.134

0.040 14.76 0.193 1.331 0.444 −0.108 14.407 0.193 1.340 0.443 −0.107 14.648

0.050 14.95 0.161 1.538 0.523 −0.089 14.710 0.154 1.578 0.529 −0.083 15.316

0.060 15.10 0.119 1.739 0.627 −0.065 14.764 0.165 1.958 0.539 −0.086 13.861

0.080 15.30 0.081 2.130 0.759 −0.049 13.550 0.105 2.693 0.702 −0.071 13.405

0.100 15.44 0.040 2.363 0.908 −0.042 13.587 0.047 3.329 0.887 −0.047 13.650

0.150 15.65 −0.018 2.533 1.155 −0.018 12.284 −0.030 3.874 1.196 −0.007 15.322

0.200 15.78 −0.041 2.519 1.280 −0.012 10.556 −0.059 3.687 1.354 0.007 18.962

0.300 15.93 −0.057 2.409 1.368 −0.008 8.574 −0.082 3.150 1.477 0.019 16.040

0.400 16.02 −0.071 2.285 1.416 0.015 20.348 −0.082 2.840 1.475 0.019 16.918

0.500 16.06 −0.073 2.199 1.414 0.015 16.469 −0.085 2.600 1.475 0.022 15.543

0.600 16.09 −0.070 2.133 1.391 0.016 18.099 −0.083 2.445 1.453 0.023 15.689

0.800 16.11 −0.066 2.027 1.352 0.017 16.587 −0.075 2.252 1.394 0.022 15.397

1.000 16.11 −0.061 1.949 1.312 0.017 15.860 −0.066 2.129 1.336 0.021 15.580

1.500 11.65 −0.049 1.871 1.233 0.017 14.755 −0.053 1.939 1.250 0.020 14.432

2.000 10.28 −0.034 1.804 1.156 0.013 14.635 −0.035 1.844 1.157 0.013 14.722

3.000 9.95 −0.011 1.692 1.055 0.001 11.226 −0.010 1.707 1.051 0.000 11.801

4.000 9.87 0.005 1.612 0.991 −0.008 15.458 0.008 1.616 0.984 −0.010 13.095

5.000 9.83 0.016 1.542 0.953 −0.017 14.924 0.019 1.547 0.945 −0.014 12.886

6.000 9.81 0.029 1.498 0.915 −0.024 12.918 0.026 1.489 0.921 −0.027 15.649

8.000 9.78 0.033 1.410 0.898 −0.024 13.075 0.032 1.397 0.900 −0.021 12.298

10.000 9.76 0.042 1.351 0.875 −0.030 13.490 0.038 1.336 0.884 −0.028 13.919

15.000 9.75 0.059 1.264 0.830 −0.050 14.608 0.042 1.238 0.875 −0.034 14.731
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Table 7 (EBF and EABF) G–P
fitting coefficients (b, c, a, Xk

and d) of ZMF1 sample

E (MeV) Zeq EBF EABF

a b c d Xk a b c d XK

0.015 13.78 0.250 1.024 0.359 −0.171 12.733 0.201 1.023 0.404 −0.097 11.792

0.020 14.17 0.178 1.049 0.427 −0.103 16.990 0.182 1.049 0.423 −0.106 16.947

0.030 14.61 0.214 1.156 0.394 −0.115 14.250 0.217 1.156 0.392 −0.121 14.072

0.040 14.89 0.194 1.322 0.441 −0.108 14.419 0.193 1.330 0.441 −0.107 14.654

0.050 15.09 0.163 1.525 0.517 −0.091 14.683 0.158 1.564 0.521 −0.085 15.193

0.060 15.84 0.136 1.653 0.585 −0.076 14.653 0.141 1.772 0.571 −0.076 15.001

0.080 16.13 0.077 1.949 0.755 −0.046 14.874 0.129 2.501 0.640 −0.083 13.174

0.100 16.33 0.052 2.219 0.859 −0.044 13.254 0.068 3.097 0.816 −0.057 13.548

0.150 16.65 −0.008 2.412 1.102 −0.021 12.871 −0.010 3.741 1.112 −0.018 13.080

0.200 16.86 −0.031 2.432 1.227 −0.015 11.455 −0.043 3.644 1.277 −0.004 16.368

0.300 17.10 −0.051 2.346 1.335 −0.010 8.503 −0.071 3.157 1.419 0.015 19.081

0.400 17.24 −0.060 2.253 1.370 0.000 12.740 −0.077 2.833 1.444 0.017 16.781

0.500 17.33 −0.068 2.163 1.390 0.017 20.313 −0.078 2.610 1.441 0.019 16.625

0.600 17.38 −0.067 2.102 1.376 0.015 18.658 −0.077 2.452 1.423 0.020 16.674

0.800 17.43 −0.065 2.004 1.344 0.017 16.554 −0.072 2.249 1.380 0.021 15.591

1.000 17.44 −0.060 1.932 1.306 0.017 15.982 −0.066 2.121 1.335 0.021 15.114

1.500 12.38 −0.049 1.862 1.232 0.017 15.096 −0.053 1.940 1.247 0.020 14.591

2.000 10.52 −0.034 1.801 1.155 0.012 14.567 −0.034 1.844 1.156 0.013 14.732

3.000 10.07 −0.011 1.691 1.055 0.001 11.137 −0.010 1.707 1.051 0.000 11.663

4.000 9.96 0.005 1.612 0.991 −0.008 15.234 0.008 1.616 0.984 −0.010 13.101

5.000 9.91 0.016 1.542 0.953 −0.017 14.944 0.019 1.547 0.945 −0.014 12.870

6.000 9.88 0.029 1.498 0.915 −0.024 12.815 0.026 1.488 0.921 −0.027 15.670

8.000 9.85 0.033 1.410 0.898 −0.024 13.103 0.032 1.396 0.901 −0.021 12.297

10.000 9.83 0.042 1.351 0.875 −0.031 13.473 0.038 1.335 0.884 −0.028 13.919

15.000 9.81 0.059 1.264 0.830 −0.050 14.594 0.042 1.237 0.876 −0.034 14.731

Table 8 (EBF and EABF) G–P
fitting coefficients (b, c, a, Xk

and d) of ZMF2 sample

E (MeV) Zeq EBF EABF

a b c d Xk a b c d XK

0.015 13.83 0.253 1.024 0.356 −0.173 12.556 0.198 1.023 0.407 −0.093 11.643

0.020 14.22 0.178 1.049 0.427 −0.101 16.780 0.182 1.049 0.423 −0.105 16.723

0.030 14.67 0.214 1.153 0.394 −0.115 14.273 0.218 1.154 0.392 −0.121 14.043

0.040 14.94 0.195 1.318 0.440 −0.108 14.425 0.194 1.325 0.440 −0.107 14.657

0.050 15.15 0.164 1.519 0.515 −0.091 14.678 0.159 1.558 0.518 −0.086 15.159

0.060 16.43 0.146 1.595 0.561 −0.082 14.567 0.142 1.686 0.563 −0.078 15.280

0.080 16.78 0.089 1.872 0.719 −0.052 14.699 0.144 2.369 0.604 −0.090 13.292

0.100 17.04 0.055 2.101 0.839 −0.042 13.804 0.085 2.930 0.765 −0.066 13.439

0.150 17.43 −0.001 2.319 1.065 −0.023 13.183 0.004 3.633 1.050 −0.025 13.310

0.200 17.69 −0.024 2.370 1.189 −0.018 11.899 −0.031 3.611 1.220 −0.012 13.292

0.300 18.01 −0.048 2.298 1.312 −0.011 9.026 −0.064 3.161 1.377 0.012 21.138

0.400 18.19 −0.053 2.230 1.337 −0.010 8.385 −0.073 2.831 1.419 0.015 17.343

0.500 18.30 −0.065 2.138 1.373 0.017 21.850 −0.073 2.619 1.416 0.017 17.287

0.600 18.38 −0.065 2.081 1.363 0.014 18.657 −0.073 2.456 1.405 0.018 16.805

0.800 18.45 −0.063 1.987 1.335 0.015 16.699 −0.069 2.255 1.365 0.019 16.169

1.000 18.46 −0.058 1.920 1.299 0.016 15.936 −0.064 2.123 1.324 0.019 15.197

1.500 13.07 −0.048 1.854 1.230 0.017 15.944 −0.052 1.940 1.245 0.020 14.695

2.000 10.80 −0.034 1.797 1.155 0.012 14.487 −0.034 1.845 1.155 0.013 14.742

3.000 10.25 −0.011 1.690 1.055 0.001 11.006 −0.009 1.707 1.050 −0.001 11.459

4.000 10.12 0.005 1.611 0.991 −0.008 14.865 0.008 1.616 0.984 −0.011 13.110

5.000 10.05 0.016 1.541 0.953 −0.018 14.980 0.019 1.546 0.945 −0.014 12.842

6.000 10.02 0.029 1.497 0.915 −0.024 12.627 0.025 1.487 0.922 −0.027 15.710

8.000 9.98 0.033 1.409 0.899 −0.024 13.155 0.032 1.395 0.901 −0.021 12.295

10.000 9.96 0.042 1.350 0.875 −0.031 13.439 0.038 1.334 0.886 −0.028 13.921

15.000 9.94 0.060 1.264 0.829 −0.051 14.566 0.041 1.236 0.878 −0.034 14.730
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Table 9 (EBF and EABF) G–P
fitting coefficients (b, c, a, Xk

and d) of ZMF3 sample

E (MeV) Zeq EBF EABF

a b c d Xk a b c d XK

0.015 13.90 0.257 1.024 0.353 −0.175 12.312 0.195 1.023 0.410 −0.086 11.439

0.020 14.30 0.178 1.048 0.428 −0.098 16.474 0.184 1.048 0.421 −0.104 16.397

0.030 14.75 0.214 1.150 0.394 −0.115 14.308 0.218 1.151 0.391 −0.121 13.999

0.040 15.04 0.195 1.312 0.438 −0.109 14.436 0.195 1.319 0.438 −0.108 14.663

0.050 15.24 0.166 1.510 0.512 −0.092 14.670 0.162 1.549 0.514 −0.087 15.107

0.060 17.01 0.155 1.542 0.541 −0.086 14.485 0.149 1.624 0.542 −0.082 15.333

0.080 17.42 0.101 1.801 0.685 −0.057 14.535 0.158 2.244 0.570 −0.095 13.402

0.100 17.71 0.058 1.995 0.821 −0.041 14.299 0.100 2.780 0.719 −0.073 13.342

0.150 18.18 0.005 2.235 1.034 −0.024 13.455 0.018 3.531 0.994 −0.033 13.463

0.200 18.47 −0.021 2.293 1.171 −0.017 11.988 −0.021 3.566 1.170 −0.018 12.462

0.300 18.84 −0.044 2.260 1.287 −0.011 9.974 −0.050 3.184 1.320 −0.006 11.092

0.400 19.07 −0.049 2.208 1.314 −0.011 8.921 −0.067 2.841 1.387 0.014 20.498

0.500 19.20 −0.060 2.123 1.350 0.009 18.496 −0.069 2.625 1.394 0.014 17.446

0.600 19.28 −0.062 2.067 1.347 0.013 19.812 −0.070 2.462 1.387 0.017 17.708

0.800 19.37 −0.061 1.973 1.326 0.015 17.673 −0.066 2.262 1.350 0.017 16.561

1.000 19.39 −0.057 1.910 1.292 0.015 16.338 −0.060 2.128 1.309 0.017 15.827

1.500 13.74 −0.048 1.845 1.230 0.016 15.341 −0.051 1.941 1.242 0.019 14.464

2.000 11.05 −0.034 1.795 1.154 0.012 14.523 −0.034 1.844 1.155 0.013 14.732

3.000 10.40 −0.011 1.689 1.055 0.001 10.897 −0.009 1.707 1.050 −0.001 11.291

4.000 10.24 0.006 1.610 0.992 −0.008 14.572 0.008 1.616 0.984 −0.011 13.117

5.000 10.17 0.016 1.540 0.954 −0.018 15.008 0.019 1.545 0.945 −0.014 12.820

6.000 10.13 0.029 1.497 0.915 −0.024 12.481 0.025 1.486 0.923 −0.027 15.740

8.000 10.09 0.033 1.409 0.899 −0.024 13.195 0.032 1.394 0.901 −0.021 12.294

10.000 10.06 0.042 1.350 0.875 −0.031 13.414 0.037 1.333 0.886 −0.028 13.922

15.000 10.04 0.060 1.264 0.828 −0.051 14.545 0.041 1.235 0.879 −0.034 14.729

Table 10 (EBF and EABF) G–P
fitting coefficients (b, c, a, Xk

and d) of ZMF4 sample

E (MeV) Zeq EBF EABF

a b c d Xk a b c d XK

0.015 13.97 0.261 1.023 0.350 −0.178 12.073 0.191 1.022 0.414 −0.080 11.238

0.020 14.38 0.177 1.047 0.428 −0.096 16.174 0.185 1.047 0.420 −0.103 16.078

0.030 14.83 0.213 1.147 0.394 −0.115 14.342 0.218 1.147 0.391 −0.122 13.956

0.040 15.13 0.196 1.307 0.436 −0.109 14.452 0.196 1.314 0.435 −0.109 14.672

0.050 15.34 0.167 1.501 0.509 −0.093 14.662 0.164 1.539 0.509 −0.089 15.056

0.060 17.54 0.162 1.495 0.523 −0.091 14.411 0.156 1.568 0.524 −0.086 15.381

0.080 18.01 0.111 1.736 0.655 −0.063 14.390 0.170 2.133 0.540 −0.101 13.489

0.100 18.32 0.065 1.918 0.795 −0.044 14.450 0.118 2.655 0.675 −0.082 12.863

0.150 18.85 0.009 2.162 1.010 −0.022 13.656 0.030 3.432 0.945 −0.039 13.436

0.200 19.18 −0.020 2.224 1.157 −0.015 12.036 −0.011 3.518 1.126 −0.024 12.793

0.300 19.58 −0.041 2.224 1.267 −0.011 10.215 −0.044 3.179 1.288 −0.010 9.832

0.400 19.83 −0.047 2.178 1.302 −0.009 9.615 −0.062 2.847 1.361 0.018 26.072

0.500 20.00 −0.048 2.128 1.304 −0.011 8.717 −0.067 2.615 1.380 0.012 17.030

0.600 20.10 −0.059 2.056 1.331 0.015 23.359 −0.065 2.477 1.362 0.017 20.962

0.800 20.19 −0.059 1.961 1.319 0.016 18.595 −0.064 2.259 1.342 0.015 15.928

1.000 20.21 −0.056 1.901 1.287 0.016 17.215 −0.059 2.129 1.302 0.016 16.413

1.500 14.39 −0.048 1.839 1.228 0.016 15.217 −0.050 1.942 1.238 0.018 14.626

2.000 11.31 −0.034 1.792 1.154 0.012 14.965 −0.035 1.841 1.158 0.013 14.645

3.000 10.54 −0.011 1.688 1.055 0.001 10.790 −0.009 1.707 1.050 −0.001 11.126

4.000 10.37 0.006 1.609 0.992 −0.009 14.284 0.008 1.615 0.984 −0.011 13.125

5.000 10.28 0.016 1.540 0.954 −0.019 15.035 0.019 1.545 0.945 −0.015 12.799

6.000 10.24 0.030 1.496 0.915 −0.024 12.337 0.025 1.485 0.924 −0.027 15.770

8.000 10.19 0.033 1.409 0.899 −0.024 13.234 0.033 1.394 0.901 −0.022 12.292

10.000 10.16 0.042 1.350 0.875 −0.031 13.389 0.037 1.332 0.887 −0.028 13.923

15.000 10.14 0.060 1.264 0.828 −0.052 14.524 0.041 1.234 0.881 −0.034 14.728
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that the ZMF4 sample had the lowest EBF values of all the
samples that were under investigation. The photon accumu-
lation factor is referred to as the energy absorption build-up
factor (EABF), and the quantity of interest is the amount of
energy that is absorbed or deposited in the substance of
interest. EABF values followed a trend that was comparable to
that of EBF values. Tables 6–10 listed the full data of all
samples at investigated photon energy range and depth. The
research reveals that the incorporation of rare earth elements
can significantly improve the structural and magnetic proper-
ties of ferrites. This can lead to enhanced magnetic properties,
improved structural stability, controlled electrical conductivity,
and customized performance for specific applications. The
study also reveals that RE elements can be used to enhance
magnetostrictive properties for sensors and actuators and
improve magnetic permeability for antennas and magnetic
recording heads. High-density data storage, transformers, and
inductors can use this approach, making ferrites ideal for high-
power applications. The findings also suggest that the use of
RE resources can promote sustainable synthesis methods,
reduce material costs, and promote the sustainable use of
resources. The addition of reactive oxygen species (RE) ele-
ments to ferrite lattice sites significantly enhances their mag-
netic properties. This includes altering superexchange
interactions, introducing anisotropy, influencing spin align-
ment, distorting the crystal field, and modifying the magnetic
domain structure. This results in increased saturation magne-
tization and improved magnetic ordering. RE elements also
contribute to magnetic anisotropy, resulting in higher coer-
civity and better stability of the magnetic domains. The pin-
ning of magnetic domain walls also enhances coercivity and
overall magnetic hardness, making RE-substituted ferrites
ideal for high-performance magnetic applications.

5 Conclusions

This study successfully enhanced ZMF-spinel nanoferrite
composites through Gd3+ ion doping, utilizing compre-
hensive analytical techniques to delve into their structural,
optical, and magnetic properties. The introduction of Gd3+

ions notably altered lattice parameters and reduced crys-
tallite sizes to an optimal 19.82 nm, crucially augmenting
magneto-optical properties. The nanoscale dimensions were
confirmed via SEM and HR-TEM, with SAED analysis
corroborating XRD findings through identified diffraction
rings. Significant spectral shifts in FT-IR, Raman, and XPS
analyses were observed with the optimized ZMF4 sample
showcasing distinct peaks and an increase in RAMAN
intensity in the 1250–1750 cm1 range as Gd3+ doping ratios
were escalated. The research shows that adding Gd3+ ions
to Zn0.5Mg0.5Fe2O4 spinel ferrites changed their structure in
a big way, creating nano-sized cubic structures with a

perfect crystallite size of 19.82 nm. Gd3+ ions, which have a
net magnetic moment of 7.94 ¼B, improve the magneto-
optical properties, which leads to a change in behavior that
is more like a superparamagnetic one. This suggests
potential applications in data storage and optical wave-
guides. The study also assessed the gamma-ray shielding
efficiency of these materials, showing that the inclusion of
Gd3+ ions significantly improved radiation attenuation. The
optimized sample (ZMF4) displayed superior magneto-
optical characteristics and outstanding gamma-ray shielding
performance, especially at higher Gd3+ levels. When Gd3+

ions were added, the band gap dropped from 3.21 eV to
2.99 eV, which shows that the electronic properties were
improved. Gd3+ is not magnetic by itself, but it changes the
magnetic interactions between Fe3+ ions, which in turn
changes the ferrite’s lattice parameter, crystallinity, satura-
tion magnetization, and coercivity. RE elements for doping
face challenges like high costs, environmental impact,
complex synthesis, stability issues, and health and safety
risks due to their high energy consumption and high energy
consumption. A notable shift in the spectral peak of O-2
1S1/2 from 529.61 eV for ZMF0 to 533.64 eV for ZMF4
underscored the impact of Gd3+ incorporation. Optical
analyses revealed a band gap narrowing from 3.21 eV to
2.99 eV across the samples, indicative of a blue shift and
enhanced electronic properties. Magnetic assessments
pointed to a soft magnetic transition and identified super-
paramagnetic regions, emphasizing the material’s potential
across a wide spectrum of technological applications.
FLUKA Monte Carlo simulations brought to light the
nanomaterial’s improved radiation shielding with increased
Gd3+ concentration and sample thickness, showcasing a
direct correlation between these factors and photon
attenuation efficiency. Samples with 1 wt% Gd exhibited
superior shielding, particularly noted in the significant drop
in the Ln(Io/I) ratio. Increases in GLAC and GMAC with Gd
concentration, especially across photon energies of 0.356 to
1.333MeV, highlighted the composition’s critical role in
shielding effectiveness. Furthermore, the decrease in GHVL

with higher Gd levels underscored a denser and more
effective radiation barrier. The study’s findings on the
exposure and energy absorption build-up factors emphasize
the nuanced interplay between photon energy and material
interaction, vital for advancing shielding material develop-
ment. The incorporation of Gd3+ ions into ZMF-spinel
ferrites significantly refines their structural, optical, and
magnetic characteristics, while also vastly enhancing their
gamma-ray shielding capabilities. These improvements
suggest the material’s high potential for applications in
microwave devices, biomedical fields, energy systems, and
notably, in radiation protection, marking a significant leap
forward in the development of advanced functional com-
posites and radiation shielding technologies.
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