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Abstract
The PBE-GGA (Perdew Burke-Ernzerhof Generalized Gradient Approximation) for the exchange-correlation potentials,
based on first-principles density functional theory (DFT) study is used to investigate the structural, optical, and electrical
aspects of XSnI3 (X=Rb, K, Tl, and Cs) materials. According to the DFT calculation, the energy band gaps (Eg) of XSnI3
(X=Rb, K, Tl, and Cs) materials are 2.76, 2.01, 1.90, and 0.34 eV respectively. The direct energy bandgap (Eg) indicates that
halide perovskite materials are appropriate semiconductors for solar cell application. A thorough analysis of optical
conductivity indicates that, the optical conductance peaks of XSnI3 (X=Rb, K, Tl, and Cs) halide perovskite materials reach
maximum values of 2.3, 2.2, 4.5, and 5.2 eV, respectively, in the ultraviolet spectrum and shift slightly at higher energy bands.
The maximal optical conductivity of XSnI3 (X=Rb, K, Tl, and Cs) materials were (1.6 × 105Ω−1 cm−1, 1.8 × 105Ω−1) cm−1,
2.2 × 105Ω−1 cm−1 and 2.4 × 105Ω−1 cm−1 respectively. The XSnI3 (X=Rb, K, Tl, and Cs) is a group of materials with
enhanced surface area for light photon absorption and enhanced optical conductivity, energy absorption, and refractive index
properties make them suitable for perovskite solar cell application.
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Highlights
● The PBE-GGA (Perdew Burke-Ernzerhof Generalized Gradient Approximation) for the exchange-correlation potentials,

based on first-principles density functional theory (DFT) study is used to investigate the structural, optical, and electrical
aspects of XSnI3 (X=Rb, K, Tl, and Cs) materials.

● According to the DFT calculation, the energy band gaps (Eg) of XSnI3 (X= Rb, K, Tl, and Cs) materials are 2.76, 2.01,
1.90, and 0.34 eV respectively.

● The direct energy bandgap (Eg) indicates that halide perovskite materials are appropriate semiconductors for solar cell
application. A thorough analysis of optical conductivity indicates that the optical conductance peaks of XSnI3 (X= Rb,
K, Tl, and Cs) halide perovskite materials reach maximum values of 2.3, 2.2, 4.5, and 5.2 eV, respectively, in the
ultraviolet spectrum and shift slightly at higher energy bands.

● The XSnI3 (X= Rb, K, Tl, and Cs) is a group of materials with enhanced surface area for light photon absorption and
enhanced optical conductivity, energy absorption, and refractive index properties make them suitable for perovskite solar
cell application.

1 Introduction

As living standards grow and the world’s population
increases, technological innovation will play a major role in
the requirement of the world’s energy demand in the
twenty-first century [1, 2]. The most sustainable, renewable,
and environmentally friendly method of energy generation
for meeting energy demands the appropriate approach is
solar energy harvesting [3, 4]. Due to their fascinating
optoelectronic features and high power conversion effi-
ciency (PCE), halide perovskite-based solar cells have
attracted the attention of scientists during the past decade.
The halide perovskite solar cell is a highly efficient solar
cell type owing to its greater absorption coefficient, low
excitation binding energy, high charge carrier mobility, and
longer charge carrier diffusion length [5–7]. Hybrid halide
perovskites typically have the crystal structure ABX3,
where A stands for an organic or inorganic cation, B for a
metal cation, and X for an halogen family anion. Because
these halide perovskites are naturally abundant and rea-
sonably priced, they are widely used in a variety of indus-
trial fields [8–11]. Numerous characteristics, including low
exciton binding energy, low non-radiative recombination,
long charge diffusion length, excellent optical absorption
coefficient, and effective device functionality contribute to
their efficiency [12–15].

There is evidence in the literature that the metal or cation
choice in the metal halide influences the halide perovskites’
electrical properties, durability, and absorption capacity
[16, 17]. Nevertheless, due to the fact that the other per-
ovskite materials are toxic and may pollute the environment
or degrade the ecosystem, their use has raised concerns
about the environment [18, 19]. Different components have
been substituted in the development of higher-performing
solar cells based on perovskite. Tin iodide (SnI), is one of

the more notable replacements. Due to their improved
electrical characteristics reduced toxicity, and good optoe-
lectronic capabilities related to the active layer’s tunable
bandgap feature, SnI-based halide perovskites have
emerged as the most promising substitute for solar cell
applications [20–23]. The smallest bandgap of Sn-based
halide PSCs is found to be between 1.31 and 1.60 eV,
according to theoretical simulations. Improved optical and
electrical characteristics are displayed by Sn-based PSCs,
including greater charge mobility and a power conversion
efficiency of almost 30% [23–27].

Using a quantum mechanical technique, Paschal and col-
leagues have investigated the electrical, thermodynamic, and
structural properties of the guanidinium tin halide perovskite
SnX3 (where X=Cl, Br, and I) via DFT [28–32]. According
to their findings, the band gaps of the materials were 2.47,
1.78, and 3.0 eV, respectively. The narrowest bandgap is
found in C(NH2)3SnI3 at 1.78 eV. The structural and electrical
characteristics of a CsXCl3 perovskite photovoltaic solar cell
(where X= Sn, Pb, or Ge) were determined by Idrissi et al.
[33–35] using Quantum Expresso software. The CsSnCl3
material was determined to have the lowest bandgap among
the three configurations after analysis, making it suitable for
solar cell deployment [36, 37]. When compared to Cs-based
perovskites, their investigation showed Thus, Sn-based PSCs
had better optical conductivity, better light absorption, and
more flexibility. Sn-based perovskite solar cells have the
potential to be a workable replacement for lead-based per-
ovskite, which is toxic, and other types of solar cells. It has
been demonstrated that changing X to a different metal atom
improves the physical and chemical characteristics of the
perovskite structures, which may enable their use in a variety
of solar systems. In this study, we examine how specific
metals dopants affect the optoelectronic, optical, and struc-
tural characteristics of the perovskite structures XSnI3
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(X=Rb, K, Tl, and Cs). The primary objective of the current
work is to investigate the structural, and optical properties of
XSnI3 materials using computational modeling with the
CASTEP software. To the best of our knowledge, not much
research has been published on the study of the XSnI3
structure, where X is cesium, thallium, rubidium, and potas-
sium (Cs, Tl, Rb, and K). It is envisaged that such studies will
lead to future experimental studies to exploit the significant
potential of such materials in Sn-based PSCs application.

2 Computational methodology

CASTEP simulation software is used for first-principles
calculations [38]. The GGA (General Gradient Approx-
imation) method was used to simulate the geometric
structure and determine the electrical structure. The gen-
eralized gradient method of Perdew, Burke, and Ernzerhof
(PBE) is frequently used to compute the exchange-
correlation between energy and electrons. USP (ultra-soft
pseudo-potential) was used to determine the electrostatic
interactions between the valence electron and the ionic core
[39]. An elongation of the wave function results from the
accretion of plane waves with a cut-off energy of 365.5 eV.
In structural analysis, the total energy convergence is less
than −1.01 × 105 eV/atom and the self-consistent con-
vergence value is assumed to be (4.67 × 10−4) eV/atom. The
electrical configurations of tin, rubidium, potassium, thal-
lium, and cesium are Kr½ �4d105s25p2, Xe½ �5s1, Ar½ �4s1,
½Xe�4f136S2 and Xe½ �6s1 respectively. It is determined that
the maximum stress is less than 5.20 × 10−2 and the max-
imum Hellmann-Feynman force is 0:0004eV= _A: The high-
est atomic displacement that might occur is less than
1:22� 10�2Å. The Monkhorst Pack grid, which is com-
posed of 16 × 16 × 4 k-points, was sampled using First
Brillouin for structural optimization and electronic property
computations. In the non-periodic direction, we used a
vacuum of 35 Å is along the lattice vector to prevent
undesired interactions. Fig. 1a–d presents the 2D supercell
(8 × 8 × 2) of XSnI3 (X= Rb, K, Tl, and Cs) halide per-
ovskite materials.

3 Results and discussion

3.1 Structural study

This section presents an analysis and presentation of the
structural characteristics of the hybrid halide perovskites
XSnI3 (where X=Rb, K, Tl, and Cs). The three crystal
lattice parameters were initially used for the unit cell geo-
metry optimization. The x-alkali dopants (X= Rb, k, Tl,
and Cs) are uniformly distributed along the matrix of the

SnI3. In the PBE-GGA approach the XSnI3 (where X= Rb,
K, Tl, and Cs) is simulated using the CASTEP simulation
software. The atomic positions and space groups are dis-
played in Table 1. In the hybrid halide perovskite, the
dopants are positioned at various corners of the orthor-
hombic crystal structure as shown in Fig. 1a–d. Our
observed structural properties showed that the lattice para-
meters have an impact on the atomic locations of atoms in
XSnI3.

3.2 Electronic properties

Figure 2a–d displays the band structures and corresponding
density of states graphs for XSnI3 (where X= Rb, K, Tl,
and Cs). The primary electronic structural factors that are
essential for deriving out the materials’ orbital overlaps (or
energy levels) and their relaxation influences on the dif-
ferent energy levels are the total density of states (TDOS)
and partial density of states (PDOS). The energy range in
which an electron can exist (conduction band, C.B.) and the
locations where electron availability is zero are both
depicted by the electronic band structure. The fermi level
(Ef) is set to zero eV since all calculations were performed
at 0 K without considering the effects of the finite tem-
perature. The fermi level categorizes the conduction band
and the valence band. The valance band (V.B.) is located
below the energy Fermi level (Ef) and the C.B. is positioned
above Ef. The bandgap can be found by comparing the
valance band maxima (VBM) and conduction band minima
CBM. Understanding material behavior and differentiating
between conductors, insulators, and semiconductors will be
made simpler by examining the presence or absence of a
bandgap.

The material could have an indirect bandgap or a direct
bandgap, based on the band structure. A direct Eg is
observed when the VBM and CBM match. An indirect Eg
is indicated when these two points are precisely off from
one another. As illustrated in Fig. 2a–d, it has been found
that the Eg of the XSnI3 (where X= Rb, K, Tl, and Cs)
shows a decreasing trend with values as 2.76, 2.01, 1.90,
and 0.34 eV obtained for RbSnI3, KSnI3, TISnI3, and
CsSnI3 respectively. According to Fig. 2a–d, the VBM and
CBM of the XSnI3 materials under investigation are located
at different symmetry locations, indicating both direct and
indirect energy band gaps (Eg). In particular, VBM and
CBM of RbSnI3 and KSnI3 halide perovskite material are
situated at the same position M consistent with a direct Eg.
However, the VBM and CBM in TISnI3 are positioned at
distinct places, indicating that TISnI3 is an indirect semi-
conductor material. The VBM and CBM for CsSnI3 are
shown to be positioned at the same G point in Fig. 2d,
indicating a direct semi-conducting material. The absorption
of light increases from 1.7 × 105 cm−1 to 2.50 × 105 cm−1,
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Table. 1 The XSnI3 supercell of
structure materials’ space
groups, atomic locations, and
lattice characteristics

Materials Lattice
parameters
ð _AÞ

Atomic positions Space
group

Structure

Atoms a b c

RbSnI3 a= 4.791 b= 10.573 c= 17.636 Rb 0.25 0.0844 0.672 Pnma Orthorhombic

Sn 0.25 0.8378 0.672

I 0.25 0.1997 0.288

KSnI3 a= 3.691 b= 3.691 c= 3.691 K 0.25 0.4192 0.827 Pnma Orthorhombic

Sn 0.25 0.6618 0.439

I 0.25 0.1588 0.946

TISnI3 a= 7.948 b= 7.948 c= 11.920 Tl 0.246 0.754 0.25 Cmcm Orthorhombic

Sn 0 0 0

I 0.0789 0.9211 0.75

CsSnI3 a= 8.773 b= 8.872 c= 12.663 Cs 0.0047 0.0233 0.25 Pnma Orthorhombic

Sn 0 0.5 0.5

I 0.0026 0.52 0.75

Fig. 1 a–d Supercell of hybrid
halide perovskite material
XSnI3 (where X= Rb, K, Tl,
and Cs)
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and optical conductivity increases from 1.6 to 2.4 eV, as the
bandgap decreases from 1.76 to 0.34 eV as shown in Table
2. The TDOS is used to measure the electronic bandgap
represented per unit of energy regardless of how the partial
density of states is used to analyze the contribution of ions
to different band structures. With an Eg value of 0.34 eV,
Fig. 4d demonstrates that the s state for the CsSnI3 halide
perovskite material contributes more to the conduction band
than the p, d, and f states. This is explained by the higher
sigma state contribution in the bandgap reduction. Because

of its lower bandgap value, CsSnI3 halide perovskite could
be a desirable choice for solar cell applications.

The decrease in the bandgap is explained by the TDOS
and PDOS. The dotted line represents the Ef fermi level,
which is located at the valence band’s peak. These TDOS
charts demonstrate that in RbSnI3, KSnI3, TISnI3, and
CsSnI3, recently produced extra gamma states are respon-
sible for the bandgap decrement as shown in Fig. 3a–d. The
C.B. shifted towards the EF along the G positioned as a
result of newly produced gamma states of XSnI3 materials
is a significant factor in decreasing the Eg of these materials.
In semiconductors, these materials exhibit a direct-to-
indirect bandgap structure, as demonstrated by the band-
gap structures.

The data show that the “s” states highlighted in red con-
tribute the most to C.B. for each material. However, in the s
states, there are more gamma states. Consequently, s states
contribute greater as compared to p and d states as shown in
Fig. 4a–d. Figure 4a shows that the “s” state (in red color) is
contributing more in the conduction band for the RbSnI3
halide perovskite material with an Eg value of 2.76 eV.
Figure 4b shows that for the KSnI3 halide perovskite material
with an Eg value of 2.01 eV, the “s” and “p” states (shown in
red and green respectively) contribute more than the “d” state
(shown in blue) in the conduction band. Figure 4c illustrates
how the “s” and “p” states contribute more to the conduction
band than the d for the TISnI3 halide perovskite material, with
an Eg value of 1.90 eV. The energy bandgap for TISnI3 and
CsSnI3 decreases due to an increase in the hybridization of s,
p, and d states. These findings indicate that halide perovskites
are suitable for solar cell application.

3.3 Optical properties

Halide perovskite materials exhibit remarkable optical
characteristics and can be employed in solar cells and
photocatalysis. The complex ε (ω) dielectric parameters can
explain the behavior of halide perovskite materials such as
RbSnI3, KSnI3, TISnI3, and CsSnI3 in an electric field. In
particular ε(ω), is composed of two elements, the real
dielectric function (RDF) and the imaginary dielectric

Fig. 2 a–d Bandgap structures and TDOS of XSnI3 (where X= Rb, K,
Tl, and Cs)

Table 2 The bandgap (Eg), absorption coefficient, and optical
conductivity of halide perovskite materials

Halide perovskite materials

Materials name RbSnI3 KSnI3 TlSnI3 CsSnI3

Energy Bandgap (Eg)
eV

2.76 2.01 1.90 0.34

Absorption Coefficient
α(w) (cm−1)

1.7 × 105 1.9 × 105 2.1 × 105 2.50 × 105

Optical Conductivity
σ1 × 103 (Ω−1 cm−1)

1.6 × 103 1.8 2.2 2.4
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function (IDF), and is based on a function of the optical
band structure of the crystal. The electronic structure of
halide perovskite materials such as RbSnI3, KSnI3, TISnI3,
and CsSnI3 can be used to define their optical properties,
along with other features including the dielectric function,
refractive index, coefficient of absorption, reflectivity,
energy loss function, and optical conductivity. These char-
acteristics are beneficial in indicating the materials’
applicability and stability in solar cell applications.

The interaction between electromagnetic waves and
valance electrons between the core electrons of XSnI3
materials are responsible of all of the optical conductivity
features. Since these characteristics are all related, the
complex dielectric function can be expressed as follows
[40–43].

ε ωð Þ ¼ ε1 ωð Þ þ iε2 ωð Þ ð1Þ

The optical response to the impact of XSnI3 material
hybridization on the dielectric function, which is quantifi-
able using the following formulas [44–48].

ε2 ωð Þ ¼ � Ve2

2πm2ω2

R
d3k

P
nn0 1< kn Pj jk~n> I2f ðkÞ

� ð1� f ðk~nÞδðEkn � Ek~n � ωÞ ð2Þ

The relative permittivity of XSnI3 materials is given by
the dielectric constants. The interpretation of the term
“dielectric” explicitly, indicates the extent to which an
electric field can pass through atoms of XSnI3 materials.
This primarily shows the maximum polarization that XSnI3
material can withstand at different X atoms. Since there can
never be a field inside the confines of an electrical con-
ductor, the ideal conductor should have zero value. The
terms are related to real part ½ε1 ωð Þ�, and the imaginary part
½ε2 ωð Þ� within the XSnI3 materials.

Fig. 3 a–d Partial density of states XSnI3 (where X=Rb, K, Tl, and Cs)
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As shown in Fig. 5a, the main peaks of ½ε1 ωð Þ� have values
of about 10, 4.3, and 2.4 respectively at 4 eV for CsSnI3,
TISnI3, and RbSnI3. In the case of KsSnI3 the maximum value

of >12 eV is observed at the 2 eV and then decreased to 2.3
near 4 eV. The peaks of the remaining halide perovskite
materials started to drop after 5 eV as shown in Fig. 5b. With

Fig. 4 a–d Partial density of
states (PDOS) of RbSnI3,
KSnI3, TISnI3, and CsSnI3
halide perovskite materials
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Kramer’s-Kronig mathematical formulation [49, 50], the RDF
½ε1 ωð Þ� is formed by the IDF (imaginary dielectric function)
½ε2 ωð Þ�, as illustrated in Fig. 5b. For structures CsSnI3, TISnI3,
KSnI3, and RbSnI3, the maximum values of 11.8,10, 4.5, and
2.5 respectively are observed at 2.5–3 eV. Above 3 eV, the
values of ε1 ωð Þ are shifted to lower values. These calculations
suggest that these XSnI3 halide perovskites are suitable for the
solar cells industry.

3.3.1 Refractive index

Figure 6a, b displays the extinction coefficient (k(w)) and
refractive index (n(w)) of the XSnI3 halide perovskite

material, which were carefully investigated. The results indi-
cate optical transparency and capturing of electromagnetic
(EM) wave radiations. The ε1ðωÞ and ε2ðωÞ dielectric func-
tions dielectric vary with frequency in addition to providing a
means of confirming the n(ω) complex refractive index pro-
vided by the following mathematical terms [51–54].

~n ωð Þ ¼ n ωð Þ þ ik ωð Þ ¼ ϵ1=2 ¼ ðε1 þ iε2Þ1=2 ð3Þ

I ωð Þ ¼
ffiffiffi
2

p
ω

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ε1ðωÞ2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2ðωÞ2

q
� ε1 ωð Þ

� �1=2

ð4Þ

ffiffiffiffiffiffiffiffiffi
ε ωð Þ

p
¼ n ωð Þ þ iK ωð Þ ¼ N ωð Þ ð5Þ

Fig. 5 a, b The a real and b imaginary part of the dielectric functions of RbSnI3, KSnI3, TISnI3, and CsSnI3halide perovskite materials Real (a) and
imaginary (b) terms

Fig. 6 a, b Extinction coefficient and refractive index of CsSnI3, TISnI3, KSnI3, and RbSnI3
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In this case, the imaginary extinction coefficient equation
is presented by k(ω), whereas the real refractive index is
commonly measured by n(ω) [5, 8, 55–57].

r ωð Þ ¼ nþ iK� 1
nþ iKþ 1

ð6Þ

K ωð Þ ¼ IðωÞ
2ω

ð7Þ

ε2 ωð Þ ¼ 2nK ð8Þ

ε1 ωð Þ ¼ n2 � K2 ð9Þ

The refractive index (n) at zero eV of the XSnI3
samples is 1.7, 2.2, 3.4, and 3.5 for RbSnI3, KSnI3,
TISnI3, and CsSnI3 respectively. The refractive index
peaks shifted toward a sharp decline with energy up to
5 eV. The refractive index (n) ranges from 0 to 5 in the
energy range of 0–40 eV because of the different fre-
quencies of the inner-transition band. In the prominent
energy range, there is less polarization as indicated by
the lower refractive index.

3.3.2 Absorbance and energy loss

The absorption quality of a material is directly related to
its ability to absorb luminous electromagnetic radiation
as opposed to photons with the appropriate energy,
(E= ħω). Additionally, the energy loss function repre-
sented by L(ω) in Fig. 7b, describes the dissipation of
incident photons energy in the materials. The following
expression can be employed to address the absorption

coefficient “a ωð Þ” [58–61].

aðωÞ ¼ 2ωkðωÞ ¼
ffiffiffi
2

p
½fε1ðωÞ2 þ ε2ðωÞ2g1=2 � ε1ðωÞ�1=2

ð9Þ

a ωð Þ ¼ 4kπ
λ

¼ ω

nc
ε2 ωð Þ ð10Þ

L ωð Þ ¼ ε2
ε1ðωÞ2 þ ε2ðωÞ2 ð11Þ

The absorbance of RbSnI3, KSnI3, TISnI3, and CsSnI3 is
shown in Fig. 7a. Investigations have shown that light
absorption is lowest in areas with roughly equal energy and
maximum reflection. The capacity to absorb according to
Fig. 7a, of halide perovskite materials containing RbSnI3,
KSnI3, TISnI3, and CsSnI3 is sharply rising. A slight shift
toward higher energy values is observed in all of the absorption
peaks. As illustrated in Fig. 7a, the absorption coefficient α(w)
values are 2.4 × 105 cm−1, 2.2 × 105 cm−1, 1.9 × 105 cm−1, and
1.7 × 105 cm−1 for CsSnI3, TISnI3, KSnI3, and RbSnI3
respectively. When compared to other materials CsSnI3, and
TISnI3, with absorption coefficients of 2.4 × 105 cm−1 and
2.2 × 105 cm−1, respectively, exhibit the maximum absorption.
The absorption coefficient α(w) indicates a shift toward high
absorbance in the range of 5 eV to 20 due to the notable
decrease in energy bandgap. These absorption results indicate
that the halide perovskite materials CsSnI3, TISnI3, KSnI3, and
RbSnI3 are suitable for solar cell applications.

3.3.3 Optical conductivity and reflectivity

The conductance of photo-generated electrons caused by
the photoelectric process is characterized by optical

Fig. 7 a Absorption coefficient b energy loss function for CsSnI3, TISnI3, KSnI3, and RbSnI3
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conductivity. Particle bonding is broken by electromagnetic
radiation. The optical conductance of CsSnI3, TISnI3,
KSnI3, and RbSnI3 is displayed in Fig. 8a–d, covering the
0–40 eV range. The real peaks of optical conductance σ1(w)
for RbSnI3, KSnI3, TISnI3, and CsSnI3 are in the energy
range of 0 to 20 eV and originate from the origin point and
touch their maximum conductivity values of 2.3, 2.8, 4.5,
and 5.2 eV respectively. The real component of their optical
conductivities decreases steadily 40 eV reaching a max-
imum around at 5 eV. Conversely, the imaginary optical
conductivity σ2(w) for the RbSnI3, KSnI3, TISnI3, and
CsSnI3 have maximum values at 5 eV of 2.1, 2.4, 2, and
2.6 cm−1 respectively. The optical conductivity results
suggest that RbSnI3, KSnI3, TISnI3, and CsSnI3 are suitable
materials for solar cell applications.

Any material’s reflectivity can be utilized to analyze how
its surface behaves. Figure 9 displays the surface reflectivity
behavior of TISnI3, CsSnI3, KSnI3, and RbSnI3. From 0 to
15 eV, the reflectivity peaks increased; however, they began

to decrease at 16 eV as shown in Fig. 9. The reflectivity
peaks of the RbSnI3, KSnI3, TISnI3, and CsSnI3 halide
perovskite materials are 0.15, 0.38, 0.42, and 0.62 respec-
tively. The maximum reflectance peaks of 0.62 and 0.42 are
observed in these two CsSnI3 and TISnI3 materials when
compared to other halide perovskite materials, KSnI3 and
RbSnI3. CsSnI3 and TISnI3 show improved absorption and
optical conductivity compared to other materials. According
to the results in Fig. 9, there is a slight shift in the reflec-
tivity peaks toward higher energy levels.

4 Conclusion

Utilizing the Perdew Burke-Ernzerhof Generalized Gradient
Approximation (PBE-GGA) for the exchange-correlation
potentials, a density functional theory-based (DFT) study is
used to investigate the structural, optical, and electrical
aspects of XSnI3 (X= Rb, K, Tl, and Cs) materials.

Fig. 8 a, d Optical conductivity of a RbSnI3 b KSnI3 cTISnI3, and d CsSnI3 halide perovskite materials
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According to the DFT calculation, the energy band gaps
(Eg) of XSnI3 (X= Rb, K, Tl, and Cs) materials are 2.76,
2.01, 1.90, and 0.34 eV respectively. The direct energy
bandgap (Eg) indicates that these materials are appropriate
semiconductors for solar cell application. A thorough ana-
lysis of optical conductivity indicates that the optical con-
ductance peaks of XSnI3 (X=Rb, K, Tl, and Cs) have
maxima of 2.3, 2.8, 4.5, and 5.2 eV in the ultraviolet
spectrum and shift slightly at higher energy bands. The
maximal absorbance of XSnI3 (X=Rb, K, Tl, and Cs)
materials were (1.4 × 105Ω−1 cm−1), (1.8 × 105Ω−1 cm−1),
(2.2 × 105Ω−1 cm−1) and (2.4 × 105Ω−1 cm−1) respectively.
The XSnI3 (X=Rb, K, Tl, and Cs) is a group of materials
with enhanced surface area for light photon absorption.
XSnI3 (X= Rb, K, Tl, and Cs) are suitable halide per-
ovskites for solar cell applications due to their enhanced
optical conductivity, energy absorption, and refractive
index. The halide family has enormous promise for energy
generation application. Additionally, current modeling stu-
dies are waiting experimental validation.
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