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Abstract
Industrial dye contamination in wastewater poses significant environmental challenges, necessitating the development of efficient
photocatalysts for degradation. In this work, we investigate the In doping effect in the photocatalytic activity of zinc oxide (ZnO)
nanoparticles for effective RhB degradation. Indium-doped ZnO nanoparticles were synthesized via sol–gel method and x-ray
diffraction (XRD) analysis revealed a wurtzite hexagonal structure, with the crystallite size being varying from 65 nm to 53 nm
with the introduction of In content. XPS measurements on the 3% In-doped ZnO sample revealed distinct core level spectra for
In 3d, Zn 2p, and O 1s regions, confirming the presence of indium, zinc, and oxygen. Brunauer–Emmett–Teller (BET) analysis
revealed increased surface area and pore size, with specific surface areas escalating from 0.9m²/g for pure ZnO to 10.1 m²/g for
3% indium-doped ZnO. Photocatalytic experiments exhibited significant RhB degradation, with degradation efficiencies
reaching 93% for 3% indium-doped ZnO under visible light irradiation due to the effect of the presence of In, which causing
light absorption enhancement, narrow the band gap and improve charge carrier separation. These findings underscore the
potential of indium-doped ZnO nanoparticles as efficient and sustainable photocatalysts for wastewater treatment, offering a
promising avenue to address environmental challenges associated with industrial dye-contaminated effluents.
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Highlights
● Sol–gel synthesis of Indium-doped ZnO offers a scalable method for effective photocatalysts in wastewater treatment.
● Achieved 93% Rhodamine B degradation with Indium-doped ZnO nanoparticles under visible light.
● XRD analysis showed a reduction in crystallite size from 65 nm (pure ZnO) to 53 nm (3% In-doped ZnO).
● BET surface area increased from 0.9 m²/g (pure ZnO) to 10.1 m²/g (3% In-doped ZnO).
● UV-Vis spectroscopy indicated a reduced band gap in Indium doped ZnO (3.19 eV).
● TGA analysis highlighted improved thermal stability in Indium doped ZnO nanoparticles.

1 Introduction

The treatment of wastewater generated from industrial pro-
cesses is imperative to mitigate its adverse impact on the
environment, living organisms, and human health [1, 2]. This
concern is particularly pronounced in industries such as tex-
tiles, paper, cosmetics, and printing, where xanthene dyes are
extensively utilized [3, 4]. These dyes, including Rhodamine
B (RhB), pose significant environmental hazards due to their
water solubility and carcinogenic nature. When discharged
into water bodies, these dyes can disrupt aquatic ecosystems
and endanger human health through bioaccumulation in the
food chain. Various techniques have been employed for
wastewater treatment, ranging from conventional methods
like sedimentation and filtration to advanced processes such
as chemical oxidation and biological treatment [5]. Among
these, Advanced Oxidation Processes (AOPs), particularly
heterogeneous photocatalysis, have emerged as promising
methods for degrading organic pollutants under UV/Vis light
[6]. This process involves the generation of highly reactive
hydroxyl radicals (OH) that can effectively oxidize organic
contaminants, transforming them into harmless byproducts
like water and carbon dioxide [7].

Zinc oxide (ZnO), known for its wide band gap and high
quantum efficiency, has gained attention for its photo-
catalytic applications. However, despite its intrinsic photo-
catalytic properties, ZnO suffers from limitations such as
rapid charge carrier recombination, which reduces its
overall efficiency [8]. To address this challenge, efforts
have focused on enhancing ZnO’s efficacy through various
means, including metal ion doping, surface modification,
and nanostructuring. Metal ion doping, in particular, has
shown promise in improving ZnO’s photocatalytic perfor-
mance by modifying its electronic band structure and
reducing charge carrier recombination rates [9, 10].

In recent years, visible-light-driven photocatalysts have
garnered attention for their eco-friendly potential. Unlike
traditional photocatalysts, which are primarily activated by
UV light, visible-light-driven photocatalysts can harness
solar energy more efficiently, making them cost-effective
and sustainable alternatives for wastewater treatment
[11, 12]. Various strategies, including transition metal-ion
doping, rare earth metal doping, co-doping, polymer mod-
ification, hetero-junction formation, and dye sensitization,

have been explored to activate photocatalysts under visible
light [13, 14]. Dye sensitization, in particular, offers a
promising approach for enhancing the photocatalytic
activity of semiconductor materials by harnessing the light-
absorbing properties of organic dyes [15].

Dye sensitization involves the continuous adsorption of
dye molecules on the semiconductor surface, followed by
their degradation upon excitation by visible light. This
process facilitates electron transfer from the dye molecules
to the semiconductor, initiating the photocatalytic reaction
for organic pollutant degradation [16, 17]. Moreover, dye
sensitization can extend the absorption range of photo-
catalysts into the visible region of the electromagnetic
spectrum, enabling more efficient utilization of solar energy
for wastewater treatment. Thus, the integration of dye sen-
sitization with photocatalysis holds significant potential for
developing sustainable and effective solutions for addres-
sing environmental challenges associated with industrial
wastewater containing xanthene dyes [18, 19].

Ways to further enhance the photodegradation properties
of pollutants in water have been explored by many
researchers who have used doping with alkaline-earth, tran-
sition, and post-transition metal elements. For instance, dop-
ing ZnO with Ca, was studied by Alejandro et al. [20] and it
was demonstrated that it enhances the removal of tetracyclines
(10 ppm) by sonophotocatalysis under visible light, achieving
over 99% mineralization in 90min for Ca-doped ZnO at 2%.
Benamara et al. [21] revealed that Al doping enhances the
removal of cyanotoxins in ZnO nanoparticles with visible
LED irradiation. Ersöz et al. [22] showed that doping ZnO
with Ag, a post-transition metal element, enhances the
removal of RhB, achieving ~66% decomposition after
120min under UV light irradiation. Doping ZnO with post-
transition metal elements enhances photocatalytic dye
removal via bandgap narrowing, reduced electron-hole
recombination, improved charge separation, increased sur-
face area, and synergistic effects, enhancing efficiency in
degrading organic pollutants like RhB [23, 24]. In this study,
we explored In as a dopant in ZnO nanoparticles. Indium
doping was chosen because of its ability to introduce inter-
mediate energy levels within the ZnO bandgap and improve
charge separation efficiency during photocatalysis. Therefore,
we have investigated the photo-degradation of RhB by using
different indium doping content in ZnO nanoparticles.
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2 Experimental details

2.1 Nanoparticles preparation

Indium doped zinc oxide (IZO) nanoparticles were syn-
thesized via the sol–gel method, utilizing 16 g of zinc
acetate dehydrate [Zn(CH3COO)2·2H2O; 99%] as the pre-
cursor in 112 mL of methanol. The synthesis process
involved magnetic stirring at room temperature for 10 min.
Subsequently, the appropriate quantity of indium chloride
(InCl3) was added to achieve [In]/[Zn] ratios of 0.01, 0.03,
and 0.05. After an additional 15 min of magnetic stirring,
the solution was transferred to an autoclave and subjected to
drying under supercritical conditions of ethyl alcohol
(EtOH). The resulting nanopowders were then subjected to
heat treatment in a furnace at 400 °C for 2 h in an air
environment. The synthesized samples were assigned
unique codes based on the nominal indium loading of each
sample: I0ZO, I1ZO, I3ZO, and I5ZO.

2.2 Characterization

The following analytical techniques were employed for
comprehensive characterization: Thermogravimetric Ana-
lysis (TGA) spectroscopy, X-ray Diffraction (XRD), Scan-
ning Electron Microscopy (SEM) coupled with Energy-
Dispersive X-ray Spectroscopy (EDX), Fourier-Transform
Infrared (FTIR) spectroscopy, Brunauer–Emmett–Teller
(BET) measurement, and Photoluminescence (PL) mea-
surements. These methods collectively provide precise
information about crystal structure, surface morphology,
particle size, chemical element compositions, surface area,
pore sizes, and more.

The X-ray diffraction patterns were captured within the
2θ range spanning from 20° to 70°, utilizing a Bruker
Philips X-Pert diffractometer with Ni β-filtered Cu-Kα
radiation (1.54178 Å radiation). The average crystallite size
(d) was determined using Scherrer’s [25–27]

d ¼ 0:9λ
B cos θB

ð1Þ

Where λ represents the X-ray wavelength, θB is the
maximum of the Bragg diffraction peak (in radians), and
B is the full width at half maximum (FWHM) of the (101)
XRD peak.

Surface images of the samples were obtained using an
FEI Inspect S instrument, coupled with an Oxford INCA
PentaFETx3 EDX spectrometer. The instrument featured a
resolution of 137 eV at 5.9 keV (Mn Kα1) and was equipped
with a nitrogen-cooled Si(Li) detector. Spectral data were
collected at a working distance of 10 mm, an acceleration
voltage of 20 kV, counting times of 60 s, and an approx-
imate count rate of 3000 counts/s (cp).

BET measurements were conducted using N2-physi-
sorption at 77 K with a pressure transducer. Prior to the N2

physisorption analyses, the samples underwent degassing at
150 °C for 12 h under a flow of N2.

Photoluminescence (PL) measurements were performed
on a NanoLog modular spectrofluorometer Horiba,
employing a Xe lamp as the excitation light source at room
temperature. Excitation occurred at a wavelength of 325 nm,
and emissions were recorded between 350 and 750 nm. The
optical absorbance spectra were measured using a Shimadzu
UV-3101 PC UV-Vis-NIR spectrophotometer, covering a
wavelength range of 200 nm to 800 nm.

X-ray photoelectron spectroscopy (XPS) measurements
were performed for the I3ZO sample on a PHI Quantum
2000. Prior to the measurement, the nanopowder was fixed
on adhesive carbon tape. The excitation energy was
1486.7 eV (monochromatic Al Kα1), while operating the
X-ray source at a power of 50W and a voltage of 15 kV.
The pressure during the measurement was on the order of
~2 × 10−9Torr. A dual beam (electron and ion) neutralizer
was used for charge compensation. Charge referencing was
performed by aligning the C1s emission line from the car-
bon tape to 284.5 eV corresponding to the C 1 s core level
binding energy of graphite [28]. The In/Zn ratio was cal-
culated from the In 3d5/2 and Zn 2p3/2 peaks after Shirley
background subtraction and applying the appropriate cor-
rected sensitivity factors.

2.3 Photocatalysis experiment

100 mL of 0.2 μM RhB dye solution was prepared and
kept in the dark to avoid any disturbance before applying
the catalyst. 20 mg of catalyst was then mixed with dye
solution in the dark and kept for some time to attain the
equilibrium. This mixture was irradiated by visible light
using Heber photoreactor. At each 30 min interval of
irradiation, the absorption spectrum was recorded to
analyze the RhB degradation. To check the stability of the
sample the same procedure was repeated by recovering
the used catalyst each time and adding it to fresh dye
solution for phototdegradation.

3 Results and discussion

3.1 SEM and EDS analysis of in-doped ZnO

The morphology of In-doped ZnO samples, annealed at
400 °C for 2 h, was examined through scanning electron
microscopy (SEM). Figure 1a–c depict SEM images cor-
responding to I1ZO, I3ZO, and I5ZO, respectively. The
SEM analysis reveals the presence of round agglomerates
with dimensions ranging between 1 and 5 μm, exhibiting
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spherical shapes and featuring a rough, porous, fine-grained
microstructure. It was observed that the average smallest
agglomerate was achieved for sample I3ZO.

To further ascertain the elemental composition within the
In-doped ZnO structure, energy-dispersive X-ray spectro-
scopy (EDS) measurements were performed on the I5ZO
sample, as illustrated in Fig. 1d. The EDS analysis indicates
a significant presence of oxygen and zinc elements, with a
relatively lower concentration of indium elements. This
observation underscores the essential elements required for
our structural composition, emphasizing the incorporation
of indium into the ZnO matrix.

3.2 Microstructural analysis of annealed In-doped
ZnO samples

The microstructure of the annealed In-doped ZnO (IZO)
samples was examined through X-ray diffraction (XRD),
and the obtained spectra are presented in Fig. 2. The
discerned peaks were unequivocally indexed to the wurt-
zite hexagonal-shaped ZnO with the space group P63mc,
in accordance with the Joint Committee on Powder Dif-
fraction Standards (JCPDS) card file no 01-073-8765 [29].
These peaks correspond to the (100), (002), (101), (102),
(110), and (103) planes of ZnO [30, 31]. At higher dopant
concentrations (I3ZO and I5ZO samples) two additional
peaks, attributed to a secondary phase, correspond to the
(222) and (440) planes of the cubic bixbyite crystal
structure of In2O3, within the space group Ia-3 (JCPDS
card file 06-0416) [32].

The calculated lattice parameters, derived from the (100)
and (002) planes, closely align with typical wurtzite ZnO
values [33], yielding a= 3.251 Å and c= 5.203 Å. Utilizing
the Scherrer equation, the average crystallite size (d) was
estimated from the full width at half maximum (FWHM) of

the diffraction peak. For the pure ZnO, the average crys-
tallite size was 65 nm, while for I1ZO, I3ZO, and I5ZO
samples, sizes of 53 nm, 56 nm, and 54 nm, respectively,
were determined. These results provide valuable insights
into the microstructural evolution induced by indium dop-
ing in ZnO.

3.3 Room-temperature photoluminescence analysis

Figure 3 presents the room-temperature photoluminescence
(PL) spectrum captured across the 350–800 nm range for
both pure and In-doped ZnO samples. From Fig. 3, it can be
observed that, the pure ZnO sample exhibit a sharp and less
intense emission peak at 390 nm which correspond to the
near band edge (NBE) peak responsible for the recombi-
nation of free excitons within ZnO [34] and a broad and
high intense emission peak at around 540 nm which corre-
spond to the deep level emission (DLE) responsible for
transitions within the bandgap. The substantial increase in
the NBE peak intensity for the In-doped ZnO sample is due
to improved crystalline quality and reduced defect con-
centration from In doping. In3+ ions minimize structural
defects, resulting in a more ordered crystal structure and
higher radiative recombination probability [35, 36]. Addi-
tionally, In3+ ions introduce shallow donor levels, increas-
ing the concentration of free carriers that enhance NBE
emission. This combination of reduced defects and
increased free carriers leads to the observed increase in
NBE peak intensity [37]. These defects create localized
electronic states within the bandgap, which can trap and
recombine charge carriers generated by photoexcitation.
The intensity of the DLE peak appears least for I3ZO as
shown in Fig. 3. This decrease can be attributed to In3+ ions
reducing the concentration of oxygen defects responsible

Fig. 2 XRD patterns of I0ZO, I1ZO, I3ZO and I5ZO samples

Fig. 1 SEM images of (a) I1ZO, (b) I3ZO, and (c) I5ZO samples
(scale 1 μm). d EDS spectrum of I5ZO sample

556 Journal of Sol-Gel Science and Technology (2024) 111:553–565



for this emission peak by occupying lattice sites otherwise
available for defect formation [38]. As acceptor dopants,
In3+ ions help maintain charge neutrality, decreasing the
need for oxygen vacancies. Additionally, In doping
enhances ZnO’s crystalline quality by minimizing structural
defects, resulting in a more ordered crystal structure.
Experimental studies show that In-doped ZnO has fewer
oxygen vacancies compared to undoped ZnO due to In3+

ions during growth or annealing [39, 40].

3.4 UV-Visible absorbance spectra of the prepared
IZO samples

To explore the optical characteristics and band gap,
absorbance spectra of the samples were assessed using a
UV-Vis spectrophotometer. The absorption spectra of pure
and 3% In-doped ZnO nanoparticles in the UV and visible
ranges are depicted in the Fig. 4. The spectra indicate
pronounced absorption in the UV range (200–380 nm) and
comparatively lower absorption in the visible range.
Notably, absorbance varies with increasing doping

concentration in the visible range. Utilizing a classical
Tauc approach, the band gap (Eg) of the synthesized
samples was determined [41]. The doped ZnO sample
exhibited a slightly reduced gap energy (3.19 eV) com-
pared to pure ZnO (3.21 eV), likely due to disorder
induced by defects in the ZnO matrix. Furthermore, the
band gap energy decreased slightly with rising indium
concentration. The diminished band gap energy of In-
doped ZnO nanoparticles holds promise for enhancing
their photocatalytic activity, particularly in RhB photo-
degradation. A smaller band gap facilitates better utiliza-
tion of visible light, leading to increased electron-hole pair
generation and subsequent formation of reactive oxygen
species responsible for organic pollutant degradation.
Additionally, indium dopants introduce defect states
within the band gap, serving as trapping sites for photo-
generated charge carriers, thereby prolonging their life-
time and enhancing photocatalytic efficiency [42].

Fig. 3 PL spectra of IZO samples annealed at 400 °C for 2 h in air

Fig. 4 Absorbance spectra of (a) I0ZO, and (b) I3ZO
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3.5 Fourier transform Infrared spectroscopy (FTIR)
spectra of IZO NPs

The FTIR spectra in Fig. 5 depict a comparison between
pure ZnO nanoparticles and those incorporating indium
doping. Across all spectra, a consistent broadband is

observed, centered at 3415 cm−1, indicating O–H stretching
[43]. Additionally, the band within the 866–875 cm−1 range
is associated with C–H bending, and the band at
695–673 cm−1 is attributed to M−O−M (M= Zn, In)
interactions. The introduction of In results in the emergence
of two new bands at 1525 and 1357 cm−1, suggesting the
formation of carbonate species [44].

3.6 X-ray photoelectron spectroscopy (XPS) on In-
doped ZnO

For the 3% In-doped ZnO sample, XPS measurements were
performed. The corresponding core level spectra of the In
3d, Zn 2p, and O 1s regions are displayed in Fig. 6. An
intense C 1s signal from the graphitic substrate (carbon
tape) was observed, shown in Fig. S1 (see supporting
information). The In 3d and Zn 2p core levels show both a
doublet occurring due to spin-orbit-coupling, while the two
peaks visible in the O 1s spectrum are attributed to two
different oxygen species. The relative intensity of the high
binding energy component in the O 1s spectra is increasing
for lower substrate coverage with the I3ZO powder and still
present for the bare substrate. Therefore, the high binding
energy component in the O 1s spectra can be assigned to a
substrate-related oxygen species, rather than to an often
discussed different core hole screening state [45, 46]. The
low binding energy component lays well in the region of
reported O 1s peak positions for ZnO (540.4 ± 0.5 eV [47],
540.4 [48]) and In2O3 (540.5 ± 0.5 eV [47]). Considering
the In 3d spectrum, the binding energy of both doublet
peaks are in line with the mean value calculated from the
NIST XPS database for In2O3 (In 3d5/2 : 444.8 ± 0.6 eV)
[47]. Other In(III) chalcogenides and pnictogens as well as
some In(I) halide compounds show similar In 3d line
positions [48], while the respective values of the metallic
In(0) are reported roughly 1 eV lower (443.8 ± 0.3 eV [47]).
In case of the Zn 2p, the binding energy agree with theFig. 5 FTIR spectra of pure and In-doped ZnO

Fig. 6 XPS core level spectra of the (a) In 3d, (b) Zn 2p, and (c) O 1s
regions. The dashed lines and gray regions are mean values and the
respective standard deviation of the binding energies reported in the

NIST database [47]. In case of the Zn 2p peaks, the regions of metal
and oxide are overlapping. The O 1s reference values are based on the
reported values for ZnO
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ranges of both Zn(II) in ZnO and metallic Zn(0) from lit-
erature (Zn 2p3/2: 1021.8 ± 0.4 eV and 1021.7 ± 0.3 eV
[46]). Therefore, an unambiguous differentiation of Zn
oxidation states from the binding energy alone is difficult.
While chemical state analysis based on the Zn 2p core level
emission is often ambiguous, the Zn LMM Auger emission
exhibits much more pronounced chemical shifts [49]. When
considering the Zn LMM Auger line (see supporting
information), its position relative to the Zn 2p3/2 matches
with Zn(II) rather than with the one for Zn(0) [50]. To
conclude, for both In and Zn, there are no indications for
metallic species but both elements show typical spectra
expected for ZnO and In2O3. Addressing the indication of
carbonate species from the FTIR, a second, low intensity
peak in the C 1s spectrum is present at ~4 eV higher binding
energies than the graphitic peak, which could be attributed
to carbonates (O-C=O species: 3.8–4.3 eV higher [45]).
Since a similar peak is also observed in the spectrum of the
bare substrate, a final assignment to a powder related car-
bonate cannot be made with certainty. From the In 3d5/2 and
Zn 2p3/2 peaks, a In/Zn ratio of 0.08 ± 0.01 was obtained for
the I3ZO sample.

3.7 BET spectra of IZO nanoparticles

Figure 7 displays the Brunauer-Emmet-Teller (BET)
adsorption-desorption isotherms for pure ZnO and In3%-doped
ZnO samples synthesized through the sol–gel method. As per
IUPAC classification, the registered isotherms exhibit type II
characteristics. The presence of In3% doping results in clus-
tered particles with a mesoporous architecture and an unrest-
ricted monolayer-multilayer adsorption, as evidenced by an
H3-type hysteresis loop [51]. The incorporation of In leads to a
substantial increase in the surface areas of the ZnO nano-
particles compared to the pure ZnO counterparts. Specifically,
the projected specific surface area (SBET) experiences a nearly
10 fold increase, escalating from 0.9m2 g−1 for pure ZnO to
10.1m2 g−1 for the 3 percent In-doped sample. The insets in
Fig. 7a, b depict the Barret-Joyner-Halenda (BJH) pore size
distribution for I0ZO and I3ZO samples, respectively. All pore
sizes fall within the mesoporous range, with average diameters
less than 50 nm, consistent with typical mesoporous material
characteristics. A noteworthy augmentation in the average
pore diameter is observed, progressing from 7.4 nm for pure
ZnO to 36.9 nm for the In3%-doped ZnO samples.

3.8 Thermogravimetric (TG) analysis

Thermogravimetric analysis (TGA) was employed to assess
the thermal stability of ZnO and In3%-doped ZnO nano-
particles (NPs) by monitoring the weight loss of volatile
components in the arranged samples. Figure 8 presents the
TGA thermograms for I0ZO and I3ZO NPs. The distinct

TGA regions with percentage weight loss are depicted in
Fig. 8.

In Fig. 8a, the initial region of ZnO NPs, observed up to
200 °C, exhibited a weight loss of ~1.3% attributed to
moisture evaporation and the disintegration of volatile organic
compounds. This observation was further confirmed by the
peak intensity of the derivative thermogravimetric (DTG)
curve at 99.9 °C. Similarly, in Fig. 8b, the first region of the
TGA curve for I3ZO NPs, up to 200 °C, with a DTG intensity
at 173.2 °C, was linked to the evaporation of surface moisture
on I3ZO NPs, resulting in a weight loss of about 1.5%.

The TGA region between 200–800 °C for pure ZnO NPs
exhibited sharp peaks in the DTG curve at 208 °C,
286.6 °C, and 425.5 °C. These peaks were associated with
the thermal decomposition of volatile functional groups
from various phytochemicals acting as reducing or stabi-
lizing agents in the biogenesis of ZnO NPs, leading to a

Fig. 7 Nitrogen adsorption-desorption isotherms with pore size dis-
tribution (inset) of (a) the pure ZnO and (b) the In3% doped ZnO
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weight loss of 1.82%. In contrast, for the I3ZO sample, a
weight loss of 2.24% was observed in the TGA curve
between 200–800 °C.

The weight loss observed between 200–500 °C in the
TGA curve for both samples was attributed to the decom-
position of lower molecular weight phytochemicals [52].
Additionally, in the TGA curve region between
500–800 °C, it is believed that the weight loss resulted from
the thermal decomposition of higher molecular weight
phytochemicals serving as capping or stabilizing agents
[53]. In addition, the presence of carbon in the structure of
In-doped ZnO nanoparticles (I3ZO NPs) compared to pure
ZnO nanoparticles (I0ZO NPs) can be attributed to the
higher weight loss observed in the TGA analysis for I3ZO
NPs. The TGA results indicate that I3ZO NPs exhibit a
higher weight loss (3.74%) compared to I0ZO NPs (3.12%),
suggesting a greater presence of organic carbon components
in the In-doped sample [54]. The presence of these organic
carbon components can potentially influence the photo-
catalytic activity of the nanoparticles, including the photo-
degradation of RhB. Carbon-based materials are known to
enhance the photocatalytic performance of semiconductors
like ZnO by acting as sensitizers, facilitating charge
separation, and promoting the formation of reactive oxygen
species [55]. However, the specific effect of the carbon
components present in the In-doped ZnO nanoparticles on
the photodegradation of RhB requires further investigation.

3.9 RhB degradation by In doped ZnO
photocatalysts

The absorbance spectra of the RhB solutions containing
I0ZO, I1ZO, I3ZO, and I5ZO are presented in the Fig. 9a–d,
respectively. The decrease in dye concentration was detec-
ted with the increase in time, and ultimately, the dye was

degraded after 180 min. It is due to the fact that the nano-
particles acted as catalysts to degrade the dye molecules.
These results of RhB degradation have shown 82% degra-
dation by using pure zinc oxide nanoparticles as represented
in Fig. 10a. After the doping of ZnO with In, the degra-
dation of dye was found to be increased by 93%, which is
much higher than undoped nanoparticles, particularly for
the sample I3ZO.

The concentration report C/C0 is crucial for under-
standing the reaction kinetics. It can be depicted through
the equation: Ln (At/A0)=−kt [56, 57], here, k stands for
the pseudo-first-order rate constant, t denotes the reaction
time, A0 represents the initial concentration of RhB at t= 0,
and At signifies the concentration at time t, which can be
derived from the absorbance of the peak at 550 nm. The
constant k can be accurately determined directly from the
slope of the straight line resulting from plots of ln (At/A0)
versus reaction time, presented in Fig. 10b. The values of k
for I0ZO, I1ZO, I3ZO, and I5ZO were 9.36 × 10−3,
5.86 × 10−3, 13.26 × 10−3, and 4.56 × 10−3 min−1, respec-
tively. The value of k indicates how fast the dye degrada-
tion reaction proceeds. A higher value of k implies a faster
rate of reaction, and hence it is clear that I3ZO is more
efficient in facilitating the degradation of the dye molecule.
This can be attributed to the large specific surface area and
pore diameter of the I3ZO catalyst as evident from BET
studies. The large surface area provides more active sites
allow for more reactant molecules to come into contact
with the catalyst surface, leading to enhanced catalytic
activity and the large pore diameter facilitates the diffusion
of reactant molecules to and from the active sites within the
catalyst structure enhancing the reaction kinetics. In addi-
tion to that, the reduced recombination rate of charge car-
riers in the presence of I3ZO as evident from PL studies
also contributes to the high efficiency of I3ZO catalyst.

Fig. 8 Thermogravimetric (TG)
analysis with TDA curves of (a)
the I0ZO and the (b) I3ZO
samples
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A schematic diagram of the underlying mechanism of the
photocatalytic degradation is shown in Fig. 11. The valence
band (VB) and conduction band (CB) values are calculated
from Mulliken electronegativity approach. Under visible
light irradiation, the photocatalysts become excited, gen-
erating electrons and holes.

ZnOþ hϑ ! e�CB þ hþVB ð2Þ

Since the CB edge potential of In2O3 is more negative
than that of ZnO, the electrons from In2O3 can easily
transfer to the CB of ZnO [58]. This transfer facilitates the
efficient separation of photogenerated electron-hole pairs,
reducing recombination losses. The transferred electrons in
the CB of ZnO then interact with molecular oxygen
adsorbed on the catalyst surface, reducing it to superoxide
anion radicals.

e� þ O2 ! _O
�
2 ð3Þ

Similarly, The VB edge potential of ZnO is more posi-
tive than that of In2O3. This potential difference drives the
photogenerated holes to transfer from the VB of ZnO to the
VB of In2O3. The holes in the VB of In2O3 then directly
participate in the degradation of the dye molecule. All of
these highly reactive species engage in the photocatalytic
degradation of dye molecules adsorbed on the photocatalyst

surface to form smaller by-products [59]. Therefore, the
application of indium-doped ZnO emerges as promising
strategy for the effective charge separation and thereby
enhancing the efficiency of photocatalytic degradation
processes, particularly in the treatment of industrial dye-
contaminated effluents.

The reusability of the catalyst was analyzed through
multiple cycles of experiment and the efficiency for each
cycle is shown in Fig. 12.

The I3ZO catalyst demonstrates excellent reusability, as
established through five continuous cycles of experiments.
In the first two cycles, there is no significant change in
efficiency. A slight decrease in efficiency is observed in the
third cycle, followed by a gradual decline in subsequent
cycles. Notably, even after five cycles, the catalyst retains
more than 60% of its initial efficiency, which is com-
mendable compared to other reported catalysts [60, 61]. The
observed decrease in efficiency can be attributed to the
weight loss during the recovery of samples after each cycle
and the partial removal of adsorbed dye molecules from the
catalyst surface.

Based on Table 1, we conducted a comparative study of
our prepared sample (I3ZO) against other relevant works in
the literature. In-doped ZnO synthesized via the sol–gel
method demonstrates superior performance in the photo-
catalytic degradation of RhB. It achieves a 93% removal rate
at a concentration of 0.2 mM within 180min, with a high rate

Fig. 9 Visible Absorbance
Spectra Illustrating the
Degradation of RhB Dye in the
Presence of (a) I0ZO, (b) I1ZO,
(c) I3ZO, and (d) I5ZO Catalysts
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constant of 13.26 × 10⁻³ min⁻¹ under visible light illumination.
This efficiency surpasses other materials such as Fe/Cd co-
doped ZnO (76% in 140min) [60], Bi2WO6/FTO (94% in
240min) [61], and Cu2O/TiO2 (78% in 180min) [62].
Additionally, compared to ZnO nanoparticles synthesized via
laser methods (rate constant of 2.85 × 10⁻³ min⁻¹) [63] and
N–TiO2/FTO (64% in 240min) [64], In-doped ZnO not only
achieves a higher removal rate but also does so more rapidly
and efficiently against some materials. Furthermore, other
materials such as N-ZnO/FTO (43% in 160min) [65], ZnO/
Ag (38% in 300min) [66], and WO3/TiO2/FTO (58.7% in
160min) [67] show significantly lower performance metrics.
The ability of In-doped ZnO to operate effectively under
visible light conditions makes it particularly advantageous for

practical environmental applications. This comparative ana-
lysis clearly highlights In-doped ZnO’s powerful and rapid
photocatalytic capabilities, positioning it as a leading material
for the photocatalytic degradation of organic pollutants.

4 Conclusion

In this work, the photocatalytic degradation of RhB under
visible light irradiation by using indium-doped zinc oxide
nanoparticles was investigated. Regardless of the In
content ranging from 3 to 5%, indium doping induces
secondary phase formation, altering ZnO microstructure,
while for pure ZnO and 1% In doping, the wurtzite

Fig. 11 Photocatalytic dye degradation mechanism

Fig. 12 Reusability of I3ZO nanopowders for mineralizing RhB

Fig. 10 a Time Evolution of RhB Degradation: Ct/C0 vs. Irradiation
Time Plots for All Samples, and (b) ln (Ct/C0) vs. Irradiation Time
Demonstrating First-Order Rate Kinetics with Linear Fitting
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structure is preserved. XPS analysis confirmed the pre-
sence of indium, zinc, and oxygen in the 3% In-doped
ZnO sample, with no indications of metallic species, and
typical spectra expected for ZnO and In2O3. However,
with increasing the In content from 0 to 3%, we observed
an enhanced surface area from 0.9 m²/g to 10.1 m²/g,
which is responsible for the improvement of the photo-
catalytic efficiency. Therefore, In doping in ZnO nano-
particles proves to be a promising approach for
sustainable photocatalysts for wastewater treatment,
addressing environmental challenges posed by dye-
contaminated effluents.
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