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Abstract
Development of new adsorbents for efficient capturing of mercury (Hg(II)) ions from aqueous solution is of significant
importance in environmental area. In this work, mesoporous silica nanoparticles with different morphologies (flower-like
nanospheres with wrinkles, nanoparticles with concavities and sunken nanovesicles) were prepared and functionalized with
3-mercaptopropyltrimethoxysilane (MPTS). The as-prepared materials were characterized by different technics and applied
for Hg2+ removal from aqueous solution. The sample with flower-like nanospheres morphology exhibited highest surface
area and pore volume among the three silica samples, and the corresponding S-H groups functionalized nanospheres showed
the highest adsorption capacity of 479 mg/g and fast adsorption rate for Hg2+. The isotherm and kinetics data fitted well with
the Langmuir isotherm and the pseudo-second-order kinetics model, respectively. Furthermore, the above adsorbent could be
easily regenerated and the regeneration efficiency could remain 94% up to three cycles of the regeneration.
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Highlights
● Thiol-functionalized silica nanoparticles with different morphology were prepared.
● The functionalized nanoparticles exhibited high Hg2+ adsorption capacity of 479 mg/g.
● The thiol-functionalized silica can adsorb Hg2+ quickly and be regenerated easily.
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1 Introduction

With the rapid development of industry, water pollution
caused by releasing of heavy metals has become a serious
environmental problem. As a typical hypertoxic heavy
metal, mercury (Hg(II)) is usually released directly to the
environment through dissolving in liquids, and effectively
removing aqueous Hg(II) has been a major challenge [1–3].
Various technologies have been developed to remove Hg
from water, such as chemical precipitation, adsorption, and
ion exchange etc [4–6]. Among these techniques, adsorptive
removal is considered to be the most effective and eco-
nomic one [7–9]. To date, a wide variety of adsorbents have
been studied for Hg removal, however, conventional
adsorbents often have several disadvantages such as low
adsorption capacity and selectivity [10–12].

It has been recognized that incorporation of thiol groups
onto porous materials could enhance the capture of heavy
metals from aqueous solution, and the support materials
often played a vital role [13, 14]. Although different porous
supports such as SBA-15 [15], vermiculite [16], and Coal
Fly Ash [17] have been investigated for the Hg2+ adsorp-
tion, these adsorbents suffer from some drawbacks such as
low grafted amount of thiols and poor recyclability. Thus,
development of new support materials is still urgent.

In this work, mesoporous silica nanoparticles with dif-
ferent morphologies were prepared and used as support
materials for incorporation of thiol groups. In addition,
factors affecting adsorption of Hg by the above materials
were investigated, including adsorption kinetics, adsorption
isotherms, and recyclability.

2 Experimental

2.1 Synthesis of mesoporous silica nanoparticles

The mesoporous silica nanoparticles were synthesized
according to a reported method with minor changes [18]. In
a typical procedure, 1.750 g of cetyltrimethylammonium
bromide was dissolved into a mixture of 100 mL of deio-
nized water and 25 mL of ethanol. Then, 2.5 mL of 1-
Pentanol was added to the above solution. After stirring for
5 min, different amount of NH3∙H2O　(0.5, 1.5, or 2.5 mL)
and 11 mL of tetraethoxysilane were added, resulting in the

formation of white precipitate, followed by continuous
stirring for 6 h at 40 °C. Subsequently, the precipitate was
separated and washed with deionized water and ethanol for
several times, and then dried at 50 °C in air. Finally, the as-
prepared silica was calcined at 600 °C for 2 h in air. The
obtained samples were labeled as SiO2-x, where x repre-
sents the amount of NH3∙H2O added during the synthesis.

2.2 Synthesis of thiol-functionalized mesoporous
silica nanoparticles

Thiol-functionalized mesoporous silica nanoparticles were
prepared by the following procedure. First, 5 mL of 3-
mercaptopropyltrimethoxysilane (MPTS) was dropped into
a suspension containing 50 mg of the as-prepared SiO2

nanoparticles dispersed in 30 mL of dried toluene. Then, the
mixture was refluxed at 90 °C for 12 h. Finally, the white
product was collected by centrifugation, washed several
times with toluene and methanol, and dried at 80 °C for 12
h. The prepared sample was marked as SiO2-SH.

2.3 Characterization

The morphology of the samples was taken with a FEI
Quanta 400 FEG scanning electron microscope (SEM). N2

adsorption–desorption isotherms were measured in a
Quantachrome iQ2 porosimeter after sample degassing at
100 °C overnight. The pore size distribution was analyzed
using Barrett–Joyner–Halenda (BJH) method based on the
desorption branch. Average pore diameter was calculated as
4 V/A (V: pore volume; A: surface area). Thermogravi-
metric analysis (TGA, Netzsch STA 449 F5) measurement
was performed under Ar gas at a flow rate of 100 cm3/min
and a temperature ramp rate of 10 °C/min. Fourier‐Transform
Infrared (FT-IR) spectra were measured with a Thermo
Nicolet iS5 spectrometer.

2.4 Adsorption

Typically, 10 mg of adsorbent was put into 100 mL of
Hg2+ solution with different concentrations. The mixture
was drawn at regular intervals and filtered by a 0.45 µm
filter membrane for analysis. The concentration of
Hg2+ was measured with an elemental mercury analyzer
(DMA-80).
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3 Results and discussion

The morphologies of silica nanoparticles prepared with
different amount of NH3∙H2O are shown in Figs. 1a−c. It
can be clearly seen that the sample prepared with 0.5 mL of
NH3∙H2O shows a flower-like nanospheres with wrinkles on
its surface and has an average diameter of about 280 nm.
With the amount of ammonia increased to 1.5 mL, the sur-
face of nanoparticles became smooth with appearance of
some concavities. There is also an increase of the diameter to
around 400 nm. Further increasing the ammonia amount to
2.5 mL, sunken nanovesicles can be observed with diameter
of 360 nm. The morphologies of nanoparticles prepared here
are consistent with the reported results [18]. However, the
particle size became larger, especially for sample SiO2-0.5
and SiO2-1.5, which may be due to the relatively large-scale
preparation. With surface modification with MPTS, the
morphologies of those silica nanoparticles show little
change, as revealed in Figs. 1d−f. The MPTS on the surface
of silica was investigated by Energy dispersive X-ray (EDX)
elemental mapping, as shown in Figs. 1g−i, S element from
MPTS could be detected and uniformly dispersed on the
surface of silica nanoparticles, which suggests successful
incorporation of mercaptopropyl group on the silica.

The functional groups on the silica and MPTS modified
silica was investigated by FT-IR (Fig. 2a). A broad peak at
3439 cm−1 and a strong peak around 1091 cm−1 are
observed for all samples, which can be assigned to silanol
-OH stretching and asymmetric Si-O-Si vibrations, respec-
tively [19]. After modification with MPTS, a very weak
peak appeared at 2560 cm−1 can be assigned to the -SH

group [20], which further confirmed the successful grafting
of S-H groups onto the silica. The surface area and porosity
data of the materials are summarized in Table 1 and N2

adsorption–desorption isotherms of SiO2 and modified SiO2

are depicted in Fig. 2b and Fig. S1. It could be seen that
SiO2-0.5 shows type IV isotherm with an obvious hyster-
esis loop at high relative pressure. The SiO2-0.5 shows the
highest surface area and pore volume. There is a small
decrease of surface area and pore volume with increasing
ammonia amount for the SiO2 samples. However, a sig-
nificant reduction of them is observed for MPTS modified
SiO2, which should be attributed to occupation of the pores
by organic groups. Interestingly, greater extent of loss
in surface area was obtained for SiO2-1.5 and SiO2-2.5
( > 66%) after surface functionalization, compared with that
of SiO2-0.5 (with a loss of ~52). This phenomenon should
be associated with relatively small pore size of the former,
as partial pores in them may impede the entry of the organic
groups during the functionalization.

The TGA analysis of pure SiO2 and surface modified
SiO2 samples were shown in Fig. S2. For pure SiO2 sam-
ples, an initial weight loss at < 100 °C was due to loss of
adsorbed water molecule and little weight change can be
seen with further increasing temperature. Whereas, for
SiO2-SH samples, weight loss at temperature lower than
100 °C was smaller, and this was due to the presence of the
hydrophobic mercaptopropyl group on the surface of silica
[20]. Moreover, a weight loss at temperature > 300 °C could
be assigned to the decomposition of mercaptopropyl group.
The calculated mass loss between 300 and 800 °C was 17, 10,
and 12% for SiO2-SH-0.5, SiO2-SH-1.5, and SiO2-SH-2.5,

Fig. 1 Scanning electron
microscope (SEM) images of a
SiO2-0.5, b SiO2-1.5, c SiO2-
2.5, d SiO2-SH-0.5, e SiO2-SH-
1.5, f SiO2-SH-2.5, and g
elemental mappings (×7378
magnification) of h Si and i S of
SiO2-SH-0.5
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respectively, indicating that SiO2-SH-0.5 owns the most
mercaptopropyl groups on its surface.

The adsorption capacities of different SiO2 and SiO2-SH
for Hg2+ was comparatively studied (initial CHg(II)= 100

mg/L, T= 30 °C) and the results are shown in Fig. 3a. Pure
SiO2 adsorbed small amount of Hg2+, after modification,
the adsorption capacity improved dramatically. Among all
the samples, SiO2-SH-0.5 exhibited the highest adsorption
capacity of 87.3 mg/g, in virtue of the highest amount of
mercaptopropyl group and surface area. Consequently,
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Fig. 2 a FT-IR of different SiO2 and SiO2-SH samples and b N2

adsorption-desorption isotherms of SiO2 -0.5 and SiO2-SH-0.5 (the
insert is the corresponding pore size distributions)

Table 1 The surface area and pore properties of SiO2 and SiO2-SH
samples

Samples BET surface
area (m2/g)

Pore volume
(cm3/g)

Average pore size
(nm)

SiO2-0.5 1046.3 1.9 9.0

SiO2-1.5 869.0 1.0 3.7

SiO2-2.5 904.6 0.8 3.6

SiO2-SH-0.5 499.5 1.2 16.2

SiO2-SH-1.5 295.6 0.7 5.5

SiO2-SH-2.5 305.9 0.5 6.6
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Fig. 3 a Adsorption capacity of different SiO2 and SiO2-SH samples
for Hg2+, b adsorption isotherm of Hg2+ on SiO2-SH-0.5, and c effect
of contact time on adsorption of Hg2+ on SiO2-SH-0.5 (the insert is the
recyclability of SiO2-SH-0.5)
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SiO2-SH-0.5 was selected for further study. The effects of
initial Hg2+ concentration and contact time on the adsorp-
tion are shown in Figs. 3b, c, respectively. There is a rapid
increase of adsorption capacity at initial stage and gradual
stabilization as the initial Hg2+ concentration increased. The
saturated adsorption capacity could be as high as 479 mg/g,
which was much higher than other recently reported SH-
functionalized sorbents, such as thiol modified Fe3O4@-
SiO2@C (184 mg/g) [21], Fe3O4@Cu3(btc)2 (348.43 mg/g)
[22] and mercaptoamine-functionalized silica-coated mag-
netic nanoparticles (355 mg/g) [23]. It is also comparable
with those of thiopyrene-containing porous carbon (518 mg/
g) [24], MoS4

2− intercalated Layered double hydroxides
(LDH) (500 mg/g) [25] and MOF (Metal-organic frame-
works) FJI-H12 (439.8 mg/g) [26]. Figure 3c reveals that
the adsorption process can be completed in 4 h, which
demonstrated a rapid adsorption of Hg2+ with SiO2-SH-0.5.

Different typical isotherm and kinetic models have been
used to further describe the adsorption behavior of SiO2-
SH-0.5 for Hg removal. And their equations are shown in
supporting information. Fig. S3 showed the fitting results of
Langmuir and Freundlich isotherm models, and the para-
meters are presented in Table S1. It is found that Langmuir
model provided a better fit to the adsorption data than
Freundlich model, with higher correlation coefficient (R2 >
0.976). Moreover, the maximum adsorption capacity cal-
culated by Langmuir equation was closer to the value
obtained by experiment. This suggests that a monolayer
adsorption occurred on the surface of SiO2-SH-0.5. The
kinetic data are formulated by the pseudo-first-order model
and pseudo-second-order model, respectively (Fig. S4).
Compared with the pseudo-first-order model, the pseudo-
second-order model gives better correlation coefficient
( > 0.998) for Hg2+ adsorption, and the calculated adsorp-
tion capacity is in good agreement with the experiment
value (Table S2). This result indicates that the adsorption of
Hg2+ by SiO2-SH-0.5 follows the pseudo-second-order
model, and chemisorption may be involved in the adsorp-
tion process [27, 28].

After adsorption, SiO2-SH-0.5 was regenerated by
washing with HCl solution (1M) containing 1 wt. % of
thiourea and subsequent separation and drying in air. Then,
the recyclability was evaluated, and the results show that
SiO2-SH-0.5 exhibit good reuse stability, for >94% of its
original capacity could be retained after three adsorption–
desorption cycles (Fig. 3c).

4 Conclusions

Three mesoporous silica nanoparticles with different
morphologies were prepared by adjusting amount of
ammonia during the synthesis. The sample with flower-

like nanospheres morphology exhibited highest surface
area and pore volume. Then the as-prepared silica nano-
particles were functionalized with MPTS and used as
adsorbent for Hg2+ removal from aqueous solution. After
modification, the sample with flower-like nanospheres
morphology shows a highest Hg2+ adsorption capacity
of 479 mg/g. Besides, the above adsorbent can adsorb
Hg2+ quickly and be easily regenerated, which makes it
potential to be an effective and promising adsorbent for
Hg2+ removal.
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