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Abstract
In this work, phosphorus oxychloride was grafted onto the surface of raw sawdust (RSD) particles to get effective adsorbent
for capturing Cd(II), Cr(III), and Pb(II) metal ions from aqueous medium. Phosphorylated raw sawdust (RSD@P) was
characterized by FTIR, TGA, SEM-EDX, TEM, BET, and XPS analyses. Various experimental conditions of adsorption viz.
pH, contact time, temperature, and initial concentration were optimized. The adsorption behavior of RSD@P concerning
adsorption kinetics, isotherms and thermodynamics was also studied. The values of qe for Cd(II), Cr(III), and Pb(II) metal
ions onto RSD@P was found to be 244.3, 325, and 217 mg/g, respectively at 298 K according to monolayer Langmuir
adsorption. The adsorption kinetics data revealed that Cd(II), Cr(III), and Pb(II) metal ions were well fitted to pseudo-
second-order kinetic model. The thermodynamic results demonstrated that adsorption was spontaneous and exothermic. The
mechanisms of interactions was also discussed for the adsorption of Cd(II), Cr(III), and Pb(II) metal ions over RSD@P. The
obtained results showed that RSD@P was an auspicious adsorbent which showed outstanding reusability for the removal of
metal ions from aqueous medium.
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Highlights
● Crosslinked phosphorylated raw sawdust (RSD@P) was prepared.
● The material (RSD@P) was used for the removal of Cd(II), Cr(III), and Pb(II) from aqueous medium.
● Adsorption of all metal ions onto RSD@P was rapid, spontaneous, and exothermic.
● The values of qe for Cd(II), Cr(III), and Pb(II) was 244.3, 325, and 217 mg/g, respectively.
● The RSD@P was regenerated by simply washing with 0.1 M HCl solution.

Keywords Phosphorylated sawdust ● Adsorption ● Toxic metals ● Adsorption models

1 Introduction

Obtaining pure water is a major concern and great demand
for humane life because it is continuously polluted by toxic
heavy metals which leads to serious environmental pro-
blems to many forms of life [1–3]. Aqueous wastes of many
industries, modern urbanization, mining and dissolution
from the associated geologic formations are main sources of
water contamination by heavy metals [4, 5]. Lead, cadmium
and chromium are main metals whose existence in aqueous
solutions leads to many health problems [6–8]. So, it is one
of the most important challenges to the scientist to remove
these toxic metal ions from aqueous environment [9, 10].
Several trials and efforts have been demonstrated using
various treatments such as adsorption, ion exchange, reverse
osmosis, chemical precipitation, electrochemical removal,
and biosorption [11–14].

Adsorption has considerably been used because of its
effectiveness and economic visibility. Lead, cadmium,
and chromium has been removed by using several
adsorbents [7, 15–17]. In recent years, the search for
economical and convenient adsorbents based on naturally
found materials and/or their modification has been
increasingly demanded. Sawdust, as one of the alternative
absorbent materials has been particularly used for the
exclusion of various metal ions from aqueous medium [5,
18, 19]. Wood sawdust is widely available as a waste of
carpenter workshops and its chemical composition con-
tains cellulose, hemicelluloses, and lignin. Hence, we
attempted to modify the wood sawdust to increase its
efficiency for heavy metal removal. The modification
process was based on increasing the uptake capacity
through introducing phosphate as ion exchange groups.
Recently, the oak tree sawdust has been modified by
phosphate groups using phosphoric acid for the removal
of lead ions [20]. However, our modification involves a
new procedure for phosphorylation the hydroxyl groups
on wood sawdust components using phosphorous oxy-
chloride. The modified sawdust was subjected to different
analyses and its applications for the adsorptive removal of
lead, cadmium and chromium was also examined.

2 Experimental

2.1 Materials and chemicals

The chemicals and reagents which were used here were of
analytical reagent grade. HNO3 and NaOH were procured
from Merck, Germany. Cr(NO3)3, Pb(NO3)2, Cd(NO3)

2.4H2O, and HCl were purchased from BDH, England.
Phosphorus oxychloride (POCl3), Triethylamine (HPLC
grade; 99%) and Tetrahydrofuran were obtained from
Scharlau, Spain and Lobal Chemic laboratory Reagent and
Fine Chemicals, India, respectively.

2.2 Synthesis of crosslinked phosphorylated raw
sawdust

Sawdust was obtained from carpentry workshops and its
phosphorylation reaction was carried out by sol–gel method
as follows: 3 g of sawdust was added to a mixture con-
taining 10 mL of tetrahydrofuran (THF) and 5 mL of trie-
thylamine (TEA). The mixture was cooled in ice bath with a
dropwise addition of 15 mL phosphorus oxychloride to the
mixture. The mixture was then refluxed for 1 h. The attained
yield was repetitively washed with hot distilled water and
dried at 70 °C for 12 h. The obtained product of phos-
phorylated raw sawdust was designated as (RSD@P).

2.3 Adsorption studies

The batch mode experiments were done to test the
adsorption of Cd(II), Cr(III), and Pb(II) onto RSD@P.
Typically, 15 mg of RSD@P adsorbent was taken in 100
mL conical flask having 25 mL of 25 mg/L from each metal
ion separately at 298 K and shaken at 100 rpm for 24 h.
After a fixed time interval, an aliquot of the sample was
withdrawn from the flask and the concentration of each
metal ion in the supernatant was determined by AAS. The
% adsorption and qe at equilibrium was determined as:

Adsorption% ¼ Co � Ce

Co
� 100 ð1Þ
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qe mg=gð Þ ¼ Co � Ceð ÞV
m

ð2Þ

The effect of pH on the removal of Cd(II), Cr(III), and Pb
(II) metal ions using RSD@P was examined in the pH range
of 2 to 10. The effect of contact time on the adsorption of
these metals was done in the time range of 1 to 1440 min.
Moreover, the effect of initial concentration of the current
metal ion adsorption was investigated for diverse Co range:
25 to 300 mg/L at different temperatures; 25 to 45 °C.

Desorption experiments were also investigated in batch
method. 15 mg of RSD@P was added to 25 mL of 25 mg/L
each of metal ions solution under agitation speed of 180 min
at 298 K. After 180 min, Cr(III), Cd(II), and Pb(II) metal
ions saturated RSD@P sample was isolated from aqueous
solution through filtration and it was treated with 25 mL 0.1
M HCl to elute Cd(II), Cr(III), and Pb(II) metal ions. After
180 min, the RSD@P sample was separated from the
solution phase and the concentration of metal ions in the
solution phase was evaluated using AAS and the percentage

of desorption of these metal ions were found as:

Desorption% ¼ Conc:of metal ions desorbed by eluent
Initial conc:of metal ions adsaorbedonRSD@P � 100

ð3Þ

We also tried 0.1 M HNO3 solutions for the elution of these
metal ions using the same procedure mentioned above.

3 Results and discussion

3.1 Characterization of RSD and RSD@P

The RSD and RSD@P samples were characterized by SEM-
EDX, TEM, FTIR, TGA-DTA, XRD, BET, and XPS and
details are given in Text S1 (Supplementary material). Figure
1a shows the FTIR spectra of RSD and RSD@P (before and
after adsorption). The strong peak at ∼3423 cm−1 and ∼1662
cm−1 could be accredited to O–H vibrations signifying the

Fig. 1 FT-IR spectra of a RSD and RSD@P before and after metals adsorption onto RSD@P b TGA-DTA curves corresponding to RSD c and
RSD@P
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presence of cellulose, hemicellulose and lignin. Peaks at 2918
and 2845 were attributed to C–H stretching vibration of ali-
phatic compound [21]. The peak at 1740 cm−1 and between
1589 – 1503 cm−1 were allotted to aliphatic carbonyl of xylan
hemicellulose, and aromatic rings from lignin, respectively
[22, 23]. Also, Fig. 1a showed the finger print region peaks of
cellulose, hemicellulose and lignin in the raw sawdust
between 1100 and 1800 cm−1. Peaks at 1370 cm−1 and 1446
cm−1 allotted to the C–H stretching vibration of hemicellulose
and the C–H bending of the cellulose and lignin, respectively
[24]. The peak at 1232 cm−1 was assigned to C–O stretching
band indicating the presence of hemicellulose [25]. The peaks
at 1158 and 1048 cm−1 were assigned to a C–O stretching
band of C–O–H group and C–O–C group in the anhy-
droglucose ring, respectively. After modification of RSD by
POCl3’ there was a little change in figure. The band in the
1100 to 1200 cm−1 region presented in the spectra for P=O
group. The peak in the region between 700 to 850 cm−1 was
probably allotted to the P–O–C bond. The peak at 2360 cm−1

was ascribed to P–H group [26–28].
It can be clearly seen that some changes were noticed in

the FT-IR spectra after adsorption of Cd(II), Cr(III) and Pb
(II) metal ions onto RSD@P. The decrease and changes in
the FT-IR spectra was observed at the peak between 1100 to
1200 cm−1 and the bands of 1176–1040 cm−1 after Cd(II),
Cr(III), and Pb(II) metal ions adsorption onto RSD@P, the
P=O structures at between 1100 to 1200 cm−1 was shifted
to low. These results suggested that the adsorption between
these cations and adsorbent surface was governed by the
electrostatic interaction.

TGA analysis was accomplished to define the thermal
stability of both RDS and RSD@P under inert N2 atmo-
sphere. Figure 1b, c shows the TGA with the first derivative
of RDS and RSD@P. As can be seen, the thermal degra-
dation of the RDS (Fig. 1b) mainly occurred at temperatures
between 220 and 420 °C and about 73% weight loss was
observed. At 150°C, 2% weight loss was noted which
assigned to the removal of adsorbed water and residual
solvent from the RSD sample [29, 30]. So, the thermal
decomposition of RDS was achieved in one step. The
observed weight loss was ascribed to the degradation of
hemicellulose, cellulose and degradation of lignin [31]. For
the RSD@P (Fig. 1c), there are two steps; the first step took
place in the temperature range 250–375 °C. A weight loss
of about 48% was noticed due to the breakdown of hemi-
cellulose and cellulose and degradation of lignin. In the
second step, the 10% weight loss observed in the range of
temperature between 400–800 °C rationally related to the
degradation of residual of lignin and phosphoryl group.
These two steps indicated the successful modification of
RSD by POCl3. The BET surface area and the total pore
volume of RSD@P were higher than that of untreated RSD
and found to be 14.56 m2/g and 0.0090 cm3/g, respectively.

The morphologies of RSD, RSD@P before and after
adsorption onto RSD@P are shown in Fig. 2. Smooth
morphology and fewer pores were available on the sawdust
surface (Fig. 2a). After modification with phosphorus oxy-
chloride (POCl3), large pores or cavities and channels were
observed in the RSD@P (Fig. 2b). After the adsorption of
Cd(II), Cr(III), and Pb(II), the surface morphology was
changed which might be due to the interaction of these
metal ions with the functional groups of RSD@P (Fig. 2c–
e). The pores were completely occupied by these metal ions
leading to a formation of rough and non-uniform covering
over RSD@P surface. These morphological changes con-
firmed the adsorption of these heavy metal ions onto
RSD@P surface.

TEM images of RSD are given in Fig. 3a. The mor-
phology of untreated RSD presented heterogeneous and
aggregated surface. The porosity of RSD particles was
approximately 42 nm (Fig. 3a, inset). The particle size of
RSD particles was 22 nm (Fig. 3b). After modification with
POCl3 (Fig. 3c), a high porosity was observed (Fig. 3c,
inset) and the particle size of RSD@P became 24 nm (Fig.
3d). Also after modified with POCl3, the RSD particles
coated by a layer of POCl3 (Fig. 3c). The elemental analysis
of RSD and RSD@P were performed by EDX analysis
(Table 1 and Fig. 4). Untreated RSD spectrum (Fig. 4a)
displayed only C and O peaks, while RSD@P spectrum
showed the presence of C and O, as well as new peaks of P
and Cl (Fig. 4b). This result confirmed the successful
modification of RSD by POCl3. The results of elemental
composition of RSD@P after adsorption of Cd(II), Cr(III),
and Pb(II) showed clearly the presence of Cd(II), Cr(III),
and Pb(II) in the structure of the RSD@P.

Figure 5 shows the XPS of RSD and RSD@P. Figure 5a
shows two peaks at 284.8 and 530.5 assigning to C 1 s and
O 1 s peaks, respectively for RSD; the RSD@P spectrum
shows two additional peaks at 134.3 and 206 eV which
might be due to P 2p and C 1 s, respectively [32]. The high-
resolution spectrum of C 1 s, O 1 s and P 2p is shown in Fig.
5b. Peaks at 284.6.0, 285.2, 286.3, 286.5 and 288.1 eV were
assigned to C–C, C–OH, C–O, C=O and O=C–O,
respectively [33]. On the other hand, peaks at 529.9, 531.3,
532.5, and 534.5 eV corresponded to O=P, O–C, O=C and
O=C–O, respectively (Fig. 5c). The peak at 134.3 eV cor-
responded to P 2p (Fig. 5d) [34]. The presence of P and Cl
peaks in RSD@P spectrum also confirmed the successful
modification of RSD surface by POCl3.

3.2 Adsorption performance

The pH is one of the most essential parameters which
effects the surface charge of adsorbent material and metal
ion speciation in aqueous solution [35–37]. The effect of
solution pH on adsorption process was examined in the pH
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range of 2–10. Figure 6a displays the effect of pH on the
adsorption of Cd(II), Cr(III), and Pb(II) metal ions adsorbed
onto RSD@P and rest parameters were kept constants
(contact time 1440 min, RSD@P dose 15 mg, temperature
25 °C). The results showed that qe for Pb(II) was increased
with increasing the pH from 2.0 to 5.8, then it started to
decrease. The qe was 3.7 mg g−1 at pH 2 and increased up
to 56.7 mg g−1 at pH 5.8. In the case of Cd(II) and Cr(III),
the qe was increased until pH 7, then it started to decrease.
The qe was 4.6 mg g−1 and 6.1 mg g−1 at pH 2 which
increased up to 56.2 and 57.8 mg g−1 at pH 7 for Cd(II) and
Cr(III), respectively. The adsorption of these metal ions was
decreased at higher pH which was due to the formation of
metal hydroxides [38]. At low pH, the adsorptive removal
of these metal ions was low which may be due to the high
concentration of H+ in the acidic medium, so protonation of
the active sites of RSD@P dominated over the adsorption

process. As the pH of the solution increases (<7), number of
negatively charged sites increased, so that adsorption of
these metal ions was increased.

Effect of time on the adsorbed amount of Cd(II), Cr(III),
and Pb(II) metal ions using RSD@P adsorbent was studied
in the range of 5–240 min as shown in Fig. 6b. It was noted
that qe of Cd(II), Cr(III), and Pb(II) metal ions was
increased with increasing the contact time until the equili-
brium was attained (180 min). Adsorption rate was gradu-
ally increased up to 180 min for all metal ions. The
maximum adsorption capacity for Cd(II), Cr(III), and Pb(II)
metal ions was 33.75, 34.40, and 32.7 mg/g, respectively,
hence 180 min was enough to reach to equilibrium.

Figure 7 shows the effect of initial concentration of Cd
(II), Cr(III), and Pb(II) metal ions (25–300 mg/L) on
adsorption at different temperatures (25, 35, and 45 °C).
The qe of all metal ions was increased with increasing the

Fig. 2 SEM images of a untreated RSD, b RSD@P c–e RSD@P after adsorption of Cd(II), Cr(III) and Pb(II) metal ions
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Fig. 3 TEM images and particle size distribution of untreated RSD a, b and RSD@P c–e, respectively
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initial metal ion concentration, while the percent adsorption
of these metal ions displayed the opposite trend. Once, the
initial concentration of Cd(II), Cr(III), and Pb(II) metal ions
was increased from 25 to 300 mg/L, the qe was increased
from 28.75 to 162.50 mg g−1, 29.37 to 213.07 mg g−1, and
28.37 to 148.88.50 mg g−1 at 25 °C, respectively. The
increase in the adsorption capacity with increasing initial
metal concentrations could be attributed due to the acces-
sibility of vacant sites for metal binding [39–41]. It can be
concluded that RSD@P is able to bind Cd(II), Cr(III), and

Table 1 Elemental analysis of RSD, RSD@P, and saturated RSD@P
after the adsorption of heavy metals

Sample Elemental content (%)

C O P Cl Cd Cr Pb

RSD 51.30 48.70 – – – – –

RSD@P 48.57 50.24 0.65 0.54 – – –

RSD@P+ Cd(II) 52.23 45.54 0.46 0.37 1.41 – –

RSD@P+ Pb(II) 51.53 44.60 0.73 0.50 – – 2.64

RSD@P+ Cr(III) 53.93 44.63 0.65 0.47 – 0.32 –

Fig. 4 EDX images of a untreated RSD, b RSD@P c–e RSD@P after adsorption of Cd(II), Cr(III), and Pb(II) metal ions
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Fig. 5 a X-ray photoelectron spectroscopic images of RSD and RSD@P; High-resolution XPS spectrum for b C 1 s, c O 1 s, d P 2p

Fig. 6 Removal of Cd(II), Cr(III), and Pb(II) metal ions using RSD@P at different a pH and b time
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Pb(II) metal ions over a wide range of concentrations.
Moreover, the qe was decreased with increasing the tem-
perature from 25 to 45 °C, confirmed the exothermic nature
of adsorption process [33].

3.3 Adsorption isotherms

The behavior of Cd(II), Cr(III), and Pb(II) metal ion
adsorption, as well as their interaction onto RSD@P was
performed using Freundlich [42] and Langmuir models [43]
and the information concerning the models is given in

Supplementary Information (Text S2). The isotherm data
concerning the adsorption of these metal ions on RSD@P is
presented in Table 2. On the basis of the correlation coef-
ficient (R2) values, Freundlich isotherm showed a better fit
of experimental data than that of Langmuir isotherm models
at all temperatures (except Cd(II)) which showed the exis-
tence of multilayer surface condition (Fig. 8) [44]. It can be
observed that values of Kf of Freundlich isotherm constants
were decreased with increasing temperature from 298 to
318 K, implying that the adsorption was exothermic in
nature. The maximum calculated monolayer adsorption

Fig. 7 Effect of concentration on the adsorption capacity of Cd(II), Cr(III), and Pb(II) using RSD@P at different temperatures

Table 2 Isotherm parameters for the adsorption of Cd(II), Cr(III), and Pb(II) metal ions onto RSD@P

Metal ions Temperature (K) qm, exp. (mg/g) Langmuir isotherm Freundlich isotherm

qm, cal (mg/g) KL R2 Kf (mg/g)(L/mg)1/n N R2

Cr(III) 298 284.1 325.0 0.042 0.933 41.23 2.46 0.973

308 225.0 245.4 0.051 0.958 39.82 2.84 0.972

318 216.66 244.8 0.030 0.928 26.88 2.44 0.983

Cd(II) 298 284.1 244.3 0.042 0.959 38.32 2.89 0.923

308 190.0 217.9 0.041 0.945 35.48 2.98 0.896

318 153.33 198.8 0.024 0.950 21.54 2.55 0.912

Pb(II) 298 198.51 217.0 0.057 0.965 41.74 3.17 0.986

308 183.33 201.2 0.024 0.857 24.79 2.62 0.971

318 150.0 157.2 0.038 0.852 25.66 3.01 0.973
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capacity (qm) of Cd(II), Cr(III), and Pb(II) metal ions on
RSD@P using Langmuir equation were 163.9, 222.2, and
166.6 mg/g at 298 K, respectively. Comparing these data for
RSD@P with that obtained for adsorption of the same metal
ions by several raw sawdust is shown in Table 3 [5, 45–49].
It was observed that the values of qm using RSD@P was
better than that of other adsorbents used for same metal
ions.

3.4 Adsorption kinetics and thermodynamics
parameters

Adsorption kinetics were performed using pseudo-first-
order [50] and the pseudo-second-order models [51] (Sup-
plementary Information (Text S3)). Table 4 shows the
kinetic data for the adsorption of these metal ions on

RSD@P. It can be seen that values of the correlation
coefficient (R2) was well fitted to pseudo-second-order.
Similar results were reported for the adsorption of Cd(II),
Co(II), and Pb(II) [16]. The plots for these two models are
given in Fig. 9.

The details of the thermodynamic parameters are given
in Supplementary Information (Text S4). Table 5 shows the
thermodynamic parameters such as (ΔH°), (ΔS°), and (ΔG
°) for the adsorption of Cd(II), Cr(III), and Pb(II) metal ions
using RSD@P that were estimated at Co (50, 100, and 150
mg/L). The negative values of ΔG° insured the spontaneous
adsorption of Cd(II), Cr(III), and Pb(II) metal ions onto
RSD@P. The increase of ΔG° with increasing temperature
explained a more efficient adsorption process at lower
temperature. The negative value of (ΔH°) and (ΔS°)
designated the exothermic adsorption and decrease in the
randomness between the interfaces.

3.5 Adsorption mechanism and desorption studies

Figure 10 shows the mechanism of adsorption−desorption
behavior for removal of Cd(II), Cr(III), and Pb(II) metal
ions onto RSD@P from aqueous medium. The type of
interaction was electrostatic attraction between electron-rich
oxygen onto surface of RSD@P and electropositive metal.

Adsorption–desorption experiments were conducted to
evaluate the possibility of regeneration and reuse of the
RSD@P using 0.1 M HCl/HNO3. As shown in Fig. S1, 0.1
M HCl solution exhibited the better elution and recovery.
The maximum desorption of Cd(II), Cr(III), and Pb(II) by
using 0.1 M HCl were 86.96, 90.44, and 88.69%,

Fig. 8 Non-linear isotherm models for Cd(II), Langmuir (A1), Freundlich (A2); Cr(III), Langmuir (B1), Freundlich (B2) and Pb(II), Langmuir
(C1), Freundlich (C2)

Table 3 Comparison of adsorption capacity of RSD@P with other
sawdust adsorbents

Adsorbent Maximum monolayer
adsorption capacity (mg/g)

References

Cd(II) Cr(III) Pb(II)

Meranti sawdust – 37.878 34.246 [5]

Sawdust 73.6 – – [45]

Sawdust 41.21 – – [46]

sawdust – – 30.48 [47]

Sawdust biochar – 43.48 – [48]

sawdust 5.76 – 15.90 [49]

RSD@P 244.3 325.0 217.0 This work
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respectively, while it was 69.50, 73.91, and 71.24%,
respectively in the case of 0.1 M HNO3. This result could be
ascribed to the size of ions because Cl− is smaller in
comparison to NO3

− ions [52].

4 Conclusions

In the present work, the crosslinked phosphorylated raw
sawdust was successfully synthesized and used for the
removal of Cd(II), Cr(III), and Pb(II) from aqueous med-
ium. The results showed that RSD@P was an effective,

Table 4 Kinetic model constants
for the adsorption of Cd(II), Cr
(III), and Pb(II) metal ions onto
RSD@P

Metal ions (Co, mg/L) qe, exp Pseudo-first-order Pseudo-second-order

qe, cal K1 (min−1) R2 qe, cal (mg g−1) K2 (g mg−1 min−1) R2

Cr(III) 25 34.05 33.33 0.0254 0.865 38.33 0.00087 0.934

Cd(II) 25 33.6 33.26 0.0178 0.924 40.64 0.00048 0.952

Pb(II) 25 35 30.80 0.0203 0.953 37.02 0.00073 0.979

Fig. 9 Non-linear kinetic models for the adsorption of Cd(II), Cr(III), and Pb(II) metal ions onto RSD@P

Table 5 Thermodynamic parameters for the adsorption of Cd(II), Cr
(III), and Pb(II) metal ions onto RSD@P

Metal ions (Co, mg L
−1)

−ΔH° (KJ/
mol)

−ΔS° (J/
mol.K)

−ΔG° (KJ/mol)

298 K 308 K 318 K

Cr(III) 50 40.03 114.03 6.06 4.88 3.79

100 25.86 7.5027 3.47 2.81 1.97

150 24.92 76.508 2.09 1.39 0.57

Cd(II) 50 29.81 86.74 3.75 3.54 1.99

100 32.07 98.15 2.72 2.04 0.74

150 24.19 74.86 1.79 1.32 0.282

Pb(II) 50 16.705 41.24 4.35 4.132 3.51

100 32.07 98.15 2.09 0.046 0.069

150 24.191 7.48 1.72 0.34 0.624
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economical and efficient adsorbent for capturing Cd(II), Cr
(III), and Pb(II) metal ions from aqueous solution. The
maximum Langmuir adsorption capacity for Cd(II), Cr(III),
and Pb(II) metals onto RSD@P was 244.3, 325, and 217
mg/g, respectively at 298 K. The adsorption isotherm and
kinetics data revealed that Cd(II), Cr(III), and Pb(II) metal
ions were well fitted to Freundlich isotherm and pseudo-
second-order kinetic models. The adsorption of Cd(II), Cr
(III), and Pb(II) was physicochemical process involving
important electrostatic attractions. The desorption results
exhibited the best recovery of these metal ions using 0.1 M
HCl.
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