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Abstract
A hybrid organic–inorganic sol–gel coating was prepared on the surface of cast aluminum–silicon (Al–Si) alloy via dip
coating method to improve the anticorrosion ability. In the present work, bis(triethoxysilyl) ethane (BTSE) and
3-glycidoxypropyl-trimethoxysilane (GPTMS) were employed as the precursors to prepare hybrid sol–gel (BG) coating.
Nano titanium dioxide (nano-TiO2) was introduced to improve the corrosion resistance of the coating. The microstructures of
the BG/nano-TiO2 (BG-T) coating was characterized by scanning electron microscopy (SEM), energy dispersive
spectrometer (EDS), and Fourier-transform infrared (FT-IR) spectroscopy. The results showed that there was a chemical
reaction between nano-TiO2 and BG coating and a complete defect-free coating formed on the surface of Al–Si alloy.
Moreover, there were a few only minor cracks appeared on the surface of BG-T coating after 15 days immersion in 3.5 wt.%
NaCl solution. The corrosion resistant performances of the coatings were evaluated by the electrochemical tests. The results
showed that the nano-TiO2 particles elevated the corrosion potential and depressed the corrosion current, thereby improved
the corrosion resistance. The long-term immersion tests of BG and BG-T coating further showed that the BG-T coating
possesses an excellent long-term stability for corrosion protection.

Graphical Abstract

Highlights
● Nano-TiO2 doped sol-gel coating was applied in simple and direct way over cast Al-Si alloy.
● Nano-TiO2 doped sol-gel coating enhanced the cast Al-Si alloy corrosion resistance protection ability than undoped one.
● The corrosion resistance of the BG-T coating was revealed by electrochemical, SEM and EDS studies.
● Reaction mechanism of nanoparticles with sol-gel was studied.
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1 Introduction

Cast aluminum–silicon (Al–Si) alloy is widely used in
automobile, ship, aerospace, and other fields due to their
light weight, high intensity, good casting forming, and
employing performance [1–3]. However, a previous study
identified many Fe, Cu, Mg, and Mn intermetallic phases in
cast Al–Si alloys [4–6]. The presence of alloying elements
make the alloy susceptible to localized corrosion, such as
pitting corrosion, intergranular corrosion, and stress corro-
sion cracking [7, 8]. Therefore, it is necessary to improve
the surface properties of the cast Al–Si alloy in order to
enhance the corrosion resistance. The conventional methods
of the Al alloy corrosion protection are usually chromate
treatments and chromate-containing coatings [9, 10].
Unfortunately, the hexavalent chromate compounds are
toxic and could cause a lot of damage to our health and
environment [11–13]. Therefore, it is highly desired to
develop alternative protective coatings to replace the chro-
mate coating for corrosion protection of Al alloys. In the
past decades, various surface treatment techniques [14–19]
have been developed to enhance the corrosion resistance of
Al alloys, such as phosphate salts coating, sol–gel techni-
ques, cerium-impregnated coatings, and so on.

Sol–gel coating is regarded as one of the most promising
treatments for Al alloys among the various protective
coatings. On the one hand, sol–gel coating is able to
establish chemical bonds with the substrate surface, thereby
offering good adhesion ability [20]. On the other hand,
sol–gel coating can form an inactive barrier coating on the
substrate surface, thus improving the corrosion property of
the material [21, 22]. Moreover, the organic–inorganic
hybrid sol–gel coatings [23, 24] is not only providing good
mechanical properties but also improving the flexibility and
ductility. Li et al. [25] prepared an anticorrosion coating of
the inorganic–organic hybrid coatings (HC) for the protec-
tion of Al alloy by a dipping and room temperature curing
method. Mrad et al. [26] investigated the dependence of the
anticorrosion performance of a poly (γ-GPTMS) sol–gel
coating on AA2024-T3 aluminum alloy surface with dif-
ferent preparation method. All the test results show that the
sol–gel coating is applied on the aluminum alloy surfaces
pretreated by chemical etching exhibit a good anticorrosion
performance. Moreover, many studies show that the intro-
duction of inorganic nanoparticles could effectively
improve the mechanical properties and corrosion resistance
of sol–gel coating [20, 27]. The introduction of inorganic
nanoparticles can increase the crosslinking degree of the
coating and improve the densification of hybrid sol–gel
coatings, which results in that the coating achieves a good
anticorrosion performance. Yu et al. [28] prepared a hybrid
titania-containing sol–gel coating, the coating has been
modified through additions of different pigments (contain a

copolymer polyvinyl butyral, a conductive polymer poly-
aniline and a corrosion resistant glass flake) to investigate
the influence of these pigments for the corrosion protection
of AA2024-T3 alloy. The physical, chemical, and corrosion
properties of the modified coatings were also studied. Peres
et al. [29] investigated the anticorrosion performance of
TEOS-GPTMS HCs on AZ31 alloy with the addition of
different content of SiO2 nanoparticles, which showed that
the addition of the nanoparticles could improve the corro-
sion resistance of the coating. Besides those mentioned
above, TiO2 has photocatalytic activity and can prevent
bacteria from damaging the substrate and coating by killing
bacteria [30, 31]. Meanwhile, TiO2 produces a large number
of electrons under ultraviolet light, which may inhibit the
corrosion of metals and in some degree achieve photo-
cathode protection [32, 33].

Herein, the corrosion resistance coating was successfully
fabricated on the cast Al–Si alloy surface by dip coating
method. In this system, the introduction of nano-TiO2 could
help to improve the densification and achieve a good barrier
property of the BTSE-GPTMS hybrid sol–gel/nano-TiO2

(BG-T) coating. The chemical structure was analyzed by
Fourier-transform infrared (FT-IR). The coatings morphol-
ogy and microstructure were observed by scanning electron
microscopy (SEM) and their compositions were analyzed
by energy dispersive spectrometer (EDS). Meanwhile, the
corrosion resistance and long-term durable performances of
the coatings were evaluated by electrochemical impedance
spectroscopy (EIS) and potentiodynamic polarization. The
mechanism of nano-TiO2 modification was also discussed
in detail. The as-prepared BG-T coating was certified to
have a long-term durable performance and can be prolongs
its service life.

2 Experimental

2.1 Materials and chemicals

Samples of cast Al–Si (EN AC-43000) alloy with dimensions
of 15 × 15 × 3mm were used as the substrate material. The
chemical composition of the alloy is listed in Table 1. The
substrates were abrased with emery abrasive papers from 200
to 1000 grits and washed with deionized water. Then the
substrates were immersed in alkali solution (including 5 wt.%

Table 1 Chemical composition of the received material

Element Si Mg Fe Ni

wt.% 9.850% 0.225% 0.122% 0.004%

Element Ti Mn Zn Al

wt.% 0.024% 0.136% 0.070% 89.50%
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sodium hydroxide and 3.5 wt.% sodium carbonate) at room
temperature for 1 min. Afterwards, the substrates were ultra-
sonically cleaned with deionized water and anhydrous ethanol
for 3 min at room temperature, respectively, and kept dry
prior to use. Bis (triethoxysilyl) ethane (BTSE) and
3-glycidoxypropyl-trimethoxysilane (GPTMS) were pur-
chased from Bide Pharmatech Ltd. Nano-TiO2 (99.8%,
5–10 nm, anatase) was purchased from Aladdin. All chemi-
cals were used without further purification. Self-made deio-
nized water was used in the experiment process.

2.2 Synthesis and characterization of hybrid sol–gel
coating

The coating solution (coating I) was prepared from pre-
cursors of GPTMS and BTSE. In detail, GPTMS (12 mL)
and BTSE (10 mL) were added in turn to mixed solution of
water (10 mL) and ethanol (100 mL). Afterwards, 0.5 mL
acetic acid was added as catalyst to ensure hydrolysis
reaction. The mixed solution was stirred at room tempera-
ture for 12 h. Finally, the final coating solution was
obtained. The second coating solution (coating II) was
prepared by adding nano-TiO2 (1.6 g) into 100 mL coating I
solution, followed by high speed stirring 1 h at room tem-
perature. The final molar ratio of coating solution II was
GPTMS: BTSE: nano-TiO2= 2:1:1. The surface coating
was fabricated by immersing the cleaned alloy substrate in
the coating solution II, withdrawing from the solution at a
speed of 10 cm/min. Subsequently, the treated substrate was
dried for 30 min at 120 °C and the BG-T coating was
obtained. In a comparison, the BG coating without intro-
duction of nano-TiO2 was also prepared by similar process.

2.3 Characterization

The chemical composition and structure of the BG and BG-
T coatings were characterized by FT-IR spectrophotometer
(Nicolet iS10, U.S. Company Thermo Scientific) within a

range of 400–4000 cm−1, the resolution is 4 and the number
of sample scans is 16. The coatings were scraped from the
substrate and prepared as a finely pressed powder. The
coating powder and KBr are mixed and pressed for infrared
transmission spectra. The morphologies and elemental ana-
lysis of the Al–Si alloy, BG, and BG-T coating were
investigated by SEM (Sirion) equipped with an EDS. The
potentiodynamic polarization analyses and EIS were used
for analyzing the corrosion resistant performances of the
samples in 3.5 wt.% NaCl aqueous solution, which was
carried out with a CHI604E electrochemical workstation
(Shanghai Chenhua Instruments Inc., PR China). A three-
electrode cell was used: a working electrode (the sample
with an exposed area of 1 cm2), a platinum sheet counter
electrode and a saturated calomel reference electrode (SCE).
After 1 h of initial delay, the polarization curves were
scanned from −1.5 V to 0.5 V at a rate of 0.01 V/s. The
measuring frequency range of the EIS test was from 100 kHz
down to 100 mHz with a perturbation potential of 0.02 V.

3 Results and discussions

3.1 FT-IR spectra of samples

Figure 1 shows the FT-IR spectra of BG coating, BG-T
coating and nano-TiO2. The peaks at 3410, 1630, 1385 cm

−1

and range from 400 to 700 cm−1 shown in Fig. 1c are
characteristics of nano-TiO2 [34, 35]. Remarkably, there is a
peak located at 3410 cm−1 corresponding to the character-
istic absorption peak of hydroxyl group, which confirm the
existence of hydroxyl groups on the surface of nano-TiO2.
Form the profile of the BG coating as shown in Fig. 1a, the
peaks appeared at wave number 3428 and 760 cm−1 corre-
spond to stretching vibration of functional groups of –O–H
and the Si–O, respectively. The peaks at wave numbers 2938
and 2888 cm−1 are belong to the C–H stretching vibration
absorption and the peaks at 1269 and 908 cm−1 are assigned

Fig. 1 FT-IR spectra and fitting analysis of (a) BG coating, (b) BG-T coating, and (c) nano-TiO2
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to the characteristic absorption peak of epoxy group [24].
The relative bands at around 1020 and 1108 cm−1 are related
to the stretching vibration of the Si–O–Si chemical bond
[25, 26, 36], which indicate the successful condensation
process. Compared with the profile of BG coating, the peak
area of hydroxyl group (the peak at 3428 cm−1) is obviously
reduced on the spectra of BG-T coating as shown in Fig. 1b.
Besides, according to the fitting analysis of FT-IR in Fig. 1b,
an obvious peak of BG-T coating appears at 1060 cm−1,
which is associated with the Si–O–Ti stretching vibration
[37, 38]. Test results show that nano-TiO2 and BG sol–gel
are bonded together through a chemical reaction.

Figure 2 shows the mechanism model of the BG-T
coating preparation process. Above all, BTSE and GPTMS
react with water to form Si–OH by hydrolysis reaction
under acetic acid catalysis. Afterwards, the Si–OH groups
form oligomeric siloxane through the dehydration con-
densation reaction, and a three-dimensional cross-linked
network structure is formed after a curing reaction. More-
over, the above mentioned Si–OH and hydroxyl groups of
the substrate produced by the alkali treatment [26] could
form strong Si–O–Al covalent bond on the surface of Al–Si
alloys under a curing reaction [15, 39]. Besides, the FT-IR
results imply the existence of hydroxyl group on the surface
of the nano-TiO2, which can react with Si–OH to form
Ti–O–Si covalent bonds [37]. These results could confirm
an improved density of the cross-linked network in this
system that can increase the shielding effectiveness, and
thus improve the corrosion resistance of the coating.

3.2 Morphologies of samples

The morphologies of Al–Si alloy, BG, and BG-T coatings
are observed by SEM and the images are shown in Fig.

3a–c. Figure 3a shows the typical micromorphology of
Al–Si alloy, there are a multitude gray spots of silicon
particle on the surface of substrate [40–42]. The BG coating
covers the substrate surface uniformly and there are no
cracks and holes observed as shown in Fig. 3b. The
microstructure of the BG-T coating is similar to that of BG
coating, while many island particles can be discovered from
the high-resolution image as shown in Fig. 3c. Figure 3d–i
presents the EDS mapping images for the distribution of the
elements in BG-T coating (Fig. 3c). It can be seen that all
elements in the BG-T coating, especially Ti element, have
uniform distribution, indicating a uniform, and compact
coating on the Al–Si alloy substrate.

Figure 4 shows the SEM images for the cross-section of
the BG and BG-T coatings, and the corresponding ele-
mental mapping of the BG-T coating. As can be seen in the
Fig. 4a, a′, the thickness of BG coating is about 2.7 ±
0.3 μm. Moreover, there is no crack and pore defect on the
coating and high bond strength exists between the coating
and substrate. In addition, the thickness of BG-T coating is
about 3.0 ± 0.3 μm and the cross-section micrographs is
similar to that of the BG coating shown in the Fig. 4b, b′. It
can be deduced that introducing nano-TiO2 into the BG
coating will not destroy the original microstructure of the
coating and only shows an increase in thickness slightly.

3.3 Morphologies of the samples with different
immersion time

In addition, immersion corrosion tests are performed to
investigate the corrosion resistance of the samples. Figure 5
shows the SEM images of the Al–Si alloy, BG, and BG-T
coating after 7 and 15 days immersion in 3.5 wt.% NaCl
aqueous solution, respectively. For the Al–Si alloy, serious

Fig. 2 Schematic illustration for the reaction of BTSE, GPTMS, and nano-TiO2
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pitting corrosion on the surface of the substrate was
occurred after 7 days of immersion and it was completely
destroyed after 15 days. For the BG coating, it showed a lot
of cracks on the surface of the coating after 7 days

immersion. The cracks on the coating surface became larger
from 1.8 to 10.8 μm in the width after 15 days. For the BG-
T coating, the morphology of the coating is similar to that of
the original sample (Fig. 3c). In addition, the surface of the

Fig. 3 a–c surface morphologies
with different magnification of
Al–Si alloy, BG, and BG-T
coating, respectively. d–i the
elemental mapping of the BG-T
coating (c)

Fig. 4 Cross-section
micrographs (a, a′) with
different magnification of BG
coating. Cross-section
micrographs (b, b′) with
different magnification of BG-T
coating and the corresponding
elemental mapping (c–e)
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coating did not significantly change after 7 days immersion.
Until immersion for 15 days, small cracks appeared on the
surface of the coating, which was about 0.4 μm in the width.
The results show that the corrosion resistance of BG-T
coating is better than that of BG coating. It can be deduced
that a dense coating with a network structure is formed by
introduction of nano-TiO2, which makes the coating more
stable in the external environment.

3.4 Corrosion resistance of coatings

The polarization curves and electrochemical parameters of
the Al–Si alloy, BG, and BG-T coating after immersion of
1 h in 3.5% NaCl aqueous solution are shown in Fig. 6 and
resulting data are exhibited in Table 2, respectively. The
corrosion potential (Ecorr) and corrosion current density
(Icorr) are calculated from the plots by extrapolation method
[43, 44]. Besides, the protection efficiency η is calculated by
the following equation [45–47]:

η% ¼ I0corr � I1corr
� �

I0corr
� � � 100%;

where I0corr and I1corr are the corrosion current density of the
bare substrate and coated samples, respectively. Compared
with untreated substrate, the Ecorr value of BG coating is
positive about 700 mV, while the Icorr value is about 1.10 ×
10−5 A cm2, which decreases with about one order of
magnitude. Thus, the corrosion resistant property of Al–Si
alloy is improved effectively by BG coating, which is due to
the BG coating acts as a physical barrier to block the
aggressive media from attacking the surface of the substrate
[25, 48]. Moreover, the curve of BG-T coating is similar to
that of the BG coating. Whereas the Ecorr is more positive
than that of BG coating, while the Icorr is about 6.03 × 10−6

A cm2 and much lower than that of the BG coating. More
importantly, the η of the BG-T coating calculated is
96.37%, significantly higher than 93.37% of BG coating.
The results show that the addition of nano-TiO2 can
effectively improve the corrosion resistance of the coating.

As an effective and powerful measurement, the EIS is
used to evaluate the barrier and anticorrosion capability of
different coatings in 3.5 wt.% NaCl solution. Figure 7
shows the Nyquist plots of the different coating systems.
The capacitive loop of the BG and BG-T coatings are sig-
nificantly higher than the untreated substrate, which further
indicates that the coating can effectively improve the cor-
rosion resistance of the substrate. Moreover, compared with
the capacitive loop of the BG coating, the diameter of the
capacitive loop of the BG-T coating increases significantly,
which indicates that the BG-T coating can enhance the
corrosion resistance more effectively than BG coating.
Besides, with the extension of immersion time, the Nyquist
plots show the shrinking capacitive loop, implying the
declined corrosion protective performance of the substrate
[23, 45].

The bode plots and bode phase of the bare substrate, BG
and BG-T coating during immersion in 3.5% NaCl are
shown in Fig. 8. The corresponding equivalent circuit (EC)
models for the EIS spectra are presented in Fig. 9. The
Fitted results are listed in Tables 3–5. For the bode plots, the
impedance modulus at low frequency (|Z| 0.1 Hz) is used to
measure the ability of coating to prevent corrosion [49]. As
a general rule, a larger |Z| in low frequency indicates a better
corrosion resistance. The values of the impedance modulus
(|Z| 0.1 Hz) of the coatings are larger than that of the bare
substrate, and the BG-T coating has the largest values. As
revealed by the phase angle plots, the bare substrate seemed

Fig. 5 Surface morphologies with different immersion time of Al–Si
alloy, BG, and BG-T coating

Fig. 6 The potentiodynamic polarization plots of Al–Si alloy, BG, and
BG-T coating

Table 2 The electrochemical parameters of the samples

Sample Ecorr (V SCE) Icorr (A cm2) η

Al–Si alloy −1.22 1.66 × 10−4 –

BG coating −0.58 1.10 × 10−5 93.37

BG-T coating −0.38 6.03 × 10−6 96.37
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to have one time constant over the recorded range, the EC1
in Fig. 9 can be used to fitting the EIS result of the bare
substrate. In contrast, the BG and BG-T coating samples
show mainly two-time constants and an EC2 model can be
used to describe their behavior. Where Rs is the solution
resistance, Rp and Qp present the coating resistance and
capacitance. Rct and Qct represent the charge-transfer resis-
tance and double-layer capacitance, which is used to
describe the charge-transfer process of the interface of the
coating. The CPE is used to replace the coating capacitance
due to the electric double-layer cannot act as an ideal

capacitor in real electrochemical system. The barrier layer
resistance (approximate to the Rct) of each sample is
obtained from the fitting results. It can also be seen from
Fig. 10 and Tables 3–5 that the Rct of BG coating is
decreased from 50.9 to 4.9 kΩ cm2 with the immersion time
increasing, the final value is slightly higher than that of the
original substrate. However, the introduction of nano-TiO2

could effectively improve both the normal and prolonged
anticorrosion performance, and the Rct could reach 193 kΩ
cm2 at the initial immersion, which is significantly higher
than that of the BG coating. Besides, the decreasing speed

Fig. 7 The Nyquist plots of bare substrate, BG coating (a) and BG-T coating (b)

Fig. 8 EIS Bode plots obtained for the bare substrate and coating samples with different immersion time. a Bode impedance of BG coating, b bode
impedance of BG-T coating, c bode phase of BG coating, and d bode phase of BG-T coating
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of Rct of BG-T coatings is obviously less than that of BG
coatings during the immersion period. This is because the
existed nano-TiO2 improves the density of the coating,
which increases the shielding effectiveness and retards the
degradation of the coating in chloride solution [50]. Even
after immersion for 360 h, the Rct also still keep as large as
15.4 kΩ cm2, which is approximately three times higher
than that of the bare substrate. These test results show that
doped nano-TiO2 coating could significantly enhance the

sustainable corrosion protection performance of the Al–Si
alloy substrate.

4 Conclusion

In summary, hybrid organic–inorganic sol–gel coating
modified with nano-TiO2 was successfully fabricated on
cast Al–Si alloy substrate with uniform thicknesses by
condensation reaction and the nanoparticles distribute uni-
formly in the organic matrix. The addition of nano-TiO2 has
a significant effect on the structure and performance of the
composite coatings. The morphology of the BG-T coating
presents that a dense and uniformly covers on the Al–Si
alloy substrate formed a corrosion resistance coating and
exhibits excellent interfacial adherence with the substrate.
Moreover, the BG-T coating shows no significant variation
after 7 days of immersion in 3.5 wt.% NaCl solution and
only a small number of cracks appeared on the surface after
15 days immersion. The corrosion resistance of the BG
coating could be improved effectively by introduction of
nano-TiO2, which leads to reduce the corrosion current and
makes the corrosion potential more positive. Moreover, the
impedance modulus value reached above 193 kΩ cm2.
Notably, after 360 h immersion, the coating still had
excellent protective effect.
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Fig. 9 Equivalent circuits (EC) used to fit the EIS diagrams for (a) bare
substrate, (b) BG and BG-T coating

Table 3 EIS fitting parameters of the Al–Si alloy

Samples Rs

Ω cm2
Qp

Sn Ω−1 cm−2
Rct

Ω cm2

Al–Si alloy 14.36 7.10 × 10−5 2.67 × 103

Table 4 EIS fitting parameters of the BG coating systems at various
immersion times

Samples Rs

Ω cm2
Qp

Sn Ω−1 cm−2
Rp

Ω cm2
Qct

Sn Ω−1 cm−2
Rct

Ω cm2

1 h 13.74 1.17 × 10−6 1.49 × 102 6.36 × 10−6 5.09 × 104

72 h 13.15 4.82 × 10−6 1.83 × 102 1.30 × 10−5 1.71 × 104

120 h 15.73 1.07 × 10−5 1.64 × 102 2.03 × 10−5 1.02 × 104

240 h 16.02 2.52 × 10−5 1.17 × 102 2.52 × 10−5 8.03 × 103

360 h 14.17 5.36 × 10−6 1.14 × 102 4.52 × 10−5 4.86 × 103

Table 5 EIS fitting parameters of the BG-T coating systems at various
immersion times

Samples Rs

Ω cm2
Qp

Sn Ω−1 cm−2
Rp

Ω cm2
Qct

Sn Ω−1 cm−2
Rct

Ω cm2

1 h 19.37 9.63 × 10−7 1.11 × 103 3.39 × 10−6 1.93 × 105

72 h 10.93 1.03 × 10−6 6.63 × 102 6.84 × 10−6 9.68 × 104

120 h 19.78 5.03 × 10−6 8.15 × 102 6.96 × 10−6 4.52 × 104

240 h 15.79 1.09 × 10−5 3.27 × 103 8.31 × 10−5 3.77 × 104

360 h 17.88 1.17 × 10−5 6.35 × 102 9.11 × 10−6 1.54 × 104

Fig. 10 Resistance of the BG and BG-T coating with different
immersion time
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