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Abstract
The CuxFe3-xO4 nanoparticles with a cubic structure and varying ratios of copper (Cu) and iron (Fe) (x= 0.75, 1, 1.25) were
synthesized using the one-step solution combustion synthesis (SCS) method. CuxFe3-xO4 nanoparticles were synthesized via
solution combustion synthesis, utilizing copper nitrate and iron nitrate as the oxidizing agents, and glycine as the fuel. The
synthesis was carried out under different conditions, including the presence and absence of air, to investigate their effects on
the final product. X-ray diffraction (XRD), the Fourier transform infrared spectroscopy (FTIR), thermal gravimetric analysis
(TGA) and differential scanning calorimetry analysis (DSC), scanning electron microscopy (SEM), transmission electron
microscopy (TEM), high-resolution (HR) TEM and vibrating sample magnetometer (VSM) measurements were used to
confirm the formation and structure of the as-prepared nanopowders. The use of the open system during the synthesis
process leads to a higher occurrence of secondary phase formation in the structure of the material. The findings obtained
from various analysis confirms that the closed system used in the study yields efficient results.

Graphical Abstract
CuxFe3-xO4 nanoparticles were synthesized via solution combustion synthesis in a closed system.
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Highlights
● CuxFe3-xO4 nanoparticles were synthesized using the solution combustion synthesis.
● Effect of open and closed systems were investigated on nanoparticle properties.
● Structural, magnetic, and thermal properties were studied in detail.
● The advantages of a closed system were demonstrated.

1 Introduction

Nanoscale ferrite particles have attracted so much attention
due to their size-dependent properties, surface reactivity, and
surface effect (large surface-to-volume ratio). Generally, fer-
rites are of MFe2O4 cubic-spinel structured materials and by
adjusting and replacing different M2+ cations in this structural
formula, which are especially transition metals, it can be cre-
ated a wide range of superior optical, electrical, and magnetic
properties. Various nanoscale ferrites such as NiFe2O4 [1],
CoFe2O4 [2], ZnFe2O4 [3], CuFe2O4 [4], and MnFe2O4 [5]
have been successfully synthesized for different applications
such as magnetic materials, supercapacitors, semiconductors,
microwave absorbents, etc. Among these cubic spinel-
structured materials, copper iron oxides (CuFe2O4) are of
great interest due to their low cost, ease of preparation, good
chemical stability, and interesting physical properties [6].
Copper ferrites exhibit an inverse spinel structure. The inverse
spinel structure contains both octahedral and tetrahedral cation
sites. The Fe3+ cations occupy tetrahedral (A) and octahedral
(B) sites [7–9]. The Cu2+ cations are coordinated only in the
octahedral sites and this causes reduced lattice symmetry from
cubic to tetragonal, which is called the Jahn–Teller effect [7,
10]. CuFe2O4 is cubic at elevated temperatures (>360 °C) and
tetragonal at room temperature.

CuFe2O4 has been used as a candidate for many applica-
tions such as gas sensors [11], Li-ion storage [12], magnetic
devices [13], and catalysts [8]. Spinel CuFe2O4 has been
synthesized in several ways including hydrothermal [14], sol-
gel [15], solvothermal [16], chemical spray pyrolysis [17],
chemical co-precipitation [18], and solution combustion
method [19]. Among these, conventional solution combustion
synthesis (SCS) has emerged as an extensively employed
technique to fabricate nanomaterials, especially for narrow
stoichiometric ranges, due to its advantages of short prepara-
tion time, low energy consumption, and being environmentally
friendly [20]. Solution combustion synthesis is a single-step,
low-cost, and rapid process which involves a self-sustained
and exothermic reaction between an oxidizer (typically, metal
salts such as nitrates, sulfates, and carbonates) and a fuel
(reducing agents such as urea, glycine, citric acid, etc.).
Characteristics of the SCS process are governed by the oxi-
dizer, typically an aqueous solution of cation precursors, the
fuel source, and the utilization of heat. Among the different
salts, metal nitrates are widely used for solution combustion
synthesis owing to their water solubility and efficient oxidizing

of NO3− groups [21]. The important parameters that influence
the properties of nanoparticles obtained by solution combus-
tion synthesis are the type of fuel, fuel-to-oxidizer ratio, the
use of excess oxidizer, ignition temperature, etc [22]. Among
the various control parameters in a combustion process, fuels
play an important role in determining the morphology, phase,
and particulate properties of the final product. Fuels are gen-
erally organic compounds that contain carboxylic acid or
amine functional groups. These fuels serve two main purposes:
form CO2 and H2O and liberate heat during the combustion,
form complexes with metal ions for homogeneous solution
[23]. The large number of gaseous products released during
the solution combustion process prevents agglomeration and
ensures a large number of pores and a high surface area.
Among the fuels which are utilized in combustion synthesis,
glycine is considered to be an ideal fuel. Glycine is an amino
acid that contains a carboxylic acid group at one end and an
amino group at the other end, so glycine prevents selective
precipitation of cations in solution [24]. The complex forma-
tion supports a homogeneous mixture and provides to obtain
multi-component oxides by preventing the cations segregation.
The local temperature increases up to 1000–2000 °C during
the combustion process and helps to prevent the formation of
metal oxides, which require calcination at high temperatures
after synthesis [25].

In the present work, solution combustion synthesis was
utilized to obtain nanocrystalline ferrites with the general for-
mula of CuxFe3-xO4. In order to understand the effect of copper
(Cu) and iron (Fe) different ratios were used (x= 0.75, 1,
1.25). Synthesis processes were carried out in an open system
and a closed system to demonstrate the effect of the presence
of air. Solution combustion synthesis of CuxFe3-xO4 nano-
particles was conducted using glycine as fuel. It was observed
that the closed system led to a well-crystalline structure.

2 Experimental procedure

Nanocrystalline copper ferrites CuxFe3-xO4 (x= 0.75, 1,
1.25) were obtained by the solution combustion method.
Analytical grade copper nitrate trihydrate (Cu(NO3)2·3H2O)
and iron nitrate nonahydrate (Fe(NO3)3·9H2O) were used as
oxidizers and glycine (C2H5NO2) was used as fuel. Synth-
eses were performed in different ratios and different air
conditions to investigate the effect of air. The synthesis of
S1, S3, and S5 nanoparticles was carried out in the presence
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of air, i.e., in an open system. The synthesis of S2, S4, and
S6 nanoparticles, on the other hand, was carried out in a
closed system without the presence of air. The ratios
represent copper nitrate trihydrate, iron nitrate nonahydrate,
and glycine, respectively (Table 1):

Sample 1 (S1). Open system, in a beaker (250 ml), in a
ratio of 0.75: 2.25: 4.4 (18.12 g: 90.9 g: 33 g; Cu(NO3)

2·3H2O: Fe(NO3)3·9H2O: C2H5NO2), (Fig. 1a).
Sample 2 (S2). Closed system, in Erlenmeyer flask

(500 ml) having a rubber plug and a glass pipe with an
outlet to remove gases that released during the combustion,
in a ratio of 0.75: 2.25: 4.4 (Cu(NO3)2·3H2O: Fe(NO3)

3·9H2O: C2H5NO2), (Fig. 1b).
Sample 3 (S3). Open system, in a beaker, in a ratio of 1:

2: 4.4 (24.16 g: 80.80 g: 33 g; Cu(NO3)2·3H2O: Fe(NO3)

3·9H2O: C2H5NO2).
Sample 4 (S4). Closed system, in Erlenmeyer flask

having a rubber plug and a glass pipe with an outlet to
remove gases that released during the combustion, in a ratio
of 1: 2: 4.4 (Cu(NO3)2·3H2O: Fe(NO3)3·9H2O: C2H5NO2).

Sample 5 (S5). Open system, in a beaker, in a ratio of
1.25: 1.75: 4.4 (30.2 g: 70.70 g: 33 g; Cu(NO3)2·3H2O:
Fe(NO3)3·9H2O: C2H5NO2).

Sample 6 (S6). Closed system, in Erlenmeyer flask hav-
ing a rubber plug and a glass pipe with an outlet to remove
gases that released during the combustion, in a ratio of 1.25:
1.75: 4.4 (Cu(NO3)2·3H2O: Fe(NO3)3·9H2O: C2H5NO2).

The proper amounts of starting raw materials were dis-
solved in distilled water and completely mixed to obtain a
clear solution. The resulting solutions were rapidly heated
to 300 °C on a hot plate to trigger the combustion reaction.
By increasing temperature, the solution started to evaporate
thereby, the gel formed and in the final stage, the gel was
ignited by letting out a large number of gases. Afterward, a
self-sustained exothermic reaction occurred and the solution
began to smoldering. The same reactions occurred for each
sample. As a result of the combustion, black and volumi-
nous nanoparticles were obtained.

The prepared CuxFe3-xO4 nanoparticles were analyzed by
X-ray diffractometer (XRD, Philips X’Pert Pro,
λ= 0.154056 nm) using Cu-Kα radiation. The Fourier Trans-
form Infrared Spectroscopy (Shimadzu IRSpirit model) device
was used to determine the molecular structure of the powders.
Thermal gravimetric analysis (TGA) and differential scanning
calorimetry analysis (DSC) of the precursors were character-
ized using the Linseis brand PT1600 DSC/DTA/TG device.
Thermal analyses were performed from 20 to 1200 °C with a
heating rate of 20 °C/min. The morphology of the nano-
particles was observed using scanning electron microscopy
(Zeiss EVO LS10). The particle size was analyzed through a
and transmission electron microscopy (TEM) using FEI Talos
F200S microscope operating at an accelerating voltage of
200 kV in high-resolution (HR) mode. The magnetization
measurements were carried out using a vibrating sample
magnetometer (Quantum Design SQUID) at room temperature.

3 Results and discussion

3.1 Structural analysis

The solution combustion synthesis is a redox reaction and
causes explosions if not controlled well. The combustion of
copper nitrate, iron nitrate, and glycine undergoes a self-
propagating and non-explosive reaction.

Table 1 The molar ratios for open and closed systems

Sample System Ratio (Cu(NO3)2·3H2O: Fe(NO3)3·9H2O:
C2H5NO2)

S1 Open system 0.75: 2.25: 4.4

S2 Closed system 0.75: 2.25: 4.4

S3 Open system 1: 2: 4.4

S4 Closed system 1: 2: 4.4

S5 Open system 1.25: 1.75: 4.4

S6 Closed system 1.25: 1.75: 4.4

Fig. 1 Schematic illustration of
solution combustion synthesis
for (a) open system and (b)
closed system
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In the solution combustion process, the molar ratio is a
significant factor affecting the combustion behavior, mor-
phology, and specific surface area of the products. On the
basis of propellant chemistry, combustion reactions for
different ratios can be represented as follows:

0:75Cu NO3ð Þ2�3H2Oþ 2:25 Fe NO3ð Þ3�9H2O

þ 4:4C2H5NO2 ! Cu0:75Fe2:25O4 þ 8:8CO2

þ 33:5H2Oþ 6:32N2 þ 0:45O2

ð1Þ

1:0Cu NO3ð Þ2�3H2Oþ 2:0 Fe NO3ð Þ3�9H2O

þ 4:4C2H5NO2 ! CuFe2O4 þ 8:8CO2

þ 32:11H2Oþ 6:22N2

ð2Þ

1:25Cu NO3ð Þ2�3H2Oþ 1:75 Fe NO3ð Þ3�9H2O

þ 4:4C2H5NO2 þ 0:25O2 ! Cu1:25Fe1:75O4 þ 8:8CO2

þ 30:5H2Oþ 6:07N2

ð3Þ

Here, the stoichiometric mixture (Eq. (2)) does not require
atmospheric oxygen to oxidize the fuel completely.

In order to investigate the effect of ambient air on the
structural properties of nanoparticles, both open and closed
synthesis systems were utilized. The structural properties of
CuxFe3-xO4 samples obtained in the presence and absence of
the air (S1, S2, S3, S4, S5, and S6) were studied by X-ray
diffraction (XRD) using PANalytical, X’Pert Pro equipped
with crystal monochromator employing Cu-Kα radiation
with the wavelength of 0.154056 nm and the patterns were
obtained in the 2θ range of 20–80˚ as shown in Fig. 2. All
samples exhibit sharp and well-defined peak profiles. In
order to obtain copper ferrite without any impurities,
nanoparticle synthesis was carried out in different stoi-
chiometric ratios and in different environments (both in the
presence and absence of air). The XRD patterns of the
obtained nanoparticles indicate that the compound pos-
sesses a cubic spinel structure belonging to the Fd-3m space
group (a= b= c). In this structure, Cu2+ ions occupy the

Fig. 2 a XRD patterns of CuxFe3-xO4 (x= 0.75, 1, 1.25) nanoparticles synthesized by solution combustion synthesis at different conditions.
Comparison of peak intensities and peak positions for (b) S1, S3, and S5, (c) S2, S4, and S6

Journal of Sol-Gel Science and Technology (2023) 107:810–820 813



tetrahedral sites and Fe3+ ions occupy the octahedral sites of
the crystal lattice [26]. The graph shows all the character-
istic peaks of copper ferrite and is well-matched with the
standard ICDD no. 98-003-7429. Along with this, there are
α-Fe2O3 peaks corresponding to the ICDD card no. 98-016-
1291 for S1, S3, S4, S5, and S6. The formation of α-Fe2O3

peaks is caused by the oxidation of Fe2+ to Fe3+ due to the
reaction of iron nitrate with glycine in the presence of air
(Eq. (4)). This is attributed to the participation of atmo-
spheric oxygen in the combustion reaction [27]. S3 and S4
samples showed monoclinic CuO peaks which were con-
sistent with the reference data listed on the ICDD no. 00-
045-0937. It is attributed to the low efficiency in the con-
centration of the precursor used as the primary source of
-OH groups in the reaction, regardless of the stoichiometric
ratio. The absence of -OH groups in the reaction can cause
the formation of oxide compounds (α-Fe2O3 and CuO) of
Fe3+ and Cu2+ ions due to high-temperature heating pro-
cesses [28].

4 Fe3O4 þ O2 ! 6 Fe2O3 ð4Þ

The results obtained from the XRD analysis clearly
demonstrate that the formation of α-Fe2O3 within the
structure of the synthesized nanoparticles was significantly
higher in the open system due to the influence of oxygen in
the air, compared to the closed system.

The average crystallite size of the nanoparticles was
calculated using the Scherrer formula given in Eq. (5):

D ¼ kλ
β cos θ

ð5Þ

where, D is the average crystallite size (nm), k is a constant
equal to 0.9, λ is the wavelength of radiation, β is the full
width at half maximum (rad) and θ is the Bragg’s diffraction
angle (rad). The average crystallite sizes were found to be
41.23, 43.27, 39.89, 55.65, 41.25, and 54.46 nm for S1, S2,
S3, S4, S5, and S6, respectively. Equation (6), given below,
was used to calculate the lattice parameters of nanoparticles.

1

d2hkl
¼ h2 þ k2 þ l2ð Þ

α2
ð6Þ

where, d is the distance between the crystal planes, h, k, and
l are the miller indices and a is the lattice parameter. The
values of lattice parameters with the distance between the
crystal planes are presented in Table 2.

3.2 FTIR analysis

FTIR analysis of the CuxFe3-xO4 nanoparticles was per-
formed in the 400–4000 cm−1 frequency range to attain

more information about the formation and chemical bond
of spinel ferrites as shown in Fig. 3. The vibrations
attributed to the absorption of CuFe2O4 metal oxide at
tetrahedral and octahedral sites, which are observed
within the frequency range of 400–1000 cm−1, are a result
of the Fe–O and Cu–O occupancy sites [19]. The bands
centered at ~594 and ~670 cm−1 are attributed to the
octahedral site and result from the stretching vibration of
the Cu2+−O2− bond [28, 29]. The bands located at ~474
and ~547 cm−1 correspond to the tetrahedral site, which is
attributed to the Fe3+−O2− stretching vibration [30, 31].
The presence of these characteristics in the FTIR spectra
of the ferrites confirms the formation of bonds in the sub-
lattices of the spinel structure. The absorption bands
observed around 2080 cm−1 indicate the presence of
stretching vibrations corresponding to the C≡N bonds,
which can be attributed to the nitrate ligands present in the
precursor material [32, 33]. It was observed that the bands
corresponding to the 474 cm−1 for S3, S4, S5, and S6
have shifted to higher frequencies (Fig. 3b). It can be
explained by the displacement of Fe3+ ions from the
octahedral site to the tetrahedral site [34].

3.3 Thermal analysis

In order to understand the thermal behavior of the pre-
cursors, the gelatinous masses obtained from different ratios
were heated from 20 to 1200 °C with a heating rate of
20 °C/min by using thermal gravimetric analysis (TGA) and
differential scanning calorimetry (DSC). For the same
ratios, only one analysis is sufficient (no separate analyses
were performed for open and closed systems), so S1 and S2,
S3 and S4, and S5 and S6 are shown together in Fig. 4.
From the TGA curves, it is observed that there are three
temperature stages indicating weight loss. The first stage
corresponding to 50–140 °C exhibits a narrow and distinct
endothermic peak with a weight loss of ~%3, which can be
attributed to the evaporation of remaining water as well as
the desorption of absorbed water from the gelatinous mass
[35]. In the second stage (140–200 °C), exothermic peaks
are observed at 144, 147, and 159 °C for S1-S2, S3-S4, and
S5-S6, respectively. These peaks are attributed to the

Table 2 XRD parameters of CuxFe3-xO4 nanoparticles

Sample d311 (Å) α (Å) Crystallite size (nm)

S1 2.53159 8.3963 41.23

S2 2.54851 8.4524 43.27

S3 2.52587 8.3773 39.89

S4 2.52942 8.3691 55.65

S5 2.53162 8.3964 41.25

S6 2.52545 8.3759 54.46
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combustion reactions between nitrates and glycine, result-
ing in a significant weight loss of about % 77 in the TGA
curves. The weight loss remains constant in the third stage
(above 200 °C) [36]. The small peaks around 280 °C may
be assigned to the slow oxidation of organic residues [27].
In addition, in Fig. 4b, c an endothermic peak at 1152 °C
can be attributed to the decomposition of the spinel struc-
ture into CuO and α-Fe2O3 [37, 38].

3.4 Morphological analysis

Figure 5 shows the porous structure of the solution-
combusted nanoparticles synthesized at different condi-
tions. It was observed that the nanoparticles agglomerated
due to their magnetic properties, resulting in a mass of
various agglomerations with a wide distribution. On the
other hand, it is also observed that as a result of the gases

Fig. 3 FTIR spectrum of
CuxFe3-xO4 nanoparticles

Fig. 4 TGA–DSC curves of solution precursors: a S1-S2, b S3-S4, c S5-S6
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released during the combustion process, the agglomerated
particles exhibit irregularly sized and shaped voids and a
porous network structure. The differences between the
nanostructures are the results of carrying out the combustion
reaction in different environments.

The unique morphologies of SCS products suggest that the
particles have a tendency to aggregate due to the influence of
nanoscale effects. However, the gases released during the
combustion process have a dispersant effect on these agglom-
erates, leading to the formation of irregularly sized and shaped
voids and a porous network structure. Furthermore, the high
energy generated during the combustion reaction process can
accelerate the crystal growth of these particles, leading to the
formation of a highly porous and interconnected structure.
Overall, these complex phenomena contribute to the distinctive
morphologies and properties of SCS products [39, 40].

The TEM and HRTEM images of stoichiometric copper
ferrite nanoparticles are shown in Fig. 6. It can be clearly
seen in TEM images (Fig. 6a, b) that nanoparticles are
agglomerated and not visible individually. Moreover, this
observation is further supported by SEM images. However,

upon careful examination of the TEM images, it is observed
that nanoparticle clusters are agglomerated in a porous
manner, with sizes ranging between 15–55 nm and an
average particle size of 35.6 nm (Fig. 6d). The HRTEM
image of nanoparticles (Fig. 6c) confirmed the presence of
clear lattice fringes with a distinct d value of 0.25 nm,
corresponding to the (311) plane, which agrees with the
(311) plane in the XRD results presented in Table 2.

3.5 Magnetic properties

The magnetic properties of the solution-combusted
CuxFe3-xO4 nanoparticles were investigated using a vibrat-
ing sample magnetometer (VSM) at room temperature and
the magnetization loops are shown in Fig. 7. Magnetic
properties depend on cation distribution, crystallinity,
crystallite size, phase composition, and particle size [41].
The saturation magnetization (Ms), remnant magnetization
(Mr), and coercivity (Hc) values are also presented in
Table 3. According to the magnetic hysteresis curves
saturation magnetization values were found to be 47.36,

Fig. 5 SEM images of the
solution combusted
nanoparticles at presence of air
(S1, S3, S5) and absence of air
(S2, S4, S6)
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51.59, and 66.92 emu/g for S1, S3, and S5, respectively. For
S2, S4, and S6 the saturation magnetization values are
obtained as 60.15, 51.59, and 47.62 emu/g, respectively.
The results revealed that for the open systems S5 shows the
highest Ms value than S3 and S1. This is attributed to the
amount of α-Fe2O3 impurities in the structure. Figure 2b
shows the comparison of peak intensities and peak positions
for S1, S3, and S5. XRD results clearly show that the
samples contain secondary non-magnetic Fe2O3 phases. It is
possible that the formation of α-Fe2O3 could be a result of
the decomposition of ferrite [42, 43]. Another reason for the
presence of α-Fe2O3 in the structure is the reaction of Fe3O4

Fig. 6 a, b TEM images of
stoichiometric CuxFe3-xO4 (S2)
nanoparticles, c Lattice-resolved
HRTEM image of S2
nanoparticles, d Particle size
distribution of S2 nanoparticles

Fig. 7 Magnetization loops of (a) S1, S3, S5 and (b) S2, S4, S6 nanoparticles prepared by solution combustion synthesis

Table 3 The different magnetic parameters obtained from magnetic
hysteresis curves of CuxFe3-xO4 nanoparticles

Sample Saturation
magnetization (Ms,
emu/g)

Remnant
magnetization (Mr,
emu/g)

Coercivity
(Hc, Oe)

S1 47.36 20.27 448.01

S2 60.15 29.49 427.49

S3 51.59 23.17 444.59

S4 51.69 25.51 406.97

S5 66.92 25.92 410.39

S6 47.62 22.41 396.71
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with oxygen, as shown in Eq. (6). Therefore, it is observed
that the magnetic property is poor in samples including
higher levels of α-Fe2O3 impurities. Figure 2c shows the
peak intensities for S2, S4, and S6. Due to similar reasons,
S2 shows a higher value compared to S4 and S6 with a Ms

value of 60.15 emu/g. The copper ferrite is an inverse spi-
nel. The alignment of Cu2+ ions in the tetragonally distorted
octahedral spinel lattice formed by oxygen ions can be
triggered by copper ions in substituted spinels via a col-
lective Jahn–Teller effect. The migration of Cu2+ cations
from the octahedral sites of the B-sublattice to the tetra-
hedral sites of the A-sublattice is considered to have a
significant effect on the magnetic properties of CuFe2O4

[44]. Table 4 presents the values of Ms and Hc for CuFe2O4

nanoparticles synthesized using different methods in the
literature. The table shows that the values obtained in this
study are in line with those reported in previous works.

4 Conclusions

In the present research, the effect of atmosphere on the
structure, FTIR, thermal properties, morphology, and magnetic
properties of CuxFe3-xO4 nanoparticles have been studied and
presented. From the XRD analysis, the spinel structures of
ferrites were verified and the effect of air on the formation of
secondary phases was observed. The presence of Fe–O and
Cu–O bonds observed in the FTIR analysis indicates that the
obtained nanoparticles are spinel copper ferrites. The forma-
tion of exothermic and endothermic peaks in the DSC-TGA
analyses proves that combustion reaction has occurred. The
SEM images reveal that the nanoparticles agglomerate due to
their magnetic properties, but there are voids between the
agglomerated particles resulting from the gas formation. The
TEM and HRTEM results show that the nanoparticles are
agglomerated in a porous manner with an average particle size
of 35.6 nm. The HRTEM image confirms the presence of clear
lattice fringes corresponding to the (311) plane. The VSM

results indicate that the material exhibits magnetic properties,
however, the formation of the Fe2O3 phase, as a secondary
phase, reduces the saturation magnetization of the nano-
particles. The significance of the absence of air during the
synthesis process was clearly observed through the analyses
conducted on the synthesized products.
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