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Abstract
This study successfully synthesizes magnetic fluorescent iron oxide silica core/shell nanocomposites (MFSNC) derived from
natural geothermal silica. The nanostructures comprise an iron-oxide core and a fluorescent mesoporous silica outer layer.
X-ray diffraction (XRD) analysis indicated diffraction peaks of amorphous silica with crystallites of magnetite types in the
MFSNC samples. Transmission electron microscopy combined with energy-disperse X-ray spectroscopy were used to
observe the morphological structure, which showed nanoparticles of MFSNC with Fe, Si, O, and N elements. Among
varying ratios of ferric salts, the MFSNP0.5 sample exhibited the highest fluorescence intensity (280.5073 a.u.). It
demonstrated superior fluorescence stability in water (pH= 7) compared to other samples, as investigated by fluorescence
spectrophotometer. Additionally, this sample displayed ferromagnetic properties, with a magnetic saturation (MS) of
14.57 emu/g and a loop area value of 0.7 kOe.emu/g, determined by the vibrating sample magnetometry. This work details
the successful synthesis of MFSNC nanocomposites with tailored magnetic and fluorescent properties. Notably, the
MFSNC0.5 sample stands out for its superior fluorescence intensity, stability in water, and desirable ferromagnetic
characteristics.
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Highlights
● Synthesizes magnetic fluorescent iron oxide silica core/shell nanocomposites (MFSNC) derived from natural geothermal

silica.
● MFSNC0.5 sample stands out for its superior fluorescence intensity, stability in water, and desirable ferromagnetic

characteristics.
● MFSNC displayed ferromagnetic properties, with a magnetic saturation (MS) of 14.57 emu/g and a loop area value of

0.7 kOe.emu/g.

1 Introduction

Magnetic nanoparticles (MNPs) have gained much interest
in the material science field due to their wide variety of
applications, which includes use as heterogeneous catalysts,
absorbents, biosensors, and drug delivery system [1, 2].
These nanoparticles have been reported to be easily func-
tionalized and exhibit superparamagnetic behavior [3]. Iron
oxide nanoparticles are a subset of MNPs which are fre-
quently utilized due to their non-toxic nature, affordability,
and capacity for easy modification as a result of their unique
chemical and physical magnetic characteristics. Hematite (α-
Fe2O3) is the predominant iron oxide phase, characterized by
a hexagonal structure that has ferromagnetic properties.
Furthermore, there are two other metastable phases known
as maghemite (γ-Fe2O3) and magnetite (Fe3O4), which
exhibit a spinel structure and show ferromagnetic char-
acteristics, respectively [4–7].

Iron oxide nanoparticles can be modified through the
addition of other materials, such as organic and inorganic
compounds, to produce functional magnetic nano- or
microstructures [8, 9]. Iron oxide is frequently coated with
an additional outer layer to enhance hydrophilicity and for
further surface functionalization [10]. Magnetite (Fe3O4) is
widely used in nanoparticles synthesis to create magnetic
properties in iron oxides. However, it demonstrates an
intense tendency to react strongly in the presence of acidic
environmental conditions. Therefore, a various materials are
utilized as coatings to fabricate the core-shell structure that
envelops the magnetite nanoparticles. The materials include
silica, carbon, protein, and polymers.

Considering its non-toxic, inert, varying chemical prop-
erties, facile surface modification, and high stability, silica
oxide has been frequently utilized as an inorganic compound
for iron oxide coating [11–13]. The existence of a silica
oxide matrix provides 5 between the iron oxide nano-
particles, thoroughly controlling interparticle interactions and
preventing agglomeration of the iron oxide nanoparticles. In
addition, the silica matrix offers possibilities for surface
functionalization with various compounds through employ-
ing the silanol groups that exist on the surface [14–17].

Various studies have shown that the magnetic properties
and particle size of iron oxides are significantly affected by
the methods and treatments developed. The most frequently

utilized and convenient method is coprecipitation [18].
Recently, this method has been developed with a wide variety
of modification techniques which have no impact on the
primary reaction. As a result of combining Fe2+ and Fe3+

ions, magnetite can be produced and modified to exhibit
different sizes and magnetic strengths. A different strategy
involves the thermal decomposition of organometallic pre-
cursors. Organic iron compounds such as (hydro-
xylamineferron [Fe(Cup)3], iron pentacarbonyl [Fe(CO)5],
ferric acetylacetonate [Fe(acac)3], iron oleate [Fe(oleate)3] are
decomposed at high temperature of the non-polar solvent
capping agent. However, it is significant to emphasize that this
method is hazardous due to the use of toxic chemicals [19].

The methods used to synthesize magnetic silica nano-
particle core–shell structures have been continuously devel-
oped. The microemulsion method is frequently used to
produce many different systems that possess both isotropic
and thermodynamic stability. Furthermore, the controlling of
the atomic ratio of water, oil, and surfactants has contributed
to the control of the shape and size distribution of the particles
[20]. The Stober process, which utilizes hydrolyzed and
condensed TEOS (tetraethyl orthosilicate) in an alcohol-water
system with ammonia, is widely recognized as the most
popular method. Following a long period of stirring, silica will
be synthesized and gradually coated onto the particles’ surface
by dispersing the original particles in an aqueous alcohol
solution, subsequently adding ammonia water and TEOS [21].
Fan et al. reported a study in which they manufactured uni-
form magnetite using a modified solvothermal approach. They
subsequently utilized the Stober process to fabricate mono-
disperse magnetic silica core-shell nanoparticles [22]. Thermal
decomposition that has been defined is also known as an
effective method for producing magnetite nanoparticles. The
materials were dispersed in cyclohexane with the use of
ultrasonic treatment and addition of ammonium hydroxide.
Subsequently, TEOS was added, resulting in obtaining of
various shell thicknesses for the silica coating [23].

The utilisation of dye-doped silica nanoparticles has been
widely studied for various applications including biosen-
sing, bioimaging, forensics, and photocatalysis. These
nanoparticles carry unique intrinsic characteristics such as
improved photostability and enhanced signal intensity,
contributed to a higher concentration of dye molecules per
nanoparticle [23, 24]. Since it is unable to absorb visible
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light, silica allows the presence of photoactive molecules
throughout its matrix, either internally or bound on the
surface of the nanoparticles. This structure allows the
nanoparticles to exhibit photophysical properties that have
similarities with those of the chromophores [20].

The precursors for silica oxide coating might be poten-
tially commonly found (such as TEOS) or derived from
nature’s products (such as rice husk, bamboo leaves, or
geothermal silica) [25]. This study utilizes geothermal silica
precipitates as the precursor in order to generate cost-
effective, environmentally friendly, and functional nano-
composites using sustainable methods [18]. Geothermal
silica precipitate derived from geothermal power plants is
known to consist of a large amount of amorphous silica,
exceeding 98%, which has the potential to be modified into
silica-based nanocomposites [19].

In this study, bifunctional magnetic fluorescent silica
core–shell nanocomposites (MFSNC) are synthesized.
The outer shell of these nanocomposites is composed of
an organic pigment and a geothermal silica-based silica
matrix, with iron oxide serving as the core. The geo-
thermal silica-based nanostructures produced by com-
bining magnetic and fluorescent characteristics exhibit the
potential to be applied as highly selective biosensing
platforms or fluorescent labels.

2 Experimental procedure

2.1 Materials

The silica utilized in this study is derived from the solid
residue of the Geodipa Geothermal Power Plant (PLTP).
Utilizing this waste is an endeavor towards recycling and
repurposing materials which usually appear as byproducts.
This research contributes to the development of nanoma-
terials and supports sustainable practices by utilizing waste
from the Geodipa PLTP, thus reducing the environmental
impact of industrial waste. Utilizing waste as a raw material
may effectively solve sustainability concerns and enhance
resource efficiency.

Iron sulfate heptahydrate (FeSO4·7H2O), NaOH, and
N-Hydroxysuccinimide (NHS), were purchased from
Merck. HCl, rhodamine B, cetyltrimethylammonium bro-
mide (CTAB), undecylenic acid, 1-(3-Dimethylaminopro-
pyl)-3-ethyl carbodiimide (EDC), phosphate-buffered saline
(PBS), vancomycin hydrochloride, and sodium broth (NB)
were purchased from Sigma-Aldrich. Anhydrous iron (III)
chloride (FeCl3) was purchased from Central Drug House
(P) Ltd. All chemicals are of analytical grade and used
without any further purification. Deionized water sourced
from the National Research and Innovation Agency-BRIN
was used throughout the whole of work.

2.2 Synthesis of iron oxide

The synthesis of iron oxide, an essential precursor for the
MFSNC, was carried out with high accuracy in this pre-
cisely conducted experimental approach. A 100 mL
solution containing iron (III) chloride (FeCl3) was thor-
oughly mixed with an equal volume of a solution con-
taining iron sulfate heptahydrate (FeSO4·7H2O). The
concentration ratio of the Fe precursors was varied and is
shown in Table 1. The systematic mixing of these solu-
tions set the stage for subsequent synthesis processes.
Subsequently, 100 mL of sodium hydroxide (NaOH)
solution was added dropwise, to attempt to carry out
controlled reaction kinetics.

The stepwise addition of sodium hydroxide led to the
formation of magnetite (Fe3O4), as evidenced by the
appearance of a dark solution. The solution obtained was
given further processing using a sonication procedure at
65 °C for 30 min. This additional process allowed the pro-
duction of a black precipitate, identified as magnetite
(Fe3O4) sample.

Subsequently, the precipitate formed through a filtration
process, which was then followed by repeated washing
procedures until a neutral pH was achieved. This complete
cleansing process effectively eliminated contaminants and
unreacted chemicals, contributing to the quality of the final
iron oxide product. After the completion of the washing
process, the collected precipitate was placed in a controlled
drying phase at a temperature range of 80 °C for 5 h. The
application of this controlled drying procedure led to the
formation of a dry powder, indicating the isolation of iron
oxide nanoparticles.

2.3 Synthesis of magnetic fluorescent silica
nanocomposites (MFSNC)

In this procedure, 10 g of SiO2 was accurately weighed and
dissolved in 400 mL of 1.5 N NaOH. The mixture was
stirred for 1 h at 90 °C, and then the Na2SiO3 solution was
separated from the impurities through filtration. Subse-
quently, 5 g of magnetite (Fe3O4) and 2.5 mg/g of rhoda-
mine B were added into the sodium silicate solution and

Table 1 Concentration of Fe2+ and Fe3+ for each MFSNC sample

Sample ID Concentration

FeCl3 FeSO4·7H2O

MFSNC0.5 0.5M 1M

MFSNC1.0 1.0M 1M

MFSNC1.5 1.5M 1M

MFSNC2.0 2.0M 1M

Journal of Sol-Gel Science and Technology (2024) 110:27–36 29



stirred for 5 min. A 2 N HCl solution was added dropwise
until a gel formed at pH 7, which was followed by 2%
CTAB was added. The resulting gel was allowed to mature
for 18 h at room temperature. After maturation, the gel was
washed three times with deionized water until it reached a
neutral pH. The sol–gel MFSNC was then dried at 100 °C
until it reached a stable weight. The formation of MFSNC is
shown in Fig. 1, illustrating the sequential steps involved in
the synthesis process. This method provided the effective
production and stabilization of mesoporous silica nano-
composites (MFSNC) with the desired properties for
advanced applications [18, 19].

2.4 Characterizations

X-ray diffractometry (XRD) was employed to examine the
crystalline phases of the magnetic fluorescent silica
nanocomposites (MFSNC) and iron oxide. The XRD pat-
terns were recorded on a Rigaku Miniflex 600 dif-
fractometer with Cu Kα-radiation. The data were collected
over the 2θ range of 5–90°, with the instrument operated at
45 kV and 40 mA. The investigation of saturation mag-
netization was performed using a Vibrating Sample Mag-
netometer manufactured by Dexing Magnet Ltd, which has
a measuring capability of 250 Oersted. The optimized
MFSNC sample was imaged using a field emission gun-
transmission electron microscope (FEG-TEM), Talos
F200X (Thermo Fisher Scientific), and an acceleration
voltage of 200 kV. The equipment utilized in this study
included an Energy Dispersive X-ray (EDX) detector of
Super-X type, a High-Angle Annular Dark-Field detector
Fishione CL 98 mm, a Scanning Transmission Electron
Microscopy Bright-Field and Dark-Field (STEM BF-DF),
and a Panther detector with CL 160 mm.

2.5 Fluorescence spectrometer

The solution was prepared by dissolving 10 mg of MFSNC
in 10 mL of deionized water, resulting in a sample con-
centration of 1 mg/mL. The fluorescence intensity of the
MFSNC samples was measured using a fluorescence spec-
trophotometer (Agilent, Singapore) with an excitation
wavelength of 545 nm. Emission was observed within the
spectral range spanning from 550 to 750 nm. The slit widths
of the excitation and emission were both at 5 nm. There was
no evidence of filters.

3 Result and discussion

The efficient synthesis of magnetite, maghemite, and
cobalt ferrite can be achieved by varying certain chemical
composition of the nanoparticles and using the iconic
molecule separation coprecipitation approach. The
synthesis of iron oxide nanoparticles was carried out via
the coprecipitation method, which is a facile and effec-
tive method to obtain an appropriate yield in a brief
amount of time [26]. This method involves the simulta-
neous precipitation of Fe2+ and Fe3+ in solution under
alkaline conditions (Eq. 1) [27].

Fe2 þ aqð Þ þ2Fe3þaqð Þ þ 8OH�
aqð Þ ! Fe3O4 sð Þ þ 4H2O ð1Þ

The iron oxide core was then coated with silica, which
was then further functionalized to have an optimum
magnetic and fluorescence properties, forming the
MFSNC nanocomposites. These bifunctional nanoma-
terials have been found to be useful as biosensing plat-
forms due to their unique features. The sol–gel method
was utilized to synthesize the MFSNC. This method,
frequently known as Stober’s method, is a conventional
approach used for synthesizing nanoparticles. The con-
venience of this process results from the ease of opera-
tion, as well as the fact that it may be carried out at

Fig. 1 Schematic of the
formation of MFSNC

Fig. 2 XRD pattern of MFSNC sample MFSNC0.5 (A), MFSNC1.0
(B), MFSNC1.5 (C), and MFSNC2.0 (D)

30 Journal of Sol-Gel Science and Technology (2024) 110:27–36



ambient temperature and pressure, resulting in a higher
production yield [28].

Prior to the dispersion of magnetite (Fe3O4) in a sodium
silicate solution, such solution was prepared through the
reaction of SiO2 and NaOH (Eq. 2). A mixture of sodium
silicate, organic dye, and iron oxide undergoes a chemical
reaction to produce MFSNC gel. This reaction is catalyzed
by hydrochloric acid, as shown by Eq. (3). The organic dye
was introduced into silica matrices, while the iron oxide was
coated by silica. The final result generated the MFSNC
materials [19, 23, 29].

SiO2 sð Þ þ 2NaOH aqð Þ ! Na2SiO3 aqð Þ ð2Þ

Na2SiO3 aqð Þ þ RhB aqð Þ þ Fe3O4 sð Þ þ 2HCl aqð Þ ! SiO2

� Fe3O4=RhB sð Þ þ 2NaCl aqð Þ
ð3Þ

The synthesized MFSNC, with varied Fe2+ and Fe3+ ratio,
were characterized by XRD and the results showed the
structure of magnetite for all variations (Fig. 2). The XRD
patterns exhibited prominent peaks at 2θ angles of 30.20°;
35.6°; 43.30°; 53.33°; 57.37 and 62.87° corresponding to the
(2 2 0), (3 1 1), (4 0 0), (4 2 2), (5 1 1) and (4 4 0) planes of
Fe3O4 (magnetite), respectively, which are in good agreement
with the references values (JCPDS 19–0629) [30–32]. The
strong and sharp peaks indicate that all the MFSNC synthe-
sized are crystalline and structurally ordered in a long range.
The shape of the iron oxide peak was narrow and sharp,
without interference from irregular diffraction peaks, indi-
cating that the iron oxide MFSNC had a higher purity [33].

Figure 2 also showed that the silica peak was shown at an
angle of 2θ, precisely between 20° and 30°. Furthermore, the
broadening of the peak indicated that the silica of MFSNC is in

its amorphous phase. Thus, a certain peak corresponds to the
presence of amorphous silica, while other peaks correspond to
the presence of crystalline iron oxide. These diffraction peak
positions confirmed that the MFSNC nanomaterials containing
SiO2 and Fe3O4 had been successfully synthesized [13, 34].

The XRD pattern of MFSNC had a relatively high peak
intensity at 2θ, an angle of 35.50° precisely corresponding to
the (3 1 1) peak, which indicates the products have an
abundance of crystallinity. The average size of the crystal-
lites can be estimated by quantitatively calculating the (3 1 1)
peak using the Debye-Scherrer formula (Eq. 4).

D ¼ k � λ

β � cosθ
ð4Þ

Where λ represents the wavelength of the Cu Kα line, and β
is the full width at one-half the maximum (FWHM) of the
most intense diffraction peak of the crystallographic plane
(3 1 1). In the X-ray diffraction (XRD) analysis, variations
in the particle size of the (3 1 1) plane can be observed, and
these variations are attributed to the crucial role played by
ferric chloride (FeCl3) in the synthesis of iron oxide
nanoparticles, specifically magnetite (Fe3O4). The concen-
tration of FeCl3 can influence the size of Fe3O4 crystallites
during the synthesis process as shown in Table 2.

By altering the concentration ratio, particle growth can be
controlled during the synthesis process, affecting the final
crystallite size. The (3 1 1) plane refers to a specific crys-
tallographic plane in the crystal lattice of Fe3O4. The XRD
analysis provides insights into the arrangement of atoms
within the crystal lattice and allows researchers to char-
acterize the material’s structure. The observed variations in
the (3 1 1) plane suggest that different concentrations of
FeCl3 impact the growth kinetics of the particles during
synthesis, leading to variations in the final crystallite size.
This phenomenon underscores the sensitivity of nanoparticle
synthesis to the reaction conditions, emphasizing the need for
precise control over parameters such as FeCl3 concentration
to achieve desired particle characteristics [35].

The MFSNC was designed to exhibit both magnetic and
fluorescence properties. For the latter, the MFSNC samples
were analyzed by a fluorescent spectrometer. Figure 3

Table 2 XRD parameters

Samples ID FWHM 2θ(°) d-spacing (A) D(311)(nm)

MFSNC0.5 0.33 35.597 2.52 26.3972

MFSNC1.0 0.65 35.609 2.5192 13.4021

MFSNC1.5 0.85 35.55 2.5232 10.2470

MFSNC2.0 0.73 35.567 2.5221 11.9320

Fig. 3 Fluorescence spectra of
MFSNC sample MFSNC0.5
(A), MFSNC1.5 (B), and
MFSNC2.0 (C) and MFSNC1.0
(D) at an excitation wavelength
of 545 nm
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showed that the MFSNC could be examined for its
fluorescence emission within the wavelength range of
550–750 nm, with an excitation wavelength of 545 nm.
The maximum fluorescence intensity was observed at
578 nm, where MFSNC0.1 exhibited the greatest value
of 852 a.u., whilst MFSNC0.5 had the lowest value of
280 a.u.

This study further investigates the fluorescence stability
at the maximum emission wavelength of 578 nm for each
sample variation over the interval of 120 min. Figure 4
illustrates that the MFSNC0.5 was more stable than other
samples. The MFSNC0.1 sample had the maximum fluor-
escence intensity compared to the other samples. However,
it demonstrated less photostability over time, with a

Fig. 4 Stability graph of MFSNC sample MFSNC0.5 (A), MFSNC1.0 (B), MFSNC1.5 (C), and MFSNC2.0 (D)

Fig. 5 Hysteresis loops
of MFSNC
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Fig. 6 TEM micrographs of the optimized MFSNC sample (a) and the corresponding EDX spectroscopy mapping: Si-Fe-K (b) N-O-Si-Fe-K (c)
O-K (d) Si-K (e) Fe-K (f) and N-K (g), The incident electron beam was at 90 nA
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decrease in intensity of around 27% [36]. Considering the
photostability of the sample, MFSNC0.5 was determined as
the optimum sample.

The conventional magnetic hysteresis loop measurement
provided an analysis of the magnetic properties of the
optimized MFSNC sample, i.e., MFSNC0.5. The hysteresis
loop is a magnetization curve representing a material of
magnetic behavior of the multiple domains. It occurs
because all the domains can not return to their original
orientations after the magnetic saturation (Ms) is obtained
and the field is decreased. There is remnant magnetization
(MR) which can be removed by applying a magnetic field
opposite the initially used field, defined as the coercive
field (Hc). The mass magnetization at 300 °K was mea-
sured because it is assumed that the magnetic of materials
is used near room temperature. At the same time, the
magnetic response of the bare silica was minimal [9, 37].
Hence, Fig. 5 represented that the resulting MFSNC0.5
materials had a magnetization saturation of 14.57 emu/g and
a loop area value of 0.7 kOe confirming the type of
magnetization was ferromagnetic.

Ferromagnetism is the most intense magnetism, which
has a spontaneous magnetic phenomenon and is produced
by the self-alignment of the unpaired (same spin) forming
electronic configurations of compounds (e.g., Fe, Co, Ni,
Cr, Mn, and some rare earth). Ferromagnetic materials have
magnetic properties highly dependent on anisotropy,
including structure, shape, and surface anisotropy and
generally recognized as either hard (permanent) magnets or
soft magnets (i.e., rapidly/easily demagnetize) [38, 39]. It
was reported that the iron oxide with coating agents will
decrease magnetic saturation. The low magnetic saturation
was presented by several phenomena relevant to the size of
the synthesized particles, including finite size effect and
change in cation distribution, shape effect or spin pinning,
spin canting, crystal defect (amorphous), etc. [32]. The
MFSNC sample had shown low coercivity arising from
their soft-magnetic properties. In this study, the prepared
MFSNC gave a relatively large diameter without

superparamagnetic behavior, such as using temperature.
Temperature influences the ferromagnetic, determined
above a critical temperature value (i.e., Curie point, Tc)
[38].

The FE-TEM images and its corresponding EDX
mapping of the optimized MFSNC0.5 as shown in Fig. 6.
The samples were clearly in their nanocomposite form
with around 60 nm in diameter with the Fe3O4 size of
around 40 nm (in red). The result further confirms the
XRD crystallite results were the average size was calcu-
lated using the Scherrer equation as shown in Table 2
[11, 40].

Table 3 encapsulates a comprehensive exploration of
diverse synthesis methods, magnetization types, and
saturation magnetization (Ms) values for magnetic nano-
particles or nanocomposites derived from different pre-
cursors. The optimized MFSNC generated form this work
was compared with previous studies and showed compar-
able magnetic properties to other nanomaterials derived
from commercial precursors.

4 Conclusion

In conclusion, this study successfully synthesized MFSNC
from natural geothermal silica, leading to materials that
exhibit both magnetic and fluorescent characteristics. The
XRD patterns, particularly the (3 1 1) peak, provided
insights into the crystallite size variations influenced by
different concentrations of ferric chloride during synthesis.
The fluorescence spectra analysis highlighted the varying
fluorescence intensities among MFSNC samples, with
MFSNC0.5 showing the most stable fluorescence over time.
The ferromagnetic behavior of MFSNC0.5, demonstrated
by the hysteresis loop, indicated its suitability for applica-
tions requiring magnetic properties. The photostability
graph further confirmed MFSNC0.5 as the optimized sam-
ple with dual magnetite and fluorescence properties. The
TEM micrographs and EDX mapping provided a nanoscale

Table 3 Comparison between different synthesis methods of silica-coated iron oxide with different precursors

Precursor Methods Type magnetization Ms (emu/g) Ref.

Iron-oxide and TEOS Solvothermal method Superparamagnetic 5.8 [34]

FeCl3.6H2O, EG, TEOS, QDs A combination process of the
solvothermal method, sol–gel method,
and assembling method

Superparamagnetic 12.50 [41]

TEOS, Quercetin (QC), Fe3O4-PEG
3000 monodispere

Precipitated Superparamagnetic 10.77 [42]

magnetite (Fe3O4), TEOS, and CdTe QDs Precipitated Superparamagnetic 11.18 [43]

Y0.9Ln0.1VO4, Fe3O4, and TEOS Stöber method Superparamagnetic 14.39 [44]

Iron oxide nanoparticles and TEOS Precipitated Superparamagnetic 6.848 [45]

Iron Oxide, Silica Geothermal, and Rhodamin B Sol–gel method Ferromagnetic 14.57 This work
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view of the MFSNC sample, reinforcing the findings from
XRD and offering valuable insights into the material’s
microscopic structure and elemental distribution. Com-
parative analysis with other studies using different pre-
cursors and synthesis methods underscored the uniqueness
of the synthesized MFSNC materials, particularly in exhi-
biting ferromagnetic properties. This research contributes
valuable information on the synthesis and characterization
of MFSNC materials, emphasizing their potential applica-
tions in diverse fields, such as biomedical imaging and
sensing. The combination of magnetic and fluorescent
properties opens up avenues for multifunctional applica-
tions, highlighting the importance of understanding how
different synthesis parameters influence the properties of
nanocomposites.
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