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Abstract
In this work we studied the effect of adding MgO and/or Fe2O3 alone or simultaneously on in vitro bioactivity of a new sol-
gel derived glass-ceramic in the system 56% SiO2 – (38 – x – y)% CaO – x% MgO – y% Fe2O3 – 6% P2O5 [(x,y)= (0,0);
(6,0); (0,2); (6,2)] wt%. The in vitro bioactivity of the materials was assessed in a simulated body fluid (SBF). The materials
characterization by Differential Scanning Calorimetry (DSC), BET analysis, FTIR spectroscopy, XRD analysis, ICP-OES
spectroscopy and SEM-EDS, before and after soaking in SBF, showed, an absence of changes in glass transition temperature
(Tg) for Mg-doped materials, whereas we recorded an increase in Tg for the material doped with Fe only. A decrease in the
ionic exchange kinetic between glass-ceramics and SBF was observed for all doped materials. For the Mg-doped materials,
the hydroxyapatite (HA) formation rate was delayed contrary to the Mg-free materials. The detailed interpretation of the
mechanism of the effect of Fe and Mg on the bioactivity of the glass-ceramics, with consideration of other explanations
given in the literature, gives more understanding of how these chemical elements affect the physicochemical properties of the
doped materials. We believe, this will help to define the optimal way to tailor the behavior of such biomaterials for
biomedical applications.

Graphical Abstract

The magnesium incorporated in glass-ceramic retards the HA formation on its surface only if it is released in the
physiological solution (SBF). The incorporation of the magnesium ions from SBF into the amorphous calcium phosphate
(ACP) stabilizes it and inhibits its crystallization into HA. The formation rate of the HA layer is correlated to the
concentration of magnesium ions in SBF.
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Highlights
● The glass transition temperature is not correlated to the in vitro bioactivity of the glass-ceramic.
● The delay effect of magnesium on hydroxyapatite formation depends on whether the magnesium is released in SBF

or not.
● Hydroxyapatite formation rate on the glass-ceramic surface depends on the magnesium concentration in SBF.

1 Introduction

Bioactive glass and glass-ceramic are highly coveted bio-
materials in the field of bone tissue engineering. Indeed,
these materials have the ability, when in contact with a
biological environment, to form on their surface a layer of
hydroxy-carbonate apatite (HCA) that is close to the
mineral component of the natural bone [1–9]. Thanks to the
HCA layer and the products of their chemical reactivity,
these materials bind to proteins and growth factors present
in the biological environment, which allows the recruitment
of cells at the implantation site, and thus the regeneration of
a new bone tissue [10]. The physicochemical and biological
behaviors of glass/glass-ceramic depend closely on their
physicochemical characteristics and the medium they come
into contact with. Several parameters are involved, includ-
ing the pH of the solution [11], the glass/glass-ceramic
composition [12–17], the thermal treatment [18–21] as well
as the textural properties such as the surface area, the shape,
and the size of the pores [11, 22–24]. The tailoring of the
physicochemical and biological properties is governed by
the qualitative and quantitative composition of the glass
[25, 26], the synthesis method [27, 28], as well as the
synthesis parameters [29, 30]. A plethora of different metal
oxide compositions have been studied in previous works to
evaluate the physicochemical and biological properties
acquired through the introduction of different chemical
elements [1, 16, 17, 31–42].

One of the most investigated elements is magnesium
(Mg). It is a trace alkali-earth metal naturally present in the
human body, it represents the 2nd intracellular cation and
the 4th most abundant metallic cation in the human body
[43]. In total, 50–60% of Mg content of an average human
body is stored in bone tissues, [44] and is essential for
human metabolism [45, 46]. It is known that Mg stimulates
bone regrowth [47–50], promotes the adhesion of osteo-
blasts [51] and stimulates their proliferation [13, 52–54]. A
lack of Mg appears to lead to a halt in bone growth due to
decreased osteoblastic and osteoclastic activity
[16, 52, 55, 56].

It was reported in a previous study that Mg incorporation
results in an increase in glass dissolution due to disruption
of the connectivity of the glass network and delays the

formation of the HA layer. The intensity of these effects
depends on the MgO wt% content, which must be greater
than or equal to 1.2% [40, 57]. In another study, it was
shown that the delay effect on HA formation, occurs only at
a level greater than or equal to 7% molar of MgO [13]. This
shows that the effect of the addition of MgO studied in
several works has led to various interpretations. It was also
demonstrated that the effect of MgO on the formation of
HA is related to the glass system and the MgO content,
which resulted in either an improvement [58, 59], a
reduction [60], or a no effect on the formation rate of HA
[61].

Another chemical element of biological interest, is iron
(Fe), it is considered as an enzymatic cofactor in the control
of bone metabolism [62, 63]. Its deficiency leads to a
decrease in bone mineralization [64]. Furthermore, a high
concentration of Fe can result in osteopenia [65]. This
shows that the protective or destructive effect of Fe depends
closely on its concentration. Thus, an optimal Fe content
improves bone metabolism by acting on proliferation,
osteoblast differentiation, and calcification [66] In addition,
the incorporation of Fe in the glass matrix can confer fer-
romagnetic properties on glass, allowing them to be used in
controlled and targeted therapy [67]. Other studies have
shown that adding Fe2O3 confers to the glass antibacterial
properties [42]. Glass/glass-ceramic containing Fe have
good mechanical properties [68–70]. The chemical dur-
ability of glass/glass-ceramic has been shown to be highly
influenced by the structure, composition and nature of ions
present in the glass network [71]. Gupta et al., demonstrated
that incorporating Fe2O3 strengthens the connectivity of the
glass network [42]. It was shown that the increase in che-
mical durability leads to a decrease in bioactivity of glass
[41, 72–74]. Paradoxically, another study has shown that
the addition of Fe improves bioactivity [75].

The interesting set of biological properties of chemical
elements such Mg and Fe make them suitable to be incor-
porated in glasses and glass-ceramics for bone tissue
engineering.

For this aim we decide to study the Fe and Mg effects
after their incorporation, on the physicochemical properties
of a new glass-ceramic composition synthesized via sol-gel
route. This method represents a good alternative to the
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synthesis by fusion, in fact, the glass/glass-ceramic is syn-
thesized at low temperature contrary to the conventional
route, which allows to control the composition and conse-
quently the physicochemical properties of the material
[76, 77]. The low temperature favors surfaces with a large
number of silanol groups which can act as nucleation sites
for the crystallization of HA [76–78]. In addition, this
method leads to materials of high porosity, purity, and
homogeneity which are essential characteristics for the
biological response of glass/glass-ceramic [79, 80].

A serie of new compositions was synthesized in the
system 56% SiO2 – (38 – x – y)% CaO – x% MgO – y%
Fe2O3 – 6% P2O5 [(x,y)= (0,0); (6,0); (0,2); (6,2)] wt%.
The results obtained in this work are discussed in detail to
explain the mechanism of the effect of Fe and Mg on the in
vitro bioactivity of glass-ceramic with a consideration of
various explanations and controversies reported in the
literature.

2 Materials and methods

2.1 Glass synthesis reactants

The different reactants for the materials synthesis are
summarized in Table 1.

2.2 Preparation of the tested samples

The different theoretical compositions in weight % of the
studied materials are summarized in Table 2.

The materials were synthesized according to a procedure
described elsewhere [81]. The hydrolysis of TEOS and TEP
was performed using nitric acid HNO3 (1M) as a catalyst
with a molecular ratio of (HNO3+H2O)/(TEOS+ TEP)= 8.

The mixture was made in a Teflon container that remains
closed throughout the synthesis. After the addition of each
reactant at an interval of 1 h, the solution was agitated for 1 h.
The container was kept closed at room temperature for 3 days
to allow hydrolysis and polycondensation of the gel. The
formed gel then matured in an oven set at 70 °C for 3 days
and was then dried at 150 °C for 3 days. After drying, the
samples were calcined at 700 °C for 6 h at a heating rate of
10 °C per minute. All samples were grounded and sieved to
obtain a particle size between 40 and 63 µm.

2.3 Materials characterization

Thermal analysis was performed on a Labsys evo 1600 TG-
DTA/DSC (Setaram) with a heating rate of 10 K.min−1 in
nitrogen. This technique allows to verify if the phenomenon
of glass transition occured or not.

The verification of the presence of crystalline phases and
their identification were accomplished by XRD analysis
using a PANalytical X’Pert Pro diffractometer (Cu‑L2,L3
radiation, λ= 1.5418 Å, 40 kV,40 mA, PIXcel 1D detector),
with 0.026° step size and a counting time 400 ms per step,
over a range of 10° <2θ < 60°, at room temperature.

The identification of the different functional groups
within the material chemical structure was achieved by
FTIR spectroscopy carried out at room temperature on KBr
pellets containing the sample by Alpha Bruker spectrometer
between 4000 cm−1 and 400 cm−1 in transmittance mode
with a resolution of 1 cm−1.

Specific surface area and porosity features were analyzed
at 77 K using Nitrogen adsorption isotherms by a Gemini
VII volumetric adsorption analyzer (Micromeritics, USA).
Prior to measurements, the samples were outgassed during
one night at ambient temperature in a VacPrep 061 degas
system. Specific surface areas were derived from the iso-
therms using the BET equation and a set of 10 experimental
points of the linear range of the BET plot (0.05 < P/
P0< 0.3).

2.4 In vitro bioactivity test

To evaluate the in vitro bioactivity, all materials, in a
powder form, were immersed in a simulated body fluid.
This later is a physiological solution with an ionic

Table 1 Reactants used for materials synthesis

Silica source Calcium source Phosphorous source Magnesium source Iron source

Reagent Tetraethyl
orthosilicate (TEOS)

Calcium nitrate
tetrahydrate (Ca(NO3)2,
4H2O)

Triethyl phosphate
(TEP)

Magnesium nitrate
hexahydrate (Mg(NO3)2,
6H2O)

Iron nitrate nonahydrate
(Fe(NO3)3, 9H2O)

Supplier Sigma-Aldrich Fluka Sigma-Aldrich Sigma-Aldrich Alfa aesar

Purity 98% 99% 99,8% 99% 99,99%

Table 2 The different composition in wt% of the tested materials

Material SiO2 CaO P2O5 MgO Fe2O3

56S6 56 38 6 0 0

56S6-Fe 56 36 6 0 2

56S6-Mg 56 32 6 6 0

56S6-MgFe 56 30 6 6 2
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composition close to that of the human plasma. The SBF
solution was synthesized as described by Kokubo and col-
laborators [82, 83]. The elemental composition of the SBF
is given in Table 3. In bref, 25 mg of each material were
immersed in 50 mL of SBF. The recipients were then placed
in an incubator set at 37 °C with a rotation speed of 60 rpm
for different immersion times {1, 5, 10 and 15 days}. The
procedure was realized in triplicate.

2.5 Materials characterization before and after
soaking in SBF

The glass ceramics surface changes were characterized by
FTIR spectroscopy, XRD analysis before and after immer-
sion in SBF. Scanning electron microscopy coupled to
Energy dispersive X-ray spectroscopy (SEM-EDS) was also
performed by a JEOL JSM 7100 F EDS EBSD (Oxford
instrument) to examine the materials surfaces before and
after different immersion times. After each time of immer-
sion, the supernatant of SBF was collected and analyzed by
ICP-OES to quantify the ionic exchange between the
materials surfaces and SBF. The analysis was performed by
Thermo Scientific iCAP 7000 series ICP-AES spectrometer.

3 Results

3.1 Determination of the materials structure state
by X-ray diffraction

The different XRD patterns (Fig. 1) show a scattering halo
between 2θ= 25° and 2θ= 35° due to the presence of an
amorphous phase [84]. The diffraction peaks, recorded for
the different materials, reveal the presence of a crystalline
phase (dicalcium silicate Ca2(SiO4): ICSD#01-086-0399)
for all materials. In addition, we noticed for 56S6 and 56S6-
Fe the presence of two other crystalline phases that might be
attributed to hydroxyapatite (ICSD#96-230-0274) for 56S6,
and calcium phosphate silicate Ca5(PO4)2(SiO4)6
(ICSD#00-049-1674) for 56S6-Fe.

3.2 Identification of the different functional groups
by infrared spectroscopy

The different infrared spectra (Fig. 2) show characteristic bands
of stretching vibrations of the Si-O-Si (bridging oxygen) at

about 1040 cm−1 [85] and bending vibrations of O-Si-O
(bridging oxygen and non-bridging oxygen) bonds between
473 cm−1 and 501 cm−1 [85]. This confirms that all materials
are made of the same silica glass network interrupted by net-
work modifiers. The band at 788 cm−1 is attributed to the
symmetric stretching vibrations of the Si-O-Si bonds [86–89].
The shoulder at approximately 940 cm−1 is attributed to the
asymmetric stretching vibrations of the Si-O bonds (NBO)
within the tetrahedrons [87, 90], the shoulder is larger for the
doped materials. The band recorded at 606 cm−1 for 56S6 and
603 cm−1 for 56S6-Fe is attributed to the bending vibrations of
the O-P-O bonds of the group PO4

3- in the crystalline form
[91], this band disappears for Mg-doped materials. The band at
approximately 1040 cm−1 is attributed to the asymmetric
stretching vibrations of the Si-O-Si bonds within the tetra-
hedrons [87, 89, 92]. The large shoulder at 1235 cm−1 is
assigned to the vibrations of the PO4

3- group present in the
glass matrix. Indeed, P2O5 can be incorporated both as network
former and network modifier in the form of PO4

3- [93, 94].

3.3 Thermal behavior of the different materials

The thermal analysis of the different materials (Fig. 3) show
a glass transition for all tested materials, This is consistent
with the results of XRD analysis which show a scattering
halo between 2θ= 25° and 2θ= 35° due to the presence of
an amorphous phase [84]. The results show also that the
incorporation of Mg alone or simultaneously with Fe does
not affect the glass transition temperature (Tg). Whereas,
the incorporation of Fe alone increases the Tg slightly.

3.4 Textural properties by nitrogen sorption
measurements

All obtained adsorption/desorption isotherms (Fig. 4) are of
type IV isotherm indicating that all materials are mesoporous
[95]. The textural parameters: specific surface area (SBET),
porous volume (Vp), and pore diameter (Dp), are listed in
Table 4. The substitution by Fe alone seems to decrease the
different textural parameters; this is in agreement with the
results obtained by Gupta et al. [42]. Substitution by Mg
alone or simultaneously with Fe does not seem to vary the
surface area but decreases the porous volume and the dia-
meter of the pores with a higher degree for simultaneous
substitution of Ca by both Mg and Fe. On the other hand,
when Fe is incorporated alone it decreases the surface area.

3.5 In vitro bioactivity tests

3.5.1 Surface characterization by X-ray diffraction

The XRD patterns of the different glass-ceramics (Fig. 5)
before and after immersion show, for all materials, a

Table 3 Ionic composition of SBF compared to human blood plasma

Ions Na+ K+ Ca2+ Mg2+ HCO3
- Cl- HPO4

2-

Plasma (mM) 142 5 2.5 1.5 27 103.8 1

SBF (mM) 142 5 2.5 1.5 4.2 148 1
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disappearance of the peaks specific to the crystalline phases
present before immersion from the first day of immersion.
This is may be due to the dissolution of these crystalline
phases due to ionic exchanges between glass-ceramics and
SBF. We also recorded an appearance of new peaks

attributed to two different crystalline phases. Peaks recorded
at 23.0°, 29.4°, 36.0°, 39.4°, 43.2°, 47.2°, 48.4° and 57.5°
which are assigned to calcite (COD#9000967), and peaks
recorded at 25.9°, 31.9°, 39.5°, 46.8°, 49.5° and 53.2°,
which correspond to (002), (211), (310), (222), (213) and
(004) reflection plans of hydroxyapatite (COD#9003554)
respectively. From the first day of immersion, we observe
the presence of calcite for all glass-ceramics. This is due to
the strong release, by the materials, of the Ca2+ ions which
combine with the carbonate ions (CO3

2-) present in the SBF
[96], the calcium carbonate formed precipitates in the form
of calcite on the surface of the glass-ceramics [97–99]. For
56S6 and 56S6-Fe, we observe a concomitant formation of
calcite and HA. This is often the case for glasses and glass-
ceramics products which are highly bioactive [96, 100]. The
calcite formed remains present throughout the immersion
period because of its low water solubility [101]. By com-
paring the different XRD spectra, we notice that HA is
formed simultaneously with calcite on the surface of the
56S6 and 56S6-Fe on the first day of immersion. Whereas,
for the Mg-doped glass-ceramics, only calcite is observed. It
is only, from day 5, that we observe the appearance of HA

Fig. 1 XRD patterns of the
different glass-ceramics.
* ICSD#01-086-0399.
** ICSD#96-230-0274.
*** ICSD#00-049-1674

Fig. 2 FTIR spectra of the different glass-ceramics
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peaks on the surface of Mg-doped compositions. The for-
mation of HA on the surface of the different glass-ceramics,
confirms their bioactive character.

3.5.2 Surface characterization by infrared spectroscopy

The infrared spectra of the different glass-ceramics (Fig. 6),
before and after immersion, show differences in the evo-
lution of the spectral bands only between the compositions
containing Mg (56S6-Mg and 56S6-MgFe) and those free
of Mg (56S6 and 56S6-Fe). On day 1 of immersion, for Mg-
doped glass-ceramics, the band centered at about 500 cm−1,
which includes the shoulder at about 605 cm−1 is trans-
formed into two bands, one at 468 cm−1 attributed to the Si-
O-Si rocking vibration [102], and a more or less broad band
between 530 cm−1 and 630 cm−1 attributed to asymmetrical
deformation vibrations of P-O bonds in ACP [103–106].
For Mg-free glass-ceramics, the same band is observed at

Fig. 3 DSC curves for the different materials

Fig. 4 Nitrogen adsorption/
desorption isotherms for the
different glass-ceramics

Table 4 Specific surface area (SBET), total pore volume (VP) and BJH
desorption average pore diameter (DP) for different glass-ceramics

Glass-ceramic SBET (m2/g) VP (cm3/g) DP (Å)

56S6 152 0.45 90

56S6-Fe 131 0.36 78

56S6-Mg 153 0.38 73

56S6-MgFe 153 0.34 63
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468 cm−1, however, the small band at 606 cm−1 (56S6) and
603 cm−1 (56S6-Fe) increases in intensity, in parallel, with
the appearance of a new band at 564 cm−1. This dual band
is due to the vibrations of the crystalline phosphate groups
present in HA [107–109]. For 56S6-Mg and 56S6-MgFe,
the broad band between 1000 and 1200 cm−1 is attributed to
asymmetric stretching vibrations of P-O bonds in ACP
[103–105]. For the 56S6 and 56S6-Fe, the band, ranging
from 1000 cm−1 to 1100 cm−1, has spikes at 1034 cm−1 and
1093 cm−1 that correspond to the asymmetric stretching
vibrations of the P-O bonds in the PO4

3- groups present in
HA [110]. The weak band (for 56S6) and the shoulder (for
56S6-Fe, 56S6-Mg and 56S6-MgFe) at 788 cm−1 (Fig. 2),
are both assigned to the symmetric stretching vibrations of
the Si-O-Si bonds [86–89], this band/shoulder increases in
intensity and becomes centered at 800 cm−1. This change is
due to the formation of the silica gel layer on the surface of
the glass-ceramics [111–113]. On day 1, we recorded, for
all materials, an appearance of a broad band between
1400 cm−1 and 1500 cm−1, and another band at 874 cm−1,
these bands are attributed to the vibrations of the C-O and
C=O bonds in carbonate groups. The band at 1456 cm−1 is

characteristic of the crystalline carbonates [114], while the
other bands are common to both crystalline and amorphous
carbonates [115]. This is in a good agreement with the XRD
patterns of calcite, which precipitates on the surface the 1st
day of immersion for all tested glass-ceramics. After the
first day of immersion, no change is recorded in the spectra
of Mg-free glass-ceramics. On the other hand, for Mg-
doped glass-ceramics, on the 5th day, the band between
530 cm−1 and 630 cm−1 takes a shape of a dual-band at
603 cm−1 and 564 cm−1. This is due to the crystallization
of ACP in HA [106]. This crystallization is also confirmed
by the transformation of the shape of the broad band
between 1000 cm−1 and 1200 cm−1. Indeed, like the spec-
tral bands recorded on the 1st day, in the same region for the
56S6 and 56S6-Fe, this band takes the form of the spectral
bands attributed to asymmetric stretching vibrations of the
P-O bonds of the phosphate groups in HA [106, 110].
Beyond the 5th day of immersion, no other changes in the
spectra are observed. The presence of phosphates and car-
bonates together may indicate that the HA formed on the
surface is carbonated [116]. The FTIR results are consistent
with the XRD results. Indeed, the spectral bands of the

Fig. 5 XRD patterns of the different glass-ceramics surfaces before and after immersion in SBF solution at different immersion times *Calcium
hydroxide phosphate, AR powder (Alfa Aesar, Zeppelinstraße 7, 76185 Karlsruhe, Cat. # 304288, Lot#1386600). ** ICSD#96-900-0968
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carbonates of calcite as well as the carbonates and phos-
phates present in the hydroxycarbonate apatite (HCA),
evolve in perfect correlation with the XRD patterns of
calcite and HA. By comparing the different FTIR spectra
and XRD patterns, the results show that the incorporation of
Fe does not affect the formation rate of HCA, while the
incorporation of Mg delays it.

3.5.3 ICP-OES analysis of SBF

Obtained results of ICP analysis (Fig. 7) show the evolution
of the different elements concentrations in SBF versus
immersion time.

3.5.3.1 Ca and P concentrations On day 1 of immersion,
we recorded for all glass-ceramics, an increase in Ca con-
centration in parallel with a decrease in P concentration
which is slower for Mg-doped materials. Between day 1 and
day 5, the Ca concentration decreases for 56S6-MgFe,
while it continues to increase for 56S6 and 56S6-Fe. For
56S6-Mg, the Ca concentration remains unchanged. The P
concentration continues to decrease for all materials.
Beyond the 5th day, the concentration of Ca decreases with
the same trend for all glass-ceramics. The P concentration
continues to decrease until depletion, as noted from the 5th
day for 56S6, 56S6-Fe and 56S6-Mg, and from the 10th day
for 56S6-MgFe.

Fig. 6 FTIR spectra of the
different glass-ceramics surfaces
before and after immersion in
SBF solution at different
soaking times. *Calcium
hydroxide phosphate, AR
powder (Alfa Aesar,
Zeppelinstraße 7, 76185
Karlsruhe, Cat. # 304288,
Lot#1386600)
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3.5.3.2 Mg concentration The Mg concentration follows
the same pattern for all materials except for 56S6-MgFe.
For 56S6, 56S6-Fe and 56S6-Mg, starting on day 1, there
is a decrease in the concentration. Between day 1 and day
5, the concentration increases. After day 5, the con-
centration decreases again but slightly. For 56S6-MgFe,
the concentration increases from the first day and then,
remains unchanged until the 5th day. Beyond the 5th day,
the evolution of the concentration follows the same trend
as the rest of glass-ceramics.

3.5.3.3 Fe concentration ICP-Fe results (not presented
here) show no release of Fe3+ in SBF.

3.5.3.4 Si concentration The Si concentration increases
rapidly from the first day of immersion for all glass-
ceramics. Between Day 1 and Day 5, a slight increase was
recorded. Beyond day 5, the concentration remains rela-
tively unchanged during the remaining immersion time.

3.5.4 SEM-EDS micrographs

The SEM micrographs (Fig. 8) of the different materials,
before immersion in the SBF, show irregular surfaces
with a granular appearance (Fig. 8a, d, g, j). After 1 day

of immersion, rods appear on the surfaces of the 56S6
(Fig. 8b) and 56S6-Fe (Fig. 8e), while for 56S6-Mg
(Fig. 8h) and 56S6-MgFe (Fig. 8k), the surface remains
unchanged. After 15 days of immersion, rods similar to
those observed on the 1st day on the surfaces of 56S6
and 56S6-Fe, appear on the surfaces of 56S6-Mg
(Fig. 8i) and 56S6-MgFe (Fig. 8l). at this stage of
immersion, a more or less smooth layer appears on the
rods, For 56S6 (Fig. 8c) and 56S6-Fe (Fig. 8f). The
chronology of the appearance of the rods recorded on the
SEM micrographs, coincides perfectly with the chron-
ology of the appearance of the FTIR spectral bands and
the XRD patterns attributed to the HCA.

This result allows us to conclude that the rods that
appeared on the glass-ceramics surfaces correspond to the
HCA crystals formed from the 1st day, for 56S6 and 56S6-
Fe, and that we only observed from the 5th day, for 56S6-
Mg and 56S6-MgFe. The smooth layer that covers the rods
after 15 days of immersion for 56S6 and 56S6-Fe, corre-
sponds, probably, to a silica gel layer that forms as a result
of the Ca leaching that continued throughout the immersion
period.

The SEM results confirm the delayed formation of HA
on the surface of Mg-doped glass-ceramics in comparison to
Mg-free ones.

Fig. 7 Evolution of (Ca), (Mg),
(P) and (Si) concentrations in
SBF versus immersion time
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4 Discussion

4.1 Thermal analysis

The results obtained in the thermal analysis needs to be
dressed meticulously. Previous studies [117, 118] have
shown that Tg increases as the content of MgO increases.
Paradoxically, De Araujo Bastos Santana et al. [119] have
shown the opposite result, and they attributed these changes
to the fact that the Mg-O bond strength is lower than the Ca-
O bond based on the bond dissociation energies (Mg-O:
394 kJ.mol−1; Ca-O: 464 kJ.mol−1), which leads to a
weakening of the glass network. Contrary to this explana-
tion, Lee et al. [117], and Labbilta et al., [118] attributed the
increase of Tg, following the incorporation of Mg, to the
fact that the Mg-O ionic bond is stronger than the Ca-O
ionic bond, which made the glass network more rigid. They
reported that the strength of a cation-oxygen ionic bond is
affected by the cation field strength (CFS), the more
important it is, the stronger the bond. They reported that, the
CFS (Mg2+) is higher than CFS (Ca2+) (0.46 for Mg2+ and
0.36 for Ca2+), which explains the network reinforcement
after the addition of MgO, and consequently the increase of
the Tg.

The second explanation seems to be more appropriate. In
fact, Mg2+ and Ca2+ are bound to non-bridging oxygen
(NBO) by ionic bonds. As explained before, the higher CFS
of Mg2+ results in a Mg-O bond that is shorter and stronger
than the Ca-O bond. In addition, the dissociation energy of a
bond is the energy that must be provided for a homolytic
rupture of a bond at 25 °C [120], the fact that the Mg is more
electronegative than Ca, the electronic doublet in the Mg-O
bond will be less shifted from the center to the oxygen atom
than it will be in the Ca-O bond, thus, the energy required for
a homolytic rupture of the (Cation2+-O2-) bond will be more
important for the Ca-O bond than the Mg-O bond. Conse-
quently, this type of energy cannot be used to interpret the
changes in glass transition in this case.

In the present study, the absence of changes in Tg fol-
lowing the incorporation of Mg alone can be explained as
follows, the molar mass of Ca is approximately 1.67 times
greater than that of Mg, and since substitution occurs in wt
%, this results in a number of substituting Mg2+ ions 1.67
times greater than the number of substituted Ca2+ ions. This
leads to an increase in the number of NBO in the glass
network. Although the Mg-O ionic bond is stronger than the
Ca-O ionic bond, the increase in the number of NBO leads
to more breaking of Si-O-Si bond, and since the Mg-O ionic

Fig. 8 SEM micrographs of the
different material surfaces
before and after 1 day and
15 days of immersion in SBF.
a, d, g, j Before immersion for
56S6, 56S6-Fe, 56S6-Mg, and
56S6-MgFe, respectively;
b, e, h, k day 1 of immersion for
56S6, 56S6-Fe, 56S6-Mg, and
56S6-MgFe, respectively;
c, f, i, l day 15 of immersion for
56S6, 56S6-Fe, 56S6-Mg, and
56S6-MgFe, respectively
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bond is weaker than Si-O-Si bond, this causes the glass
network to weaken [121], and thus, the strength of the new
Mg-O bonds is compensated by the increase of broken
Si-O-Si which explains the absence of effect on Tg.

The incorporation of Fe alone seems to increase the Tg.
This result can be explained as follows, Fe is incorporated
as Fe3+ ion, previous studies have shown that at this oxi-
dation state, Fe3+ acts mainly as a network former because
of its large ionic force field (CFS [Fe3+]= 0.76 ; CFS
[Ca2+]= 0.36) [122–129]. The small increase can be
explain by the fact that the higher electronegativity of Fe (χ
(Fe)= 1.83) compared to Ca (χ (Ca)= 1) makes the bond
Fe-O stronger than the bond Ca-O and consequently the
network becomes more rigid and less easier to break. On the
other hand, the number of substituting Fe3+ ions is lower
than the number of substituted Ca2+ ions n(Fe3+)= 0.71×
n(Ca2+), and since the Fe3+ ions are likely present in the
tetrahedral form in the glass network [130], the number of
the Fe-O bond is greater than that of the substituted Ca-O
bond n(Fe-O)= 1.43× n(Ca-O), which causes more
breaking of Si-O-Si bonds. Knowing that the electro-
negativity of Fe (χ (Fe)= 1.83) is slightly lower than that of
silicon (χ (Si)= 1.9), this leads to a slightly weak Fe-O
bond compared to the Si-O, which explains the compen-
sator effect on the bonds energies between Fe and Si, and
the difference results in the small increase recorded.

The unchanged Tg for the composition where the Mg2+

and Fe3+ are incorporated simultaneously can be explained
by the same approach mentioned above, this result is likely
due to an equilibrium between the energies of the new
created bonds Si-O-Mg and Si-O-Fe, and the replaced bond
Si-O-Ca and/or the broken bonds Si-O-Si.

4.2 Textural properties

The decrease recorded in the size of the pores is due to a
combination of two phenomena, the ions diffusion occur-
ring during calcination [131, 132], and to the higher elec-
tronegativity of the substituting elements compared to that
of Ca, the descending order of the electronegativity is as
follows: χ(Fe) > χ (Mg) > χ (Ca). The sol-gel synthesis of
our materials occurs in different steps [131, 132], first the
polycondensation of Si-O-Si and P-O-P bonds leads to gel
formation which consists of SiO2-P2O5 primary particles.
The condensation of silanol groups at the surface allows the
fusion of the primary particles to form secondary particles.
Following this step, the removal of water by drying causes
nitrates and calcium, and/or magnesium, and/or iron ions to
recombine and deposit on the surface of secondary particles.
During the calcination step which occurs at 700 °C, the
nitrates are degraded and the cations diffuse from the edges
to the core of secondary particles. The remaining ions at the
surface act as a fuser of secondary particles to form tertiary

particles. Simultaneously to the diffusion of modifier ions
into the silica network, pores are created due to the for-
mation of non-bridging oxygens related to the intercalation
of ions into the silica network. Pore sizes are then directly
related to the modifier ionic radius. The combination of
more ions acting as smelting agents for secondary particles
and a decrease in ionic radius induce the decrease of pore
size. For our glass ceramics, knowing that the number of
substituting Mg2+ ions is 1.67 times higher than the number
of substituted Ca2+ ions, and the fact that Mg2+ ion is
lighter and occupy less volume than Ca2+ ion, this leads to
more and easy diffusion into more particles and causing
their fusion. For Fe3+ ions, their diffusion causes, as dis-
cussed before, the creation of a number of Fe-O bond 1.43
times higher than that of the substituted Ca-O bond, and
since Fe3+ is less voluminous than Ca2+, this leads also to a
particles fusion that are tighter which explains the decrease
of the pore size. At this stage and according to the differ-
ence of electronegativity of the different elements, the
attraction between the NBO and the substituting elements is
stronger than that of Ca. This results in Fe-O and Mg-O
bonds that are stronger and shorter than the Ca-O bond
[117, 118], leading to matrix compaction that results in
reduced pore sizes [60, 133]. This also explains the reduc-
tion which is more important for the material substituted
simultaneously by both Mg and Fe. The reduction in pore
size is more important for the material substituted by Mg
alone than that the one substituted by Fe alone, although Fe
is more electronegative than Mg. This result is more likely
related to the small incorporated amount of Fe compared to
that of Mg as well as the ease of diffusion to the core of
particles for Mg2+ ions.

The differences in the results regarding the specific sur-
face between 56S6-Fe and the rest of glass-ceramics can be
explained as follow, for 56S6-Fe, as explained above, the
substitution of Ca2+ ions by Fe3+ ions leads to more
breaking in Si-O-Si. This increases the porosity. On the
other hand, as mentioned before the higher electronegativity
of Fe compared to that of Ca leads to a more compact
network which explains the decrease in all textural
parameters.

For 56S6-Mg, as mentioned before, the number of sub-
stituting Mg2+ ions is 1.67 times higher than the number of
substituted Ca2+ ions, this results in more breaking of the
Si-O-Si bonds which causes more porosity in the glass-
ceramic network. This should increase the specific surface
area. However as mentioned before, -Si-O- --- Mg2+----O-
Si- bonds are shorter and stronger than the -Si-O- ----
Ca2+-----O-Si- bonds, and Mg2+ ions occupy less volume
than Ca2+. This explains the decrease in pores size and
volume. Overall, the increase in porosity is compensated by
the reduction of pores size, and this leads to an unchanged
specific surface area.

512 Journal of Sol-Gel Science and Technology (2024) 109:502–522



For 56S6-MgFe, the concomitant substitution of Ca2+ by
Mg2+ and Fe3+ ions causes much more breaking of Si-O-Si
and this is likely to increase the porosity. This increase in
porosity occurred alongside a decrease in pores size and
volume as a result of the stronger new bonds namely Fe-O
and Mg-O compared to the replaced Ca-O bonds. These
changes in porosity and pores size may explain the
unchanged specific surface for 56S6-MgFe.

4.3 X-ray diffraction

Before immersion in SBF, the two crystalline phases
recorded by XRD analysis that contain phosphate groupes
explain the absorption band at 606 cm−1 and 603 cm−1

recorded by FTIR spectroscopy for 56S6 and 56S6-Fe,
respectively. As mentioned before, this band is attributed to
the vibrations of the P-O bonds in the crystalline PO4

3-

groups [91, 134]. Crystallization of dicalcium silicate for all
materials is likely due to the high presence of residual –OH
groups. These groups reduce viscosity and can act as
nucleation sites for crystal growth. Following the heat
treatment, the regions of the network with the most residual
–OH, release SiO4

4- species that bind with Ca2+ present in
the network and crystallize in Ca2(SiO4) [134, 135]. The
presence of crystalline calcium phosphates is due to the
presence of phosphorus in the network as a network
modifier in the ionic form PO4

3- [94]. The network modifier
ions, i.e Ca2+ and Mg2+, tend to act as charge compensators
and preferably bind to orthophosphate [93, 94]. The
resulting calcium phosphates or magnesium phosphates
crystallize under the effect of heat treatment [134]. This
explains the presence of HA crystals and calcium phos-
phates on the surface of 56S6 and 56S6-Fe respectively.

4.4 Infrared spectroscopy

Before immersion in SBF, the results show that the band at
788 cm−1 decreases in intensity and takes the form of a
shoulder for the materials doped compared to the reference
material (56S6). This is due to the rupture of the Si-O-Si
bonds after the incorporation of Fe and Mg. The shoulder at
940 cm−1 is larger for the doped materials. These variations
are due to the increase in the number of broken Si-O-Si bonds
followed by the formation of Si-O bonds (NBO), as a result
of the incorporation of the different elements namely Mg and
Fe. Indeed, as explained before, for compositions doped with
MgO, the number of substituting Mg2+ ions is 1.67 times
greater than the number of substituted Ca2+ ions, which leads
to an increase in the number of broken Si-O-Si bonds. For Fe-
doped compositions, the number of substituting Fe3+ ions is
lower than the number of substituted Ca2+ ions, however, the
presence of Fe3+ in tetrahedral form [130] leads to an
increase in broken Si-O-Si bonds as well.

The disappearance of the absorption band in the 600 cm−1

region for Mg-doped glass-ceramics is a result of the mod-
ification of the stability of the P-O bonds by the incor-
poration of Mg2+, this latter is more electronegative than
Ca2+, and therefore the P-O(Mg) bond is more ionic than the
P-O(Ca) bond [118].

4.5 ICP-OES analysis

4.5.1 Day 1of immersion

The ICP curves show that from the first moments of
immersion, a cationic exchange occurs between the glass-
ceramic and the SBF. Indeed, the modifier ions (Ca2+ and
Mg2+) leave the network in exchange for the H3O

+ ions
present in the SBF [136]. This explains the increase in Ca
concentration recorded for all compositions. Following the
fixation of H3O

+ ions, silanol groups form and condense to
form a silica gel layer [136]. The decrease in the con-
centration of H3O

+ ions causes an increase in the con-
centration of OH- ions in SBF. These are responsible for the
continuous hydrolysis of the Si-O-Si bonds, leading to the
release of Si(OH)4 in the SBF. This explains the increase in
the Si concentration from the 1st day of immersion [136].

The decrease in P concentration, for all glass-ceramics, is
due to the concomitant migration of the Ca2+ and PO4

3- ions
present in the SBF to the material surface. Although the Ca
concentration seems to be just increasing on the 1st day of
immersion, this does not prove the absence of migration of
Ca2+ ions from SBF to the surface of the materials. Indeed,
this can be explained by the fact that the release flow of
these ions by the glass-ceramics is more important than their
migration from the SBF to the surface of the material.

This concomitant migration of Ca2+ and PO4
3- ions to the

surface of the material, leads to the formation of ACP layer
[136], which crystallizes in HA, from the 1st day of
immersion, for 56S6 and 56S6-Fe contrary to 56S6-Mg and
56S6-MgFe, where there is an absence of HA at this stage
of immersion. This is confirmed by the ACP-specific FTIR
spectral bands recorded on the 1st day of immersion for
56S6-Mg and 56S6-MgFe. For 56S6 and 56S6-Fe, the
absence of ACP on their surface is due to its rapid trans-
formation into HA.

The slopes of the phosphorus ICP curves show that the
migration rate of the PO4

3- ions is slower for Mg-doped
glass-ceramics. This result shows that the incorporation of
Mg has a slowing effect on the migration of PO4

3- ions, and
consequently on the formation of ACP and its crystal-
lization in HA which is consistent with the literature
[60, 137].

For Mg, the decrease in concentration, observed from the
1st day for all glass ceramics except for 56S6-MgFe, is
probably due to the migration of the Mg2+ ions, which are
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incorporated and/or adsorbed into the ACP layer [138]. For
56S6-MgFe, the increase in the concentration confirms the
release of Mg2+ by the material. However, the absence of
decrease may be due to the absence of migration of the
Mg2+ ions from SBF to the glass surface. This is probably
the consequence of the delayed formation of the ACP layer
compared to the other glass-ceramics.

Indeed, the most plausible mechanism would be that
56S6-Mg would also release the Mg2+ ions, which is con-
firmed by the level of Mg concentration that is higher than
those recorded for 56S6 and 56S6-Fe. Except that, the ACP
formation on 56S6-Mg, which is faster compared to 56S6-
MgFe, causes migration of Mg2+ ions and their incorpora-
tion or adsorption into the formed ACP layer. This phe-
nomenon seems to be delayed for the 56S6-MgFe.
Moreover, by comparing the (P) curve of 56S6-Mg to that
of 56S6-MgFe, we noticed that the migration of PO4

3- ions
is slower for the 56S6-MgFe. This shows that the incor-
poration of Fe in addition to Mg also seems to have a
slowing effect on the migration of PO4

3- ions, and conse-
quently, on the formation of the ACP layer.

4.5.2 Between day 1 and day 5 of immersion

Between day 1 and day 5, the Ca concentration continues to
increase but with a lower rate for 56S6 and 56S6-Fe, this is
due to the reduction of the release flow in relation to the
migration flow. For 56S6-MgFe, the Ca concentration
decreases significantly due to the significant migration of
Ca2+ ions to the material surface. Finally, for 56S6-Mg, the
concentration remains unchanged, which is probably due to
an equilibrium between the release flow and the migration
flow. This reinforces the hypothesis that the incorporation
of Mg reduces ion exchange kinetics [60, 137].

As for the Ca concentration, the P concentration con-
tinues to decrease but with a lower rate, for the 56S6 and
56S6-Fe. This is due to the high concomitant migration of
Ca2+ and PO4

3- ions to the surface of these materials at this
stage of immersion, which contributes to the crystallization
of ACP in HA. This crystallization is observed for all glass-
ceramics after 5 days of immersion (see Figs. 5 and 6). At
this stage, there is no PO4

3- in the SBF for 56S6, 56S6-Fe
and 56S6-Mg due to its depletion, as a result of the con-
tinued migration of Ca2+ and PO4

3-. The Si concentration
increases very slightly, with the same trend, for all glass-
ceramics. This is due to the ionic exchange as explained
above. This exchange continues at this stage but with a very
low degree compared to the first hours of immersion as
shown by the slopes of the different (Ca) ICP curves.

For Mg, there was an increase in the concentration for all
glass-ceramics, between day 1 and day 5, except for 56S6-
MgFe for which the concentration remained unchanged.
This phenomenon is due to the release of the Mg2+ ions

from the ACP layer which gradually dissolves in parallel
with the continuous migration of the Ca2+ and PO4

3- ions
[138]. This is confirmed by the crystallization of ACP in
HA, as shown by the FTIR and DRX spectra on the 5th day
of immersion (see Figs. 5 and 6). The constancy in the Mg
concentration observed for 56S6-MgFe, is probably due to
an equilibrium between the migration and the release flows
of the Mg2+ ions by the material. This occurs at the same
time as the intense and concomitant migration of Ca2+ and
PO4

3- ions to the material surface, which is illustrated by the
intense slopes of the ICP-Ca(56S6-MgFe) and ICP-P(56S6-
MgFe) curves during this period of immersion.

4.5.3 Between day 5 and day 10 of immersion

After day 5 until day 10, the concentrations of Ca and Mg
decrease, with the same trend, for all glass-ceramics. For
56S6-MgFe, the P concentration continues to decrease until
depletion at day 10. For Si, the concentration remains
unchanged.

Although there are no PO4
3- ions left in the SBF, for

56S6 and 56S6-Fe, the decrease in Ca concentration noted
between day 5 and day 10 is due to the formation of Ca2+/
CO3

2- ion pairs precipitating as calcite. This phenomenon is
often observed when SBF is depleted in phosphate ions as
described by Oyane et al. [139]. Indeed, the Ca2+ ions,
present in high concentration, react with the HCO3

- ions to
form calcium carbonate following the reaction Ca2+ +
HCO3

- + H2O→ CaCO3+H3O
+. This explains the growth

of calcite XRD peaks at this stage of immersion for 56S6
and 56S6-Fe.

The decrease in Mg concentration, between day 5 and
day 10, may be due to the incorporation of Mg2+ ions into
the HCA layer as suggested in another study by Chajri et al.
[140].

4.5.4 Beyond day 10 of immersion

After the 10th day, the SBF depletion in PO4
3- is total for all

materials. The plateau recorded for the Ca concentration is
probably due to an equilibrium between the Ca2+ release
flow and the precipitation flow of the Ca2+/CO3

2- pairs. The
very slight decrease observed in the Mg concentration is
probably due to their continued migration to the surface of
the materials to be incorporated into the HCA layer.

4.6 Effect of Mg incorporation on the glass
bioactivity

In this work, the results of the characterization of the sur-
faces of the different glass-ceramics, before and after
immersion in SBF, revealed the delay in HA formation for
Mg-doped glass-ceramics of the HCA. This is consistent
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with the results obtained in other studies
[13, 57, 60, 133, 137].

HA formation involves several steps, step 1: the Ca2+

and PO4
3- ions, released from the material and/or present in

SBF, precipitate to the surface as ACP. Step 2: the ACP
gradually dissolves and releases the Ca2+ and PO4

3- ions
[141]. At this stage, nucleation sites are formed, these are
defined as the interfacial surfaces between the apatitic phase
that begins to form and the solution. The Ca2+ and PO4

3-

ions, released by ACP, are translocated and fixed on the
apatitic nucleation sites. The repetition of this phenomenon
allows the growth of HA crystals on the surface of the
material [138, 142]. This description is consistent with the
ionic exchange kinetics described in the literature for
bioactive glasses/glass-ceramics [136], and which is
observed for all the glass-ceramics studied in this work.
However, the fact that the ACP is not observed for com-
positions free of Mg, can be related to the fact that the
transformation would have occurred during the first hours
of immersion as explained above. For Mg-doped glass-
ceramics, this process was delayed.

Several studies have shown the complexity of the
mechanism of the delayed transformation of ACP into HA,
due to the presence of MgO. Some authors argue that the
addition of MgO decreases the glass/glass-ceramic dis-
solution [60, 137]. Other authors have shown that the
decrease in bioactivity was only due to the delay in crys-
tallization of ACP in HA, while the dissolution kinetics of
the Mg-doped glass/glass-ceramics was better than those of
the bare glass/glass-ceramics [119]. This displays the con-
troversies around the role that Mg2+ ions play within the
glass network. Indeed, Mg2+ can be incorporated as a net-
work modifier [143, 144], but can also, depending on the
composition of the glass/glass ceramic and the conditions of
synthesis, play an intermediate role by incorporating in a
tetrahedral form (MgO4) [124, 145, 146].

Watts et al. suggested that Mg incorporated at 86% acts
as a network modifier and that for the remaining 14%, it is
present in a tetrahedral form (MgO4) [121]. This leads to the
polymerization of the silicate network, which strengthens
the network and therefore reduces its dissolution. In addi-
tion, although previous studies have shown a correlation
between the MgO content and the retarding effect of HA
formation [40, 57, 147], other authors have obtained results
where there is no correlation between the MgO content and
the observed effect on HA formation [58], which confirms
the complexity of Mg’s role within the glass network.

4.6.1 Effect on dissolution kinetics

The results obtained in our study show that several para-
meters are involved in the delayed transformation of ACP
into HA. The kinetic of ionic exchange appears to be slower

for Mg-doped glass-ceramics, as advanced in the literature
[60, 137]. This is confirmed by the slow release of Ca2+

ions as well as the slow migration of PO4
3- ions for com-

positions that contain Mg. Indeed, the 56S6-MgFe ICP
curves show a high level of Ca concentration on Day 1 and
a slow decrease in P concentration. For 56S6-Mg, on Day 1,
the Ca concentration level is the same as for 56S6 and
56S6-Fe. However, the decrease in P concentration is
slower. 56S6-Mg contains less CaO than 56S6 and 56S6-
Fe, so if the release of Ca2+ had been as rapid as for Mg-
free glass-ceramics, the Ca concentration of 56S6-Mg on
Day 1 of immersion should be lower. However, the fact that
it is at the same level as for the other compositions, confirms
the slower release of Ca by 56S6-Mg. This is confirmed by
the slow migration of PO4

3-ions, as shown in the 56S6-Mg
ICP-P curve. In addition, between day 1 and day 5, the
difference is clearly illustrated between the 56S6-Mg ICP-
Ca curve and the 56S6 and 56S6-Fe ICP-Ca curves. Indeed,
a plateau is recorded for the Ca concentration for the 56S6-
Mg, contrary to the other two glass-ceramics where an
increase in Ca concentration is recorded. Indeed, the slow
release of Ca2+ ions, is likely in an equilibrium with their
migration to the surface, which is at the origin of the
transformation of the ACP into HA. For the 56S6 and 56S6-
Fe the Ca release is faster than the migration of Ca2+ ions
which explains the increase recorded.

For the evolution of Mg concentration, the curves show a
migration of Mg2+ ions from SBF to the surface of the
materials, to incorporate and/or adsorb in the layer and/or
on the surface of ACP [138, 148–151], on the 1st day of
immersion. A comparison of HA onset times of appearance
at this stage of immersion, shows that the transformation
from ACP to HA has been delayed for compositions
containing Mg.

4.6.2 Mechanism of Mg effect on ACP delayed
crystallization into HA

SBF contains Mg2+, the ICP results show its incorporation
and/or adsorption into ACP for all glass-ceramics. How-
ever, the high Mg concentration due to the release of more
Mg2+ ions in the solution by the Mg-doped glass-ceramics,
accentuates the inhibitory effect of Mg. This finding cor-
roborates what has been suggested in several studies, sti-
pulating that the amount of Mg incorporated and/or
adsorbed into ACP is related to its concentration in the SBF
solution [138, 149–151].

The increase in Mg concentration between days 1 and 5 of
immersion is due to the gradual dissolution of the ACP layer,
which occurs simultaneously with its transformation into HA,
as demonstrated by previous studies [138, 142]. The release
of the incorporated Mg, suppresses its inhibitory effect, and
the ACP begins its transformation into HA [142]. At this
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stage, interfacial surfaces are created between the new crys-
talline phase and the SBF. These surfaces act as HA
nucleation sites. The Ca2+ and PO4

3- ions released after the
dissolution of the ACP, migrate to the surface of the materials
and deposit at the HA nucleation sites to form HA crystals
[138], the repetition of this phenomenon leads to the growth
of HA crystals. This corresponds to the formation of the HA
layer observed on the 1st day for Mg-free glass-ceramics, and
only from the 5th day for Mg-doped glass-ceramics.

The decrease in Mg concentration recorded for all glass-
ceramics between day 5 and day 10 is due to the incor-
poration of Mg2+ ions in the HA layer as suggested by a
previous study [140]. At this stage, Mg2+ ions adsorbed at
the nucleation sites, is mainly responsible for delaying the
growth of the HA layer. The degree of this delay depends
on the adsorbed amount of Mg.

The results of our study corroborate and confirm the
explanations and suggestions presented in the literature
regarding the delay of HA formation rate caused by Mg.
Researchers have suggested that the association of Mg with
phosphates decreases their ionic activity, which would delay
the induction time of crystallization of ACP in HA [152].
Others explain that this association of Mg with phosphates
[13, 53, 60] leads to a decrease in the number of HA
nucleation sites [153, 154]. Other studies [149–151, 155]
argue that the presence of Mg in the ACP layer leads to a
reduction in particle size and gives them an irregular shape
rich in deficits, making their crystallization difficult.

Other researchers claim that the inhibition of the crys-
tallization and growth of HA crystals, caused by Mg, is due
to its adsorption at the HA nucleation sites [148–150, 156].

Ding et al. [138] demonstrated that the stabilization of
ACP is achieved by both incorporated and adsorbed Mg,
while inhibition of ACP crystallization in HA is primarily
due to the adsorbed Mg. This proves that it is, indeed, the
adsorbed Mg that invades the HA nucleation sites that
inhibits the crystallization of ACP in HA. This result leads
us to assert that the delay in the transformation of the ACP
into HA is closely correlated with the amount of Mg present
in the solution. If the Mg present in the glass-ceramic was
not released into the solution, the delay in the transforma-
tion of ACP into HA would only be related to the indirect
effects of Mg such as the decrease of the glass-ceramic
dissolution in SBF, the degree of this effect would be
directly related to the rate of this dissolution. However,
since Mg-doped glass-ceramics release Mg2+, when in
contact with SBF, these ions will incorporate into the ACP
and reduce its dissolution. In addition, Mg2+ which subse-
quently adsorb at the nucleation sites, delay the transfor-
mation of the ACP into HA crystals, and the crystal growth.
This is consistent with the results obtained in our study,
which is in a good agreement with what is reported in the
literature [40, 53, 57, 119, 157].

4.7 Effect of Fe incorporation on the glass
bioactivity

The results of this study show that the addition of Fe2O3

does not affect the formation of HA on the surface of the
materials after contact with SBF. Some studies claim that
the presence of Fe2O3 decreases this property [158, 159],
while others confirm the opposite [75]. Indeed, Fe3+ ions
have a stimulatory effect on the crystallization ACP into
HA, as demonstrated in a previous study [160]. However,
the fact that this ion is not released into the SBF explains the
absence of incorporated Fe3+ ions in ACP layer, therefore
there is no stimulation effect on its transformation into HA.

The ICP-OES results show that adding Fe2O3 appears to
have a slight slowing effect on the kinetic of ionic exchange
when added to 56S6. However, this effect remains insig-
nificant because of the low Fe2O3 content. For the 56S6-
MgFe, the slowing effect on ionic exchange kinetic is sig-
nificant. This is probably due to the addition of the effects
of both Fe2O3 and MgO. The slowing effect mechanism is
detailed above for MgO. With regard to Fe2O3, it has been
reported that the presence of Fe3+ in the glass network
reduces the dissolution of the material and therefore the
kinetic of the ionic exchange is slower [161, 162]. As
mentioned above, Fe3+ ion act as a network former in tet-
rahedral form. This explains the absence of Fe3+ release in
SBF as confirmed by ICP-OES (not presented here).

5 Conclusion

In this work we have shown that the Mg and Fe have
many effects on the physicochemical properties of the
glass/glass-ceramic. The incorporation of these chemical
elements results in a decrease in the Mg-doped glass-
ceramic bioactivity at different levels. Our results showed
that when Mg is added, either alone or simultaneously
with Fe, it delays the formation of HA at several levels,
first by reducing the dissolution of the glass-ceramic in the
SBF, then by stabilizing the ACP by decreasing its dis-
solution, and finally preventing its crystallization into HA
by invading the HA nucleation sites. We also demon-
strated that it is the free Mg2+ ions, previously present in
the solution and/or released by the materials, that delays
the formation of HA and not the Mg that remains incor-
porated in the matrix.

Fe3+ in solution, is known to have a stimulatory effect on
HA crystallization from ACP. Surprisingly, there was no
delay or acceleration observed on the HA formation rate,
and this is due to either the low content of Fe2O3 or to the
fact that Fe3+ was incorporated as a network former, leading
to absence of its release in SBF. The results showed also
that there is no systematic correlation between the glass
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transition temperature and the glass/glass-ceramic dissolu-
tion, indeed, although, the Tg was increased by incorpor-
ating Fe alone, the dissolution rate decreased less than for
Mg-doped glass-ceramics, and where the Tg remains
unchanged. Moreover, several parameters have an influence
on the dissolution process, such as, composition of the
solution, the overall glass-ceramic composition, the intrinsic
physicochemical characteristics of the introduced elements,
the behavior of each ion in the glass network whether as a
network modifier or a network former, and also on how it is
bonded to the rest of the network.

The findings and the detailed interpretation given in this
study have shed light on the complexity of the mechanism by
which Mg and Fe affect the physicochemical properties of the
doped materials. Indeed, by comparing our results to other
previous studies, we showed a non-correlated behavior
between the glass transition and the bioactivity of the tested
materials. These two physicochemical properties are influ-
enced not only by the intrinsic physicochemical properties of
the chemical elements but also by the exterior parameters that
governed their behavior within the glass network, such as the
overall glass or glass-ceramic composition, the conditions of
synthesis, the composition of the physiological solution, etc.
This complexity explains the different controversies and the
contradictory interpretations found in the literature about
these elements as mentioned above.

Based on these arguments, a profound studies are
required to determine physically and mathematically the
structure-activity relationship of the effect of Mg and Fe on
glass/glass-ceramic physicochemical properties, in the aim
to define the optimal way to tailor the behavior of such
biomaterials for biomedical applications.

As mentioned before, Mg and Fe are elements with an
interesting set of biological properties that can be beneficial
for bone tissue engineering, therefore, the effect on biolo-
gical properties, such as the antibacterial activity, and
cytotoxicity test, will be studied in upcoming works to
validate the biocompatibility of the doped materials and to
evaluate their effect on antibacterial activity and bone
regeneration.
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