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Abstract An important material applied in biological
fluorescent detector and medical treatment is highly desired
in view of the biocompatibility and fluorescent property.
Here, Tb-doped CaAl-layered double hydroxides with
Ca2+/(Al3+ + Tb3+) molar ratio of 1.0, 2.0, 3.0, and 4.0 have
been successfully prepared in a mixed solution of ethanol
and water in a reasonable proportion. Chemical composi-
tional analyses revealed that the experimental value of
Ca2+/(Al3+ + Tb3+) molar ratio present in the samples was
close to the initial value of Ca2+/(Al3+ + Tb3+) molar ratio of
raw reactants. In the X-ray diffraction results, it was found
that the typical layered double hydroxides structure can be
kept between the Ca2+/(Al3++Tb3+) molar ratio of 1.0 and
4.0. The structural type of the Tb-doped CaAl-layered
double hydroxides was monoclinic form when the Tb
content was less than of 3.0 %, while rhombohedral form
appeared and retained as the content of Tb3+ is kept between
3.0 and 5.28 wt%. Photoluminescence shows strong green
emissions attributed to 5D4-

7FJ (J= 3, 4, 5, 6) transition of
Tb3+ ions incorporated in the Tb-doped CaAl-layered
double hydroxides.

Graphical Abstract A series of Tb-doped CaAl-LDHs
with different molar ratio of Ca2+/(Al3+ + Tb3+) have been
synthesized by co-precipitation in a mixed ethanol/water
system. Strong green emission appeared in the Tb-doped
CaAl-LDH. The Tb–CaAl-LDHs may be a promising bio-
logical fluorescent material because of the biocompatibility
of Ca2+ ions as well as the fluorescent property of Tb3+ ions.

* Yufeng Chen
yfchen@ncu.edu.cn

1 College of Chemistry, Nanchang University, Nanchang 330031,
China

http://crossmark.crossref.org/dialog/?doi=10.1007/s10971-016-4216-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10971-016-4216-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10971-016-4216-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10971-016-4216-8&domain=pdf
mailto:yfchen@ncu.edu.cn


Keywords CaAl-LDH ● Tb dopant ● Fluorescence

1 Introduction

Layered double hydroxides (LDH) have been extensively
studied because of their potential application in adsorbents,
catalysts or catalyst supports, supercapacitors, biological,
and pharmaceutical materials, etc [1–5]. An interesting
group of LDHs named as hydrocalumite has chemical for-
mula of Ca2Al(OH)6Cl·2H2O or Ca4Al2O6Cl2·10H2O
[PDF#19-0202, PDF#31-0245, PDF#44-0615, PDF# 54-
0852, PDF# 35-0105, 6, 7], and a net positive charge on the
sheets originates from the partial replacement of Ca2+ with
Al3+ ions, forming [Ca2Al(OH)6]

+ layer. The hydro-
calumites attracted far less attention because of the relative
difficulty in synthesizing pure forms of the material by
common methods. Consequently, more studies focused on
its synthesis and the exploitations of its properties and
potential applications. Therefore, various methods have
been developed, such as co-precipitation method [8],
microwave irradiation or synthesis [9, 10], reconstruction
method [11], hydrothermal crystallization technique [12],
surfactant directed synthesis [13], and multi-step processes
[14], etc. However, the Ca–Al LDHs with various anions
have been used as adsorbing materials [7, 15–21], concrete
hardening accelerators [22–24], treatment of landfill lea-
chate [25], catalysts or catalyst supports [26–30], and flame
retardant [31–33], etc.

In addition, trivalent terbium ion is an important dopant
producing green emissions, and the development of stable
and inexpensive Tb-doped fluorescent materials for bio-
technological applications has been a central problem in
modern materials science. Although there are many studies
on Tb-doped inorganic materials [34–37] or Tb-complexes
[38–40], these Tb-doped inorganic materials are often
related to high temperature energy consumption [41, 42],
and Tb-complexes have poor thermal stability. For this
reason, it is important to prepare the Tb-doped inorganic
materials at room temperatures.

In consideration of the biocompatibility of Ca2+ions [43,
44] and green emission of Tb3+ ions, Tb-doped CaAl-LDH
would be more potential application in biological techni-
ques and medical treatment compared with other LDHs. For
instance, CaAl-LDH may be an important material in drug
packaging, drug transport, and drug storage and release, etc.
For this purpose, Tb3+ ions were incorporated into layers of
CaAl-LDHs by co-precipitation in a mixed solution of
ethanol and water with reasonable proportion, and different
structural types of Tb-doped CaAl-LDHs with fluorescent
property have been obtained. This special interlayer tuning
structure of Tb–CaAl-LDHs may be a promising biological

fluorescent material because of the biocompatibility of Ca2+

ions as well as the fluorescent property of Tb3+ ions.

2 Experimental

2.1 Synthesis of materials

CaAl-LDH and Tb–CaAl-LDH-n (n= 1, 2, 3, 4) were
prepared by an ethanol/water solution route [22]. A batch of
solution with Ca2+/(Al3++Tb3+) molar ratio of 1.0, 2.0, 3.0,
and 4.0 was separately prepared by dissolving CaCl2 and
AlCl3·6H2O solid in ultrapure water and mixed with Tb
(NO3)3 solution (each of 100 mL, labeled as A). Tb(NO3)3
solution was prepared by dissolving Tb2O3 solid in mixed
solution of concentrated nitric acid and hydrogen peroxide
solution. NaOH (1.0 mol·L−1) solution was prepared from
ultrapure water and analytical grade solid NaOH. Four of
mixed media with ethanol/water volume ratio of 2/3 was
obtained (each of 200 mL, labeled as B), and kept its tem-
perature at 50 °C.

Then each of solution A (100 mL) and 1.0 mol·L−1NaOH
solution were simultaneously added dropwise into each of
the 200 mL solution B at 50 °C and severely stirred. Then a
series of slurry formed at pH values of 10.5~11.5. The
resulting slurry was aged in reacting system (50 °C) for 4 h.
After being filtrated, washed, and dried at 70 °C, Tb-doped
CaAl-LDHs with different Ca2+/(Al3+ + Tb3+) molar ratios
have been obtained. The samples corresponding to initial
Ca/(Al + Tb) molar ratio of 1.0, 2.0, 3.0, 4.0 were signed as
Tb–CaAl-LDH-1, Tb–CaAl-LDH-2, Tb–CaAl-LDH-3, and
Tb–CaAl-LDH-4, respectively. The CaAl-LDH with Ca/Al
molar ratio of 2.0 was prepared by the same method as
above.

2.2 Characterization

Chemical contents of Ca, Al, Tb, and O were measured by
inductively coupled plasma atomic emission spectroscopy
(ICP-AES Optima 5300DV) and scanning electron micro-
scopy equipped with chemical analyses (SEM/EDX, JEOL
JSM-6701). The content of Cl element was estimated by gas
chromatography-mass spectrometry (GC-MS Agilent-
6890N/59731) and SEM/EDX. The H content was deter-
mined basing on CHN elemental analysis (Elementar Vario
EL II, Germany) and thermogravimetric analysis. Under
nitrogen atmosphere at a scan rate of 10 °C/min, thermo-
gravimetric results were obtained using synchronous ther-
mal analyzer (Pyris Diamovd, American Pe Company). The
chemical formulas were estimated basing on the results of
ICP, GC-MS, TG-DTA, SEM-EDX, and CHN elemental
analyses as well as the principle of charge balance. Powder
X-ray diffraction patterns were collected using a Shimadzu
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model XD3A diffractometer with Cu Ka radiation (λ= 1.54
Å, 40 kV e, 30 mA), a scan range from 2θ= 3 to 60° and at
a scan rate of 2°/min. Infrared spectra were recorded on a
Shimadzu IR spectrometer (Prestige-21) in the range of
4000–400 cm−1 The fluorescent property of the samples was
investigated with the help of F-7000 FL Spectrophotometer.

3 Results and discussion

3.1 Composition and structurue analyses

The chemical compositions of CaAl-LDH and Tb–CaAl-
LDH-n (n= 1, 2, 3, 4) were determined based on the ICP,
SEM-EDX, CHN elemental analysis, and thermogravi-
metric analysis (seen in Table 1 and Fig. 1). Ca, Al, Cl, and
O signals appeared in the EDX spectra of all the samples
(seen in Fig. 1), and no Tb signal exhibited in the EDX
spectrum of the CaAl-LDH. Moreover, the Tb signal is very
weak because of small Tb content and the insensitivity of
Tb element to the measurement of EDX. In addition, C
signal occurring in the EDX spectra of all the samples was
may be due to physically adsorbed CO2. In view of the
compositional analyses (shown in Table 1), the experi-
mental values of Ca2+/(Al3+ + Tb3+) molar ratios present in
the samples were close to the initial Ca2+/(Al3+ + Tb3+)
molar ratios of raw reactants. A matter worthy of note is that
the Tb content of the Tb–CaAl-LDH-n (n= 1, 2, 3, 4)
gradually decreased with the increasing n value, which is in
accordance with the initial reactants.

Figure 2 displays the XRD patterns of the CaAl-LDH
and Tb–CaAl-LDH-n (n= 1, 2, 3, 4). The XRD pattern of
the CaAl-LDH was in excellent agreement with that
recorded on PDF 31-0245 in the database of the Interna-
tional Center for Diffraction Data, with a nominal chemical

formula of Ca4Al2O6Cl2· 10H2O. Based on the XRD data of
the CaAl-LDH and the literature [PDF 31-0245], all the
reflections were indexed as in Fig. 2. The cell parameters of
the CaAl-LDH could be refined as a= 9.763(7) Å,
b= 5.700(4) Å, c= 16.97(2) Å, β= 113.07(7)°, which were
in accordance with the values (a= 9.853 Å, b= 5.715 Å,
c= 16.898 Å, β= 113.33°) [PDF 31-0245]. The structural
type belongs to monoclinic form. In addition, the CaAl-
LDH presents diffraction peaks corresponding to (002),
(004), (020), and (006) crystal planes, indicating relatively
well-formed crystalline layered structure, with the basal
spacing d002 of 7.7Ǻ. This interlayer spacing is similar to
those of literatures [14, 22]. The crystallinity of the CaAl-
LDH is better than those of other CaAl-Cl LDHs [14, 15],
and analogous to that of the literature [22].

While small content of Tb3+ (2.34 %wt) was doped into
the CaAl-LDH (seen Tb–CaAl-LDH-4), the structural type
did not change, but the cell parameters varied as a= 9.75(2)
Å, b= 5.717(8) Å, c= 16.81(4) Å, β= 112.9(2)°, which
may be due to the effect of Tb3+ doping. With the content of
Tb3+ up to 3.0 %wt (shown in the Tb–CaAl-LDH-3), the
reflection (021) disappeared, and the structural type
changed from monoclinic to rhombohedral form. Although
the content of Tb3+ was further increased to 5.28 wt%, the
rhombohedral form still remained the same. All the
reflections matched well with that recorded on PDF
35-0105 in the database of the International Center for
Diffraction Data, with a nominal chemical formula of Ca2Al
(OH)6Cl·2H2O, corresponding cell parameters of a= 5.742
Å, b= 5.742 Å, c= 46.847 Å, and β= 120°. These results
indicated that the structural type of CaAl-LDHs could be
transformed by doping a certain content of Tb3+. It was
worthwhile to note that most of the CaAl-LDHs were
focused on the LDH with the Ca2+/Al3+ molar of 2 except
for very few studies related to the initial Ca2+/Al3+ molar

Table 1 Chemical composition of CaAl-LDH and Tb–CaAl-LDH-n (n= 1, 2, 3, 4)

Samples Ca/(Al + Tb) molar ratio Tb content % Mass loss % (temperature range)

Initial Experimental

CaAl-LDH 2.0 1.98 0 % 22.4 % (30~316 °C)

Chemical formula Ca1.98Al(OH)5.96Cl·3.9H2O

Tb–CaAl-LDH-1 1.0 1.08 5.28 % 22.4 % (30~330 °C)

Chemical formula Ca1.08Al0.92Tb0.08(OH)4.16Cl·3.0H2O

Tb–CaAl-LDH-2 2.0 1.96 3.32 % 25.2 % (30~319 °C)

Chemical formula Ca1.96Al0.93Tb0.07(OH)5.92Cl·4.7H2O

Tb–CaAl-LDH-3 3.0 2.95 3.0 % 23.4 % (30~319 °C)

Chemical formula Ca2.95Al0.92Tb0.08(OH)7.90Cl·5.5H2O

Tb–CaAl-LDH-4 4.0 3.97 2.34 % 26.2 % (30~308 °C)

Chemical formula Ca3.97Al0.92Tb0.08(OH)9.94Cl·7.9H2O

Chemical formula estimations based on the results of ICP, EDX, CHN elemental analysis, and mass loss
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ration of 1–6 [45]. However, the present compositional
results revealed that the LDH structure can be kept between
the Ca2+/(Al3+ + Tb3+) molar ratio of 1.0 and 4.0. In addi-
tion, the scanning electron microscope (SEM) images (seen
in Fig. 3) did not obviously change although the structural
type transformed. The SEM images of LDHs are different
from that of the previous report [12], but similar to the
literature [45], which may be due to different preparation
processes or conditions.

3.2 FT-IR spectra

The IR spectra of CaAl-LDH and Tb–CaAl-LDH-n (n= 1,
2, 3, 4) in 4000–400 cm−1 are shown in Fig. 4. For the
CaAl-LDH, characteristic bands appeared in 3640 and
3485 cm−1, attributed to the stretching vibrations of lattice
water and OH groups, respectively, and the band at 1623
cm−1 is owing to the bending mode of O–H [15]. The bands
at 793 and 591 cm−1 are due to stretching vibration of
M–OH and M–O–M. It is well known that IR spectroscopy
is very sensitive to CO2 or carbonate anions in LDHs. The
presence of the physisorbed CO2 is reflected by the relative
broad peak at 1409 cm−1 typical of O–C–O vibrations (ν3)
for adsorbed (non interlayer) carbonate anions that are
present on the outer surface of the crystallites [26, 46]. After
the Tb3+ ions were incorporated into the layers of CaAl-
LDH, all the bands present in the IR spectra did not

Fig. 2 XRD patterns of CaAl-LDH, Tb–CaAl-LDH-1,Tb–CaAl-LDH-
2, Tb–CaAl-LDH-3, and Tb–CaAl-LDH-4

Fig. 1 EDX Results of CaAl-LDH, Tb–CaAl-LDH-1,Tb–CaAl-LDH-
2, Tb–CaAl-LDH-3, and Tb–CaAl-LDH-4
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obviously shift, suggesting the layered structure of LDH
retained. In addition, the band at 1409 cm−1 attributed to
physisorbed CO2 obviously increased with the increase in
the content of Tb3+, which may be due to highly positive
charge of Tb3+ more easily adsorbed CO2.

3.3 Thermogravimetric analyses

TGA-DTG-DTA curves of CaAl-LDH and Tb–CaAl-LDH-
n (n= 1, 2, 3, 4) represented in Fig. 5. The decomposing
stages of all samples have been presented in Table 2.
According to TGA and DTG curves, the decomposition of
CaAl-LDH exhibited three stages. The first one occurred in
30–114 °C, corresponding to the loss of the adsorbed water
and some of bound water [45]; the second stage in 114–316
°C was mainly due to the loss of interlayer water of the

hydrocalumite [45, 47]; and the third stage was attributed to
the further removal of hydroxyl groups and Clˉ [45]. This
thermal decomposition was similar to that of Ca2Al LDH
[45]. After Tb3+ was incorporated into the layers of CaAl-
LDH, the Tb–CaAl-LDH-1, Tb–CaAl-LDH-2, and
Tb–CaAl-LDH-3 had similar TGA-DTG-DTA curves as
that of the CaAl-LDH, it also exhibited three stages of
decomposition (seen in Table 2) corresponding to the loss
of the adsorbed water and bound water, interlayer water,
and hydroxyl of layers and Clˉ, respectively. In contrast, the
thermal decomposition of Tb–CaAl-LDH-4 was very dif-
ferent, and four mass loss stages appeared in 30–54,
54–124, 124–308, and 308–688 °C, which is due to the loss
of physically adsorbed water, bound water, interlayer water,
and hydroxyl of layers and Clˉ, respectively. The different
thermal decomposition of the Tb–CaAl-LDH-4 from that of

Fig. 3 SEM images of. a CaAl-
LDH, b Tb–CaAl-LDH-1,
c Tb–CaAl-LDH-2, d Tb–CaAl-
LDH-3, and e Tb–CaAl-LDH-4
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the CaAl-LDH, Tb–CaAl-LDH-1, Tb–CaAl-LDH-2, and
Tb–CaAl-LDH-3 may be due to different content of water
present in the samples. Meanwhile, two endothermic peaks
appeared in the DTA curves of the CaAl-LDH, Tb–CaAl-
LDH-1, Tb–CaAl-LDH-2, and Tb–CaAl-LDH-3, which
may be due to the evaporation of physically adsorbed water
and bound water as well as the interlayer water. Four
endothermic peaks occurred in the DTA curve of the
Tb–CaAl-LDH-4, attributed to the evaporation of the phy-
sically adsorbed water, bound water, interlayer water, and
hydroxyl of layers, respectively. It was worthwhile to notice
that although the Tb–CaAl-LDH-4 has similar crystal
structure with CaAl-LDH and other Tb–CaAl-LDH-n (n=
1, 2, 3) according to their XRD patterns, its TGA-DTA
curves are very different from other samples. The possible
reasons are that the TGA-DTA curves of LDHs are often

subjected to various factors, including chemical composi-
tion, structure, crystallinity, and interlayer water and anions,
etc. In consideration to the present XRD patterns, chemical
composition, and interlayer guests of the samples, the dif-
ference between the TG-DTA curves of the Tb–CaAl-LDH-
4 and those of other samples may be are mainly due to the
different content of interlayer water. Meanwhile the TG-
DTA curves of the Tb–CaAl-LDH-4 are below than that of

Fig. 4 FT-IR spectra of CaAl-LDH, Tb–CaAl-LDH-1,Tb–CaAl-LDH-
2, Tb–CaAl-LDH-3, and Tb–CaAl-LDH-4

Fig. 5 TG-DTA-DTG curves of CaAl-LDH, Tb–CaAl-LDH-1,
Tb–CaAl-LDH-2, Tb–CaAl- LDH-3, and Tb–CaAl-LDH-4
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other samples, indicating poorer thermal stability of the
Tb–CaAl-LDH-4 compared with those of other four
samples.

3.4 Fluorescent analyses

Figure 6 shows excitation spectra of CaAl-Tb–LDH-n (n=
1, 2, 3, 4). The excitation spectra were obtained at an
emission wavelength of 545 nm, which corresponds to the
5D4→

7F5 transition emission of Tb3+(III). The strong exci-
tation bands due to 7F6 →

5G4,
7F6 →

5L10, and
7F6 →

5G6

electronic transitions appeared at 350, 370, and 380 nm,
respectively [48, 49]. A weak excitation band emerged at
340 nm may be owing to 7F6 →5D2 [50]. Compared with
the Tb–CaAl-LDHs, no obvious excitation bands occurred
in the CaAl-LDH at the emission wavelength of 545 nm. In
the light of the excitation spectra of samples, emission
spectra recorded at room temperature for all the samples
were obtained in the optimum excitation wavelength of 350
and 370 nm (shown in Fig. 7). The emission spectra of
Tb–CaAl-LDH-n(n= 1, 2, 3, 4) show two strong green
emissions at 545 and 490 nm attributed to 5D4→

7F5
and5D4→

7F6 transition of Tb3+, respectively [51–54]. The
peaks due to 5D4→

7F3 and 5D4→
7F4 transition are very

weak. With regard to the CaAl-LDH, no peaks attributed to

5D4→
7FJ (J= 3, 4, 5, 6) transition appeared. It is worth-

while to noting that the green emissions attributed to
5D4→

7F5 and 5D4→
7F6 transition of Tb3+ incorporated in

CaAl-LDHs have similar intensity as those of organic Tb-
complexes [55–59], and are even stronger than those of
other Tb-doped MgAl-LDH and Tb-doped ZnAl-LDH
[60–62]. The excellent fluorescent property of Tb-doped
CaAl-LDH makes it be a promising biological fluorescent
material because of the biocompatibility of Ca2+.

Figure 8 displays the ratio of the (5D4→
7F5)/(

5D4→
7F6)

emission intensity (namely asymmetric parameter R)
depending on the molar ratios of Ca2+/(Al3+ + Tb3+).
Because the 5D4→

7F5 transition of Tb3+ is highly hyper-
sensitive to Tb3+ surroundings and the 5D4→

7F6 transition

Fig. 6 Excitation spectra of CaAl-LDH, Tb–CaAl-LDH-1,Tb–CaAl-
LDH-2, Tb–CaAl-LDH-3, and Tb–CaAl-LDH-4

Table 2 Thermogravimetric
results of CaAl-LDH and
Tb–CaAl-LDH-n (n= 1, 2, 3, 4)

Samples Stage1 Stage2 Stage3 Stage4

CaAl-LDH 30~114 °C/9.6 % 117~316 °C/12.8 % 316~675 °C/10.3 %

Tb–CaAl-LDH-1 30~118 °C/8.4 % 118~330 °C/14.0 % 330~678 °C/11.2 %

Tb–CaAl-LDH-2 30~114 °C/10.7 % 114~319 °C/14.5 % 319~688 °C/10.7 %

Tb–CaAl-LDH-3 30~118 °C/10.0 % 118~319 °C/13.4 % 319~688 °C/11.2 %

Tb–CaAl-LDH-4 30~54 °C/6.3 % 54~124 °C/10.1 % 124~308 °C/10.2 % 308~688 °C/12.8 %

Fig. 7 Emission spectra of CaAl-LDH, Tb–CaAl-LDH-1,Tb–CaAl-
LDH-2, Tb–CaAl-LDH-3, and Tb–CaAl-LDH-4 with excitation
wavelength of 350 and370 nm, respectively
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is independent of its environment, the R value can give
some valuable information about the symmetry of the site in
which Tb3+ ions are situated [63]. It was found that the ratio
of the (5D4→

7F5)/(
5D4→

7F6) emission intensity obviously
decreased with the increase in the molar ratio of Ca2+/(Al3+

+ Tb3+), suggesting the different surroundings of Tb3+. The
highest ratio presents in the sample with Ca2+/(Al3+ + Tb3+ )
molar ratio of 1.0, revealing distorted local environment of
the Tb3+ ion; the lowest ratio in the sample with Ca2+/(Al3+

+ Tb3+ ) molar ratio of 4.0, corresponding to lower distorted
local environment of the Tb3+ ion. The decrease in the ratio
of the (5D4→

7F5)/(
5D4→

7F6) emission intensity with the
increasing molar ratio of Ca2+/(Al3++Tb3+) indicated the
less lattice distortion in the local environment of the Tb3+

ion due to fewer divalent metal ions (Ca2+) isomorphously
substituted by trivalent metal ions (Al3+ + Tb3+) in the LDH
framework. This result was in accordance with the previous
work [62].

4 Conclusion

We have synthesized a series of Tb-doped CaAl-LDHs with
fluorescent property in a mixed solution of ethanol and
water with reasonable proportion. Various techniques,
including ICP, CHN, SEM-EDX, XRD, IR, TGA-DTA-
DTG, and FL, were used to characterize the chemical
composition, structure, and fluorescent property of samples.
Results indicated that all the Tb-doped samples present
typical structure of LDH and strong green emissions
attributed to 5D4→

7F5 transition of Tb
3+ ions. Moreover, the

content of Tb3+ incorporated in the CaAl-LDHs affected the
structural type of CaAl-LDHs. In addition, the content of
interlayer water of Tb–CaAl-LDH-n(n= 1, 2, 3, 4) has
influence on their thermal stability. In the light of the bio-
compatibility of Ca2+ and excellent green emission of Tb3+,

the Tb-doped CaAl-LDHs will be potential application in
biological fluorescent materials.
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