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Abstract Response surface methodology, Box–Behnken
experimental design, was applied to investigate and find
optimum synthesis parameters for preparing visible-light
active nitrogen-doped titanium dioxide by sol–gel method.
Nitrogen to titanium molar ratios, calcination temperature,
and calcination time have been selected as the study para-
meters. X-ray diffraction crystal phase compositions,
Brunauer–Emmett–Teller-specific surface area, and visible-
light decolorization of methylene blue have been examined
as experimental responses. A total of 15 tests were con-
ducted, and all the samples have demonstrated different
photoactivity under visible light. Furthermore, the important
synthesis parameters that affect the three selected responses
were investigated using the analysis of variance. Calcina-
tion temperature was found to be the most significant
parameter that has direct influence on the crystal phase
compositions, the specific surface area, and photoactivity of
the synthesized catalysts. The model adequacy test and
regression analysis have shown that the results were well
fitted with quadratic model equations. Model predictions

were in good agreement with experimental data with 96.68,
96.88, and 96.96% variability. N/Ti molar ratio of 6, cal-
cination temperature of 400 °C, and calcination time of 3 h
was found to be the optimum condition. Sample prepared at
the optimum condition was characterized and compared
with the undoped sample and results show the successful
preparation of the nitrogen-doped titanium dioxide.
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1 Introduction

Response surface method (RSM) is one of the powerful
statistical experimental design techniques that is applied to
build models and investigate individual and interaction
effects of the selected operating condition on the given
response in a given experiment [1]. It is a very effective
approach for optimization of complex processes in a more
convenient way resulting in saving time, labor, and cost [2,
3]. Box–Behnken design (BBD) is one kind of RSM, which
helps to design a second-order response model [4]. BBD
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can provide a maximum amount of complex information
with minimum experimental time [5]. Furthermore, in
comparison with other statistical methods, such as full
factorial design, it requires a few number of runs [6]. Most
importantly, it avoids the analyses at their extreme combi-
nations (such as at highest and lowest levels) for which
unsatisfactory results might occur [7].

Titanium dioxide (TiO2) is one of the most promising
semiconductor materials that has attracted a lot of atten-
tion because of its successful application in different
areas as a heterogeneous photocatalyst. Some of the main
application areas include degradation of organic pollu-
tants [8], inactivation of pathogenic microorganisms
from water and air [9], and degradation of dyes [10, 11].
Relative inexpensiveness, high efficiency, environmen-
tally friendliness, chemical and biological stabilities are
its unique advantages [12, 13]. Most importantly, it can
be used repeatedly with its catalytic capability for a long
period of time [14]. However, its main drawback is that it
is only activated by ultraviolet (UV) light, which
accounts for 4–5% of the solar energy that reaches
the earth’s surface due to its wide band-gap energy
(3.2 eV) [15].

So far, considerable efforts have been done in order to
reduce its band-gap energy and utilize the visible-light
which is the larger portion of the solar spectrum. One of
the major approaches in this regard is doping, a mod-
ification of TiO2 by influencing the electron structure with
metal and non-metal ions [9, 16]. In comparison with the
metal dopants, non-metals such as C, S, F, and N are
effectively applied in the synthesis of visible-light active
TiO2 catalyst via band gap narrowing [17, 18]. After
Asahi et al. [19], who first introduced successful doping of
nitrogen and prepared a visible-light active TiO2 in the
wavelength range of less than 500 nm, nitrogen atom has
been widely investigated [16, 18]. This is because nitro-
gen can be easily introduced into the titanium structure, as
it has comparable atomic size and ionization energy [20].
There exist different physical and chemical synthesis
routes that include implantation, sputtering, ball mill,
solvothermal, and sol–gel methods for synthesis of
nitrogen-doped titanium dioxide (N-doped TiO2) [21, 22].
However, the sol–gel method seems to be by far advan-
tageous over the other approaches. It is cheap, simple, and
a low-temperature process. It requires no special equip-
ment and offers relative ease to control the amount of
dopant and crystal size [23–26]. Doping of non-metals
with the sol–gel method depends on a number of synthesis
parameters. These include amount and type of dopant,
solvent type, solution pH, calcination temperature, and
time. The proper incorporation of the dopant and prop-
erties of the final nanoparticles are highly influenced by
these factors.

In most previous studies, it has been tried to investigate
the effects of sol–gel synthesis parameters on the prepara-
tion of N-doped TiO2 using the conventional “one-para-
meter-at-a-time approach”. Although this approach is
widely acceptable, it has a limitation in estimating the
interaction effects between the factors and lacks a predictive
capability [27].

In this paper, optimization of some of the significant
sol–gel synthesis parameters by using BBD is reported.
Nitrogen to titanium molar ratio (N/Ti), calcination tem-
perature and calcination time to the response on anatase
weight fraction (WA), Brunauer–Emmett–Teller (BET)-
specific surface area (SBET), and photoactivity (methylene
blue (MB) decolorization efficiency (R)) under visible-light
sources on the prepared N-doped TiO2 nanoparticles were
investigated. Accordingly, the optimum BBD-based
experimental values were found to be 100% (WA), 87.12
m2 g−1 (SBET), and 72.7% (R) for the conditions N/Ti molar
ratio of 6, calcination temperature of 400 °C and calcination
time of 3 h. Finally, doped and undoped TiO2 samples were
prepared at the optimum conditions and their chemical and
physical properties were compared.

2 Experimental

2.1 Catalyst preparation

The BBD method was adopted to synthesize N-doped TiO2

through sol–gel methods using ammonium hydroxide
solution (28%) as a nitrogen source. Typically, 20 ml of a
precursor solution titanium (IV) isopropoxide was slowly
added to 100 ml of absolute ethanol, and the solution was
adjusted to pH= 1 with nitric acid (60%). After 10 min of
vigorous stirring on an ice bath, a different amount of
ammonia solution was added to the prepared nano colloid
solution to facilitate incorporation of nitrogen into TiO2

crystal. The amounts of ammonia solution were adjusted to
give N/Ti molar ratios of 2, 4, and 6 with vigorous stirring
for 2 h. Subsequently, the mixtures were aged at room
temperature for 24 h to allow further hydrolysis and then
oven dried at 90 °C for 16 h to remove the solvent. The
produced powder was then ground and calcined in a muffle
furnace at a heating rate of 5 °C per minute under air. Three
calcination temperatures (400, 500, and 600 °C), and three
calcination times (3, 4, and 5 h) were used. Based on BBD,
a total of 15 experimental runs were performed. After
optimization the doped and undoped samples (with and
without addition of ammonia as nitrogen source) were
prepared using the optimum synthesis parameters. The
N-doped TiO2, and the undoped TiO2 were designated as
xNTyz, where x, y, and z, respectively, denote the N/Ti
molar ratio, the calcination temperature, and time.
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2.2 Photocatalytic activity

The photoactivity of N-doped TiO2 nanoparticles was
investigated using MB as a model chemical in batch pho-
toreactor under visible-light irradiation. A 300-ml beaker
was used as photoreactor for all experiments in which
visible light was provided by Osram lamp (50 PARA30)
with a wavelength of 400–700 nm. During this process,
1.0 g L−1 of the prepared powders were suspended in
100 ml of 10 ppm MB solution. The solution was con-
tinuously stirred with a magnetic stirrer to ensure homo-
genous mixing during 3-h irradiation period. Prior to
proceeding to photoactivity test, the solution was stirred
further for additional 30 min in dark environment to create
adsorption-desorption equilibrium. After which, 10 ml of
aliquots were taken from the reactor and filtered using
45-μm syringe filter. The MB concentration of supernatant
was then analyzed with a portable spectrometer (DR 2700,
Hach) at 664 nm wavelength absorbance. The MB deco-
lorization efficiency (R) was calculated using the following
equation:

R %ð Þ ¼ Co � Cf

Co
� 100ð Þ; ð1Þ

where Co and Cf are the concentrations of MB before and
after visible-light irradiation.

2.3 Box–Behnken experimental design

The experiments were designed according to the
Box–Behnken method with the selected three important
sol–gel synthesis parameters as mentioned earlier. The
required responses were optimized after studying the
influences of these independent parameters and their inter-
action effects. The factors and levels are given in Table 1.
The factors, i.e., N/Ti molar ratio, calcination temperature,
and calcination time were designated as A, B, and C,
respectively. According to BBD the total number of
experiment can be calculated as:

N ¼ k2 þ k þ Cp; ð2Þ
where k is a number of factors, and Cp is a central repli-
cation point [5]. Table 2 shows the 15 experimental runs
that are arranged according to BBD.

A second-order polynomial equation was used to find the
relationship between the independent variables and the
response. For the three chosen factors, the equation can be
written as:

Y ¼ β0 þ β1Aþ β2Bþ β3C þ β12ABþ β13AC þ β23BC

þ β11A
2 þ β22B

2 þ β33C
2 þ ε;

ð3Þ
where β0 is a constant, A, B, and C are the independent
variables, βis are the coefficients for linear interaction
effect, βiis are the coefficients for cross-product interaction
effect, βijs are the coefficients for quadratic interaction
effect, and ε is the random error. The regression analysis
and estimation of these coefficients were performed with a
statistical software package Design-Expert® version 7.0.0
(Stat-Ease, Inc.). The adequacy of the model equations was
evaluated using analysis of variance (ANOVA). Quality of
fit of the model equations and their statistical significance
were expressed using F-test, coefficient of determination
(R2), prediction coefficients of determination (Pred R2),
adjusted coefficients of determination (adj-R2), and coeffi-
cients of variation (CV).

2.4 Catalyst characterization

The crystal phase compositions were obtained from the X-
ray diffraction (XRD) measurement on PANalytical X’Pert
PRO-MPD diffractometer with Cu-Kα radiation (λ=
0.15406), accelerating voltage (40 kV), and current (25 mA)
at scan rate of 0.017 degree per minute in the range of 2θ=
20o to 85o. The average crystallite sizes of anatase and rutile
phases were determined with the Scherrer equation .The
weight fractions of the two phases were calculated using
Spurr and Myers equation [28]. The specific surface area
and pore volume and pore diameter were obtained from N2

adsorption-desorption isotherm by using BET and
Barett–Joyner–Halenda methods with Micromertics, Tristar
II 3020. The structural properties were investigated by
Raman spectrometer (Horiba/Jobin-Yvon, LabRAM
HR800) with spectra resolution of 0.54 cm−1 in the range of
0–1000 cm−1 Raman shift. Analysis of functional groups
was performed using Fourier Transformed Infrared (Varian
640-IR) FT–IR spectrometer, from 4000–400 cm−1 wave-
number. The binding energy and nitrogen content were

Table 1 Experimental levels of
selected variables for BBD

Levels

Abbreviation Variables Units −1 (Low) 0 (Medium) +1 (High)

A N/Ti Molar ratio 2 4 6

B Calcination temperature oC 400 500 600

C Calcination time h 3 4 5
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estimated with X-ray photoelectron spectroscopy (XPS)
(VG Microtech ESCA 2000) with Mg-Kα X-ray source (hv
= 1253.6). The binding energy of carbon (C 1s: 284.8 eV)
was used as an internal standard for the correction of
charging shift, and the spectra was analyzed using CasaXPS
software (version 2.3.17PR1.1). UV–Vis spectra of the
samples was scanned using UV/Vis/NIR Spectrophotometer
(Hitachi, U-4100) in the range of 200–800 nm. High-
resolution transmission electron microscopy (HR-TEM)
(TECHNAI G2 F30 S-TWIN) operating at 300 kV was also
used to investigate the average crystals size, morphology,
and structure of the prepared nanoparticles. The surface
morphologies and chemical composition of the syntheses
samples were examined using field emission scanning
electron microscope (FE-SEM) (JEOL JSM-7610F).

3 Results and discussion

3.1 Optimization of sol–gel synthesis parameters

Based on BBD and using the relationships in Table 1, a total
of 15 experimental runs were performed including the
central point that measures process stability and inherent
variability. Figures 1 and 2 show XRD patterns and nitro-
gen adsorption-desorption isotherm of the as prepared N-
doped TiO2 samples according to BBD. The results from
these two characterizations, WA and SBET, were used as
experimental response together with R (Table 2).

The analysis of the models indicates that they are highly
significant with F-values of 77.57 for (WA), 94.95 for
(SBET), and 92.23 for (R) with their corresponding P-value
< 0.0001. The ANOVA for the three selected responses is
shown in Supplementary Information Tables S1, S2, and
S3. The mutual interaction between the test variables can be
revealed using P-values [29].

The model adequacy was further investigated using R2

for the three responses (WA, SBET, and R), which were
found to be 0.9929, 0.9942, and 0.994, respectively. These

Table 2 BBD with actual and
predicted values of anatase
weight fraction (WA), BET-
specific area (SBET), and MB
decolorization efficiency (R)

Run Aa Bb Cc WA (%) SBET (m2 g−1) R (%)

Actual
value

Predicted
value

Actual
value

Predicted
value

Actual
value

Predicted
value

12 2 (−1) 400 (−1) 4 (0) 100.00 100.31 80.18 80.60 59.01 60.12

5 6 (1) 400 (−1) 4 (0) 100.00 99.62 77.07 78.17 74.77 73.52

15 2 (−1) 600 (1) 4 (0) 91.67 92.05 30.81 29.71 34.92 36.18

13 6 (1) 600 (1) 4 (0) 94.43 94.12 27.97 27.55 36.66 35.55

4 2 (−1) 500 (0) 3 (−1) 100.00 99.73 63.32 61.88 56.71 55.61

10 6 (1) 500 (0) 3 (−1) 100.00 100.42 62.51 60.39 60.55 61.81

14 2 (−1) 500 (0) 5 (1) 100.00 99.57 51.15 53.27 54.74 53.48

11 6 (1) 500 (0) 5 (1) 100.00 100.26 48.73 50.17 58.94 60.04

8 4 (0) 400 (−1) 3 (−1) 100.00 99.96 87.58 88.60 68.32 68.31

7 4 (0) 600 (1) 3 (−1) 93.52 93.40 37.99 40.53 36.10 35.95

1 4 (0) 400 (−1) 5(1) 100.00 100.12 84.39 81.86 64.80 64.95

6 4 (0) 600 (1) 5 (1) 92.88 92.92 29.46 28.44 35.40 35.41

3 4 (0) 500 (0) 4 (0) 100.00 100.00 45.20 47.91 55.56 56.69

9 4 (0) 500 (0) 4 (0) 100.00 100.00 47.24 47.91 57.37 56.69

2 4 (0) 500 (0) 4 (0) 100.00 100.00 45.30 45.95 57.14 56.69

a N/Ti (molar ratio)
b Calcination temperature (oC)
c Calcination time (h)

Fig. 1 Selected XRD patterns of N-doped TiO2 prepares at N/Ti molar
ratio of 2
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imply that the models are adequate enough to predict the
response in the experimental range with 99.29, 99.42, and
99.40% variability. The experimentally found and the pre-
dicted values were in a good agreement as depicted in
Table 2. The Pred R2 show that the model equations for WA,
SBET, and R give good predictions with 88.62, 91.30, and
91.63% variability, respectively. In addition, the adj-R2 of
WA (98.01%), SBET (98.37%), and R (98.32%) were in a
reasonable agreement with Pred R2 values. The degree of
precision and reliability can be explained by the low values
of CV, which were 0.46 for WA, 4.73 for SBET, and 3.01 for
R. Furthermore, adequacy precision for each response (WA,
SBET, and R) was found to be 22.76, 28.961, and 28.701. All
the above values can be changed when only the significant
terms are considered (see Supplementary Information Table
S4). The values of “Prob> F” less than 0.05 indicate model
terms are significant.

Based on regression analysis the quadratic model equa-
tions for the three responses, WA, SBET, and R, in terms of
actual values can be written by considering the significant
terms as follows:

WA %ð Þ ¼ 37:46� 1:55250Aþ 0:2955Bþ 0:00345AB

� 0:00034375B2

ð4Þ

SBET m2 g�1
� � ¼ 477:34258� 5:2024A� 70:00342C

þ 0:5758A2 þ 0:000574B2 þ 8016183C2

ð5Þ

R %ð Þ ¼ �53:85143þ 10:35875Aþ 0:51929B

� 0:975C � 0:017525AB� 0:00060394B2:
ð6Þ

3.2 Crystal phase composition

Figure 1 shows selected XRD patterns for the N-doped
TiO2 samples prepared under different calcination tem-
peratures, calcination times, and similar nitrogen to titanium
molar ratios. The crystal phases were well much with
(JCPDS) Card No 21-1272 and 21-1276 for anatase and
rutile, respectively. It can be observed that no peak asso-
ciated with nitrogen was revealed in all of the XRD pat-
terns. This might due to the dopant is uniformly distributed
either in the TiO2 crystal structure occupying interstitial or
substitutional sites [30–32]. However, Fig. 1 indicates that
the two crystal phases (anatase and rutile) appear at dif-
ferent sol–gel operational parameters with the anatase phase
being dominant at calcination temperatures below 600 °C.
Similarly, as can be observed from Fig. 3a, at high calci-
nation temperature (600 °C), the phase transformation pro-
cess is seen to be slightly retarded with increasing nitrogen
concentration from 2 to 6 N/Ti molar ratio. This result
suggests that the thermal stability of the catalyst can be
improved by the addition of nitrogen [33]. The effect of the
presence of nitrogen on phase composition of TiO2 can be
further evidenced from Fig. S1 (Supplementary Informa-
tion), where the XRD pattern of the undoped TiO2 catalyst
prepared at the optimum condition (400 °C, 3 h) is pre-
sented. As can be observed, the presence of rutile is quite
evident and its amount is estimated to be about 12.87%.
However, comparison with Fig. 1 shows that rutile phase
was not detected in the N-doped TiO2 samples prepared
below 600 °C. The presence of rutile at 400 °C in the
undoped sample can be related to the lower pH of the
solution as reported by Matthews [34].

In addition, Fig. 1 depicts that as the calcination tem-
perature increased from 400 to 600 °C, the anatase peak
became sharper and more intense. The average crystal size
of all samples increased with the calcination temperature,
which is due to the formation of bigger crystallite aggre-
gation of the catalyst at higher temperature [35]. As com-
pared with the effect calcination temperature, the effect
of nitrogen on crystal structure and particle size was mini-
mum in all samples. The effect of calcination time was also
found to be insignificant in this study (Fig. 3b). The crys-
tallite size of each sample was calculated according to
Scherrer formula and presented in Table S5 (Supplementary
Information).

3.3 Specific surface area

Selected N2 adsorption-desorption isotherms for different
N-doped TiO2 are given in Fig. 2. The specific surface areas
of the synthesized samples are found to be more dependent
on calcination temperature than on calcination time and N/
Ti molar ratio as shown in Table 2. Generally, all N-doped

Fig. 2 Selected nitrogen adsorption-desorption isotherms of N-doped
TiO2 prepares at N/Ti molar ratio of 2
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Fig. 3 Three-dimensional response plots showing interaction effects of N/Ti molar ratio, calcination temperature, and time on anatase wt. fraction
(a) and (b), on BET surface area (c) and (d), on MB decolorization (e) and (f)
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TiO2 samples prepared at lower and higher calcination
temperature demonstrated smaller and larger mesopore
structures, respectively. A plausible explanation can be at
higher calcination temperature and extended calcination
time, there is an expansion of mesopores and consequently
the formation of bigger pores [36]. The specific surface
areas also indicated a decreasing trend with increase in
calcination temperature and time (Fig. 3c, d). Decreased
specific surface area is due to catalyst aggregation at the
higher temperature [37]. In addition, the specific surface
area and crystal size of the undoped sample were found
to be larger than those of the doped TiO2, although the
total pore size of the N-doped TiO2 sample was higher
as compared with that of the undoped TiO2 sample
(Supplementary Information Fig. S2). It can be attributed to
the three-dimensional network microstructure, which was
formed between the N-doped TiO2 catalyst particles [18, 30,
38, 39].

3.4 Photoactivity test

The photocatalytic performance of all synthesized N-doped
TiO2 samples was examined by decolorization of MB in the
liquid solution with visible light (λ> 400 nm). The samples
at higher calcination temperature exhibited the lowest per-
centage of decolorization of MB as shown in Fig. 3e and f.
Significant specific surface area reduction and larger particle
size at elevated calcination temperature and time might have
led to lowest decolorization. It was also observed that the
decolorization efficiency increased remarkably when the
amount of N dopants increased from 2 to 6 N/Ti molar ratio
and at lower calcination temperature (Fig. 3e). A possible
explanation for this condition is that a higher concentration
of N dopant facilitated proper incorporation of nitrogen into
the TiO2 structure and consequently increased the visible-
light activity of TiO2. All samples that were prepared at
lower calcination temperatures and higher N concentrations
have larger surface area, which provided better adsorption
of reactive molecules as the most active sites are those on
the surface [40]. Furthermore, these also helped to improve
the light harvesting on the larger surface area but with fewer
degrees [41]. Though, the nitrogen dopant amount and the
higher specific surface area were the main factors for high
photoactivity in the present study, particle size and crys-
tallinity also played important role. Lower photoactivity can
be caused by the charge recombination, which is associated
with low crystallinity and larger particle size [42, 43]. As a
matter of fact, the highest photocatalytic activity shown by
the N-doped TiO2 sample prepared at N/Ti molar ratio of 6
and calcined at 400 °C for 4 h can be related to its high
specific surface area, nitrogen content, and improved ana-
tase crystallinity.

3.5 Model optimization and verification

Based on Derringer’s desirability function approach for
multiple response processes, the desired set of sol–gel
synthesis parameters were determined through optimization
of the responses from the three quadratic models (Eqs 4, 5,
and 6). Accordingly, N/Ti molar ratio of 6, calcination
temperature of 400 °C, and calcination time of 3 h (6NT43)
were selected with 0.987 desirability to predict anatase
weight fraction of 100%, BET surface area of 90.99 m2 g−1,
and MB decolorization efficiency of 74%. The predicted
values were also validated on sample prepared under the
optimum condition (Table 3). The results show that with the
given Pred R2 for each response, the model equations can be
potentially used to predict sol–gel synthesis parameters in
the same preparation routes.

3.6 Characterization of doped and undoped samples
prepared under optimum conditions

3.6.1 XPS analysis

The elemental analysis and chemical binding energy of the
prepared sample were determined using XPS. Figure 4
shows the high-resolution spectra of N-doped TiO2 sample,
which was prepared under the optimum condition. From the
deconvolution of the N 1s peaks of high-resolution spectra,
the atomic concentration of N was found to be around
2.79% for N-doped TiO2 (6NT43). The three peaks were
detected at 397.06, 400.03, and 404.13 eV binding energies.
The exact positions of N atoms are still unclear and under
debates. Many previously done studies assigned the posi-
tion at the various locations from 395–404 eV binding
energy based on their preparation routes and nitrogen
source. However, in some of the well-known articles, the
binding energy of N at 396 eV was surely assigned for
atomic β-N [19, 44, 45]. This binding energy can be further
extended to around 397 eV [46, 47]. At this site, a sub-
stitutional replacement of oxygen by nitrogen takes place
within TiO2 crystal lattice in the form of Ti–N–Ti entity and
may act, for visible light, as active site [48]. On the other

Table 3 Model validation results of doped and undoped TiO2

prepared under optimized condition

Sample Crystal phase
composition (%)

Crystal size
(nm)

SBET
(m2 g−1)

R (%)

(WA) (WR) Anatase Rutile

6NT43 100 – 10.14 – 87.12 72.7± 1.54

0NT43 87.13 12.87 8.27 19.96 92.84 11.8± 0.56

Note: WA: anatase weight fraction, WR: rutile weight fraction, SBET:
BET surface area, R: MB decolorization efficiency
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hand, for interstitial N-doped TiO2 such as Ti–N–O and/or
Ti–O–N oxynitride, there is no common agreement. Gen-
erally, the peak approximate to 400 eV is assigned for
interstitial N-doping [44, 49]. The binding energy around
397 eV has also as been assigned for interstitial N-doping
by some authors [45, 50]. In the present study, the peaks at
397.07 and 400.07 eV are assigned for substitutional N-
doping. Whereas, the other peak at 404.12 was assigned to
nitrite (NO2

−). The peak for O 1s core level of the N-doped
TiO2 is located at 529.44 eV (Fig. 4b) and the peak for the
undoped TiO2 appears at 529.13 eV (Supplementary Infor-
mation Fig. S3a). Comparison of the two figures shows that
the peak for the undoped sample has decreased by 0.31 eV.
Furthermore, Ti 2p3/2 and 2p1/2 core level peaks appear at
458.34 and 464.01 eV for the doped and at 457.99 and
463.66 eV for the undoped TiO2 samples (Fig. 4c and
Supplementary Information Fig. S3b). These results indi-
cate that the binding energy of undoped TiO2 shifts toward
lower binding energy by 0.35 eV from doped TiO2. The
binding energy shifts observed in both cases imply that the
TiO2 crystal lattice was modified by the addition of
nitrogen.

3.6.2 UV/Vis analysis

UV/Vis/NIR spectrophotometer was used to evaluate opti-
cal properties of both undoped and doped TiO2 samples.
For comparison, the maximum optical absorption edge (λg)
of N-doped TiO2, which was prepared with optimized
parameters (6NT43) and undoped sample (0NT43), is
shown in Table 4. The band-gap energy (Eg) of each sample
was calculated using the formula:

Eg eVð Þ¼ 1240
λg

; ð7Þ

Many researchers pointed out that the preparation of
N-doped TiO2 shows spectra shift toward the visible-light
region [18, 41]. Asahi et al. claim that its visible-light
photoactivity can be related to narrowed band gap by
mixing of nitrogen 2p and oxygen 2p state in the valence
band caused by substitutional doping [19]. In contrast,
Burda and his coworker have stated that the extra elec-
tronic states just above the valence band edge were the
main reasons behind this phenomenon [47]. On the other
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Fig. 4 XPS spectra of N-doped TiO2 prepared under optimum condition

Table 4 Maximum adsorption edge and corresponding band-gap
energy of N-doped and undoped TiO2

Sample λg,1 (nm) Eg,1 (eV) λg,2 (nm) Eg,2 (eV)

6NT43 395 3.13 475 2.61

0NT43 388 3.19 – –

Fig. 5 UV–Vis spectra of undoped and doped TiO2 prepared under
optimum condition
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hand, other reports state that it is either the isolated N
impurity energy level (N 2p localized states) forms above
the O 2p valence band (0.14 eV) in the case of substitu-
tional doping or the Л* character generated by NO bond
slightly above the valence band (0.73) in the case of
interstitial doping that caused a visible-light active N-
doped TiO2 photocatalyst [51–54]. Furthermore, the for-
mation of oxygen vacancies between the valence and
conduction bands during thermal treatment enhance the
photocatalysis in the visible range above 500 nm [35, 52,
55–57]. In this study, in contrast with undoped TiO2, the
N-doped sample (6NT43) provides two absorption edges;
one at 395 nm due to intrinsic band-gap absorption typical
for anatase in UV region (<400 nm) and other additional

edge at 475 nm, which can be attributed to extrinsic
electronic levels due to interstitial nitrogen doping
(Fig. 5). This result exhibited the successful doping of
nitrogen in TiO2 lattice.

3.6.3 FT–IR analysis

The FT–IR spectra of N-doped and undoped TiO2 samples
is presented in Fig. 6. For N-doped TiO2 FT–IR char-
acterization, the absorption peaks that are located at around
3100–3500 and 1630–1645 cm−1 assigned to stretching and
bending vibrations of O–H bond in hydroxyls group and
adsorbed water on the surface of TiO2 [58, 59]. In the
present study, these peak intensities were presented at 3344

Fig. 6 FT–IR spectra of undoped and doped TiO2 prepared under
optimum condition

Fig. 7 Raman spectra of undoped and doped TiO2 prepared under
optimum condition

Fig. 8 FE-SEM images of doped TiO2 (a), and undoped TiO2 (b), prepared under optimum condition
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and 1637 cm−1 and were stronger than those of the undoped
TiO2. The adsorbed OH groups are helpful to improve
photocatalytic activity of N-doped TiO2 by serving as an
oxidizer for degradation of organic pollutant and giving
better charge transfer by interacting the photogenerated
holes [21, 59]. Furthermore, on N-doped TiO2 sample,
multi-peaks were shown on the spectra range from 1000 to
1600 cm−1 which could be ascribed to different nitrogen
species [60]. Especially the strong peak at around
1110–1020 cm−1 may be due to the formation of hyponitrite
species [51, 60]. The appearance of these peaks gives

additional evidence and further confirmation for the suc-
cessful doping of N into the TiO2 crystal. The other strong
peaks in the region 480–700 cm−1 corresponded to Ti-O
stretching vibration [59, 61, 62].

3.6.4 Raman analysis

Raman spectra of N-doped and undoped TiO2 samples are
shown in Fig. 7. Both samples show typical anatase crys-
talline phase with major bands at 144, 196, 397, 519, and
639 cm−1. Moreover, the doped sample did not indicate the

Fig. 9 HR-TEM images and corresponding interplanar space of doped TiO2 (a) and (c), undoped TiO2 (b) and (d)
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presence of nitrogen, which may be because nitrogen is
incorporated in the form of interstitial doping. In contrast to
the XRD analysis, Raman analysis did not show the pre-
sence of rutile phase. This is because at the low rutile mass
fraction, Raman spectroscopy can be used only to detect the
presence of TiO2 but not for phase identification [33].
Moreover, the Raman shift can help to identify the particle
size difference between doped and undoped TiO2. Notice-
ably, the peak at 144 cm−1 slightly shifts toward the lower
band for doped TiO2, indicating slightly higher crystal size.
This observation is in agreement with the results of XRD
analysis, which showed that the addition of nitrogen can
enhance the growth of crystals.

3.6.5 FE-SEM analysis

FE-SEM images of N-doped and undoped TiO2 are shown
in Fig. 8. As it can be clearly observed from the figure, the
nanoparticles in both samples appeared to be agglomerated.
However, the N-doped TiO2 sample exhibited well-
dispersed particles and a large number of pores. This may
be a result of decomposition of ammonia into different
gases during heating process. This result is consistent with
the BET analysis, which revealed a mesoporous structure.
Generally, with this structure, it is possible to achieve
enhanced photocatalytic activity as it promotes diffusion
and access to reactive sites on the surface of the catalyst
[63]. Furthermore, the particles in N-doped TiO2 sample
have also shown irregular spherical shape.

3.6.6 HR-TEM analysis

The morphology and crystal size of N-doped and undoped
catalysts are shown in Fig. 9. The TiO2 particles are seen to
be more dispersed in the N-doped sample, while more
agglomerated in the undoped sample. The average crystal-
lite size was estimated from HR-TEM analysis, and was
found to be in the range of 10–21 and 8–16 nm for the N-
doped and undoped TiO2 samples, respectively. The fact
that larger crystal size was observed for N-doped TiO2 in
both HR-TEM and XRD analysis suggests that the addition
of nitrogen can improve the crystal size growth of TiO2 [33,
64, 65]. Furthermore, the interplanar distances d= 0.205
nm for rutile and d= 0.352 nm for anatase at (210) and
(101) planes indicate good crystallinity. In the case of N-
doped sample, there was no significant change in lattice
space due to the addition of nitrogen.

4 Conclusions

In this study, the sol–gel synthesis parameters for the pre-
paration of N-doped TiO2 were investigated and optimized

using the BBD RSM. The study has shown that the
experimental method can be used as an excellent tool to
identify the interaction effect of the individual sol–gel
synthesis parameters. It was also found possible to gather
sufficient information about the synthesis method with a
limited number of trials. Under optimized process condi-
tion, 100% anatase crystalline phase, BET surface area of
90.99 m2 g−1, and MB decolorization efficiency of 74%
were predicted. It is worth to note that all characterization
techniques used in the present study have confirmed the
successful preparation of visible-light active N-doped TiO2

with higher specific surface area, larger pore size, smaller
crystal size, good crystallinity, and anatase crystal phase.
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