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Abstract A new ambient-dried silica aerogel nano-
composites reinforced by smaller diameter microglass fiber
mat were synthesized. Effects of gel treatment and drying
temperature, molar ratio of modification agent and volume
content of microglass fiber on the composites’ structure and
properties were investigated. Increasing the gel treatment
temperature with a gradient multi-segment drying process,
the aerogel density and volume shrinkage decreased rapidly.
Homogeneous and translucent bulk aerogel could be
obtained with the density of 0.129 g/cm3, specific surface
area of 731.76 m2/g and average pore size of 20 nm. Fewer
cracks, more silica matrix and stronger fiber/silica interface,
which significantly improves the mechanical performance
of the nanocomposites with a high bending strength of 1.4
MPa. The thermal conductivity of the ambient-dried nano-
composites decreased and the bending strength increased
with increasing fibers’ volume content. The retrieved
nanocomposites is an excellent thermal insulation material
with lower thermal conductivity (0.022W/m K, 650 °C) and
high mechanical performance.

Graphical Abstract
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1 Introduction

In 1931, silica aerogel was firstly prepared by Kistler [1] via a
Supercritical Drying (SPD) technology, in an autoclave with
an excess of liquid and above the critical temperature. Silica
aerogel is a nanostructured material with low thermal con-
ductivity (~0.015W/mK, 25 °C), low bulk density
(~0.03–0.1 g/cm3) and high specific surface area (~1000m2/g).
In order to improve the mechanical performance, silica aero-
gels were reinforced by particles [2–5], whiskers, [6, 7] and
fibers [8–15], the SPD-silica nanocomposites with low thermal
conductivity and high mechanical performance expands its
uses especially when exposed to vibration and compression as
an excellent thermal insulation materials [16–20].

However, the SPD processing is expensive, hazardous,
restricting the commercial exploitations of silica aerogel
nanocomposites [21]. Today, one of the most focusing areas
is silica aerogel nanocomposites synthesized via Ambient
Pressure Drying (APD) technology to further decrease the
manufacturing cost. Recently, the APD-silica aerogel nano-
composites were reported and reinforced by particles [22–27],
nanotubes [28], foams [29, 30], and fibers (including cotton)
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[31, 32], aramid fibers [33, 34], polyester fibers [35], non-
woven fibers [36], glass wool [37], aluminosilicate glass fiber
[38], silica fibers [39], mullite fibers [40], glass fibers [41–44],
carbon fibers [45, 46], and boehmite nanofiber [47]. For
example, Liu GW [40] demonstrated the super insulation
mullite fiber/silica aerogel nanocomposites with low thermal
conductivity (500 °C, 0.0393W/mK) and good mechanical
property (storage modulus of 12.5MPa) in 2016.

For the surface modification and drying procedure as
reported in all above APD-silica aerogel nanocomposites
papers, the wet silica gels were commonly immersed into a
modification agent (such as trimethylchlorosilane (TMCS)/
n-hexane) by constant volume ratio to make the gels
hydrophobic, and were dried slowly at ambient pressure. It
is reported that the solvent-modification agents molar ratio
[48–50] and drying temperature ramp [31, 51, 52] had a
significant effect on the APD-silica aerogel, and fiber dia-
meter had a significant effect on the radiative conductivity
of fibrous materials [53]. But the effects of gel treatment
and drying temperature, modification agent molar ratio on
the APD-silica aerogel nanocomposites reinforced by
smaller diameter fibers had received little attention. In this
paper, we report a new ambient-dried silica aerogel nano-
composites reinforced by smaller diameter microglass fiber
mat, as-prepared nanocomposites have a lower thermal
conductivity and high mechanical performance, their effects
of gel treatment and drying temperature, modification agent
molar ratio and microglass fibers volume content on the
composites structure and properties were investigated.

2 Experimental

2.1 Materials

Tetraethoxysilane (TEOS), ethanol (EtOH), n-hexane,
hexamethyldisilazane (HMDZ), hydrochloric acid (37%),

and ammonia (27%) were obtained from Sinopharm Che-
mical Reagent Co., Ltd. (Sinopharm, China). Deionized
water was used to prepare HCl (aq) and NH3·H2O (aq)
which were used as the acid and base catalysts, respectively.
The glass fiber used in this research was microglass fiber
mat (Sinoma, Nanjing, China), with the fiber diameter of
2–4 μm and thermal conductivity of 0.036W/m K at room
temperature.

2.2 Synthesis of ambient-dried microglass fibers/silica
aerogel nanocomposites

Silica alcogel was synthesized by two step (acid–base)
Sol–Gel Process [10]. Figure 1 illustrated the schematic
overview of ambient-dried microglass fibers/silica aerogel
nanocomposites. Firstly, the microglass fiber mat was
immersed into the silica sol in vacuum. Microglass fibers
volume content (fc) was controlled with 4.5, 6.8, and 9.1%,
respectively. After gelation, the fiber/gels were washed in
EtOH twice in 24 h in order to exchange pore water and also
strengthen the network of the gels. The slylation of wet
fiber/gels was carried out by immersing into a HMDZ/n-
hexane silylating agent solution (25% HMDZ in n-hexane)
for 4 times in 96 h. Finally, surface modified wet fiber/gels
were exchanged in n-hexane twice in 24 h in order to
remove the unreacted silylating agent, and dried at ambient
pressure at high temperature (see Table 1, Drying pro-
grammer) controlled by gradient multi-segment pro-
grammers’ oven, evaporating the trapped solvent from the
gel network and to get hydrophobic silica aerogel and
nanocomposites, the temperature ramp rate of oven is 1 °C/
min.

To study the physical properties of the APD-silica
aerogel nanocomposites, silylating agent/TEOS molar ratio
named as HT, was varied from 2, 4, and 6 by keeping total
volume of alcogel constant.

Fig. 1 Schematic overview of ambient-dried microglass fibers/silica aerogel nanocomposites
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2.3 Characterization

The aerogel bulk density (ρa) was obtained by the Archi-
medes method [54]. The aerogel porosity (Pa) was obtained
according to the following formula:

Pa¼ 1� ρa
ρs

� �
� 100%

Wherein, ρs is the compact density of the silica (2.19 g/cm3,
25 °C, 1 atm).

The shrinkage of the aerogels (ΔVa, %) and nano-
composites (Δdc, %) was obtained according to the fol-
lowing formulas:

ΔVa ¼ 1� Vaerogel

Valcogel

� �
� 100%

Vaerogel ¼ ml

ρa

Δdc ¼ 1� dc
df

� �
� 100%

Wherein, Valcogel is the wet gel volume (cm3), Vaerogel is the
aerogel volume (cm3). dc is the thickness of the nanocompo-
sites (mm), df is the thickness of the microglass fiber mat (mm).

The bending strength of APD-silica aerogel nano-
composites was carried out with WDW-100 Electronic
Universal Testing Machine (Bairoe), with the samples
dimensions of 120× 20× 10 mm. The crosshead rate was
0.5 mm/min, five specimens for each kind of sample were
used. The microstructure of the aerogel and nanocomposites
were investigated by a Hitachi S4800 Scanning Electron
Microscope (SEM) after coating the samples with a thin
platinum layer. The thermal conductivities of

nanocomposites were determined by a hotplate apparatus
(YB/T 4130–2005) with sample dimensions of Φ180× 20
mm. Nitrogen sorption measurements were performed to
obtain pore properties with a QuadraSorb SI (Quanta-
chrome, USA) analyzer.

3 Results and discussion

3.1 Effect of gel treatment temperature on the silica
aerogel

Table 2 illustrated the wet gel treatment temperature effect
on the silica aerogel. The results showed that gel treatment
temperature has a significant effect on the APD-silica
aerogel. The aerogel density and volume shrinkage treated
at 25 °C was higher than that of 50 °C. When increasing the
treatment temperature, the aerogel density decreased from
0.329 to 0.17 g/cm3, and volume shrinkage decreased from
66.9 to 38.3%. Consequently, homogeneous and translucent
bulk aerogel could be obtained at 50 °C (Fig. 2). The rea-
sons are that the diffusivity increased at high temperature
for homogeneous hydrogels according to the theory of
diffusion in gels [55, 56] and the higher coarsening of the
gel network occurs at 50 °C [57]. Increasing the gel treat-
ment temperature will make a higher solvent diffusivity, a
faster exchanging process, and a more absolutely replace-
ment of end -H from Si-OH group by Si-(CH3)3 group from
HMDZ within the gel [49].

3.2 Effect of drying temperature on the silica aerogel

Table 1 demonstrated the effect of drying temperature on
the silica aerogel. Low density and high porosity of silica

Table 2 Effects of gel
treatment temperature on the
silica aerogel

No. Aerogel density
ρa /g cm

−3
Volume shrinkage
ΔVa/%

Wet gels treatment temperature Sample description

1 0.289 62.7 Surface modified at 25 °C Pieces aerogel

2 0.329 66.9 Exchanged in n-hexane at 25 °C Pieces aerogel

3 0.171 38.3 Surface modified and
exchanged at 50 °C

Bulks aerogel

Table 1 Effect of drying
temperature on the silica aerogel

Drying programmer Aerogel density g/cm3 Volume shrinkage% Porosity%

100 °C× 24 h 0.248 62.2 88.7

50 °C× 5 h, 80 °C× 24 h 0.219 55.3 90.0

50 °C× 5 h, 100 °C× 24 h 0.171 38.3 92.2

50 °C× 5 h, 180 °C× 8 h 0.138 26.3 93.7

50 °C× 8 h, 80 °C× 8 h, 100 °C× 24 h,
180 °C× 8 h

0.129 22.4 94.1
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aerogel could be obtained via APD technology with a gra-
dient multi-segment drying process (50 °C× 8 h, 80 °C
× 8 h, 100 °C× 24 h, 180 °C× 8 h), the temperature ramp
rate is 1 °C/min. Lower density and volume shrinkage,
higher porosity APD-silica aerogels were prepared with
higher second-segment-temperature drying or gradient
multi-segment drying process. The density decreased from
0.248 to 0.129 g/cm3, and porosity increased from 88.7 to
94.1% with the gradient multi-segment drying process. The
results consistent with the drying behavior of silica gels
[58]. In the first drying stage named as “constant rate per-
iod”, lowering drying temperature which decreasing the
drying rate, solvent volatilized slowly and gel network
remained well structure. If drying is too rapid, the gel body
will warp or crack. In the second drying stage named as
“falling rate period”, the solvent surface tension and vapor
pressure were reduced via gradient increasing and higher
drying temperature. There is enough time for gel network to
adjust its structure according to the changing of gas-liquid

interface, which decreases the shrinkage and cracks of the
gel.

The SEM image and pore size distribution, nitrogen
adsorption isotherms of the retrieved APD-silica aerogel are
shown in Fig. 3, the silica aerogel is dried with the gradient
multi-segment drying process (50 °C× 8 h, 80 °C× 8 h,
100 °C× 24 h, 180 °C× 8 h). It is clear that there is uni-
formity and homogeneity of silica particle and porous net-
work (Fig. 3a). According to International Union of Pure
and Applied Chemistry recommendations [59], the
adsorption-isotherm classification of the APD-silica aerogel
(Fig. 3b) is Type IV isotherm, and the adsorption hysteresis
is Type H2 loop, which is associated with capillary con-
densation taking place in mesopores. The specific surface
area of the aerogel was 731.76 m2/g, and the average pore
size of the aerogel was 20.0 nm, smaller than that of air
mean free path (66 nm, 1 atm, 23 °C) [60], it is advanta-
geous to reduce the thermal conductivity of the aerogel.
Such nano-structured particle and pores results in high

10mm

25 °C 50 °C

10mm

Fig. 2 Silica aerogels with different gel treatment temperature

Fig. 3 SEM image a and pore size distribution, nitrogen adsorption isotherms b of retrieved APD-silica aerogel
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homogeneous and translucent silica aerogel (Fig. 2) with
lower density (Table 1).

3.3 Effect of HT on the silica nanocomposites

Mahadik DB [61] demonstrated that by making use of
surface modifying silylating reagents via TMCS and
HMDZ, the apparent surface free energy of APD-silica
aerogels can be tuned in a wide range from 5.5892 to
0.3073 mJ/m2, higher concentration of silylating reagents
induced lower surface free energy. Consequently, the sur-
face polar –OH groups from wet fibers/silica gel must be
replaced absolutely by non-polar –CH3 groups, in order to
get non-multi cracks nanocomposites with high mechanical
performance.

As can be seen from Fig. 4a, the bending strength was
improved with increasing HT, microglass fiber volume
content of fc is 9.1%. The bending strength of the

nanocomposites is 1.4 MPa with the HT of six. Figure 4b
shows excellent toughness of the nanocomposites with
ductile fractures. The SEM of nanocomposites illustrated
that fewer cracks and more silica matrix can be found with
higher HT (Fig. 5). The microglass fibers adhere to the
silica aerogel matrix with a stronger interface, which sig-
nificantly improves the mechanical properties of the nano-
composites [62].

3.4 Effect of fibers volume content (fc) on the silica
nanocomposites

Figure 6 illustrates the effect of fibers volume content (fc) on
the thermal conductivity of nanocomposites. The thermal
conductivity of the nanocomposites increased from 0.013
W/m K (200 °C) to 0.022W/m K (650 °C) with the rise of
temperature, decreased from 0.0265W/m K (650 °C, fc=
4.5%) to 0.022W/mK (650 °C, fc= 9.1%) with increasing
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Fig. 4 Effect of HT on the bending strength a and the typical bending load-displacement curve b of the nanocomposites (HT= 6)

Fig. 5 SEM of nanocomposites prepared with different surface modification molar ratio (HT)
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fiber volume content, which is lower than that of APD-silica
aerogel composites strengthened with mullite fibers [40].
One of the reasons is that the retrieved nanocomposites
were reinforced by microglass fibers with smaller diameters
[53], results in lower radiative conductivity. Higher the
fiber’s volume content, higher will be the ability of
depressing radiative heat conduction. Another reason is that
the fibers were surrounded by APD aerogel (Fig. 4), gas
convection was also depressed heavily by silica nano pore
network.

On the other hand, the bending strength of the nano-
composites increased with the rising of fiber content
(Fig. 7). When microglass fibers are used as the reinforce-
ment in the nanocomposites, they received outer strength
and withstand the load, and hence the higher fiber content
and higher mechanical performance. Consequently, the
retrieved nanocomposite is an excellent thermal insulation
material with lower thermal conductivity and high
mechanical performance.

4 Conclusions

A new ambient-dried silica aerogel nanocomposites rein-
forced by smaller diameter microglass fiber mat, with a
lower thermal conductivity and high mechanical perfor-
mance, was synthesized. Effects of gel treatment and drying
temperature, modification agent molar ratio and microglass
fibers volume content on the nanocomposites structure and
properties were investigated.

Increasing the gel treatment temperature with a gradient
multi-segment drying process, the aerogel density and
volume shrinkage decreased rapidly. Homogeneous and
translucent bulk aerogel could be obtained with the density
of 0.129 g/cm3, specific surface area of 731.76 m2/g and
average pore size of 20 nm. Fewer cracks, more silica
matrix and stronger fiber/silica interface, which significantly
improves the mechanical performance of the nanocompo-
sites with the bending strength of 1.4 MPa (HT= 6). The
thermal conductivity of the APD-silica aerogel nano-
composites decreased and the bending strength increased
with increasing fibers volume content. The retrieved nano-
composites is an excellent thermal insulation material with
lower thermal conductivity (0.022W/m K, 650 °C,
fc= 9.1%) and high mechanical performance.
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