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Abstract The stabilization of metal nanoparticles using

surface modification has been intensively investigated. We

propose an alternative to the use of surfactants, long-chain

polymers or silica shells in order to provide easy and

efficient stabilization of a wide range of metallic nanos-

tructures. The prepared silicon oligomers were character-

ized, optimized and successfully used for surface

modifications of nanospheres, nanobipyramids, nanorods

of both gold and silver. The modified nanoparticles were

then easily incorporated into monolithic sol–gel materials

based on silica. This original route toward hybrid com-

posite was efficiently used to prepare composite sol–gel

materials with plasmonic nanostructures for optical

applications.

Graphical Abstract Specifically designed silicon poly-

mers are used to efficiently stabilize metal nanoparticles

and allow homogeneous dispersion into sol–gel materials.

Keywords Silicon � Gold � Surface functionalization �
Metal nanoparticles � Sol–gel � Plasmon

1 Introduction

Surface modification of metal nanoparticles has been

investigated for a long time with the aim to either con-

tribute to the stability of the colloids or to achieve new

functionalities such as fluorescence or molecular recogni-

tion. Incorporation of metal nanoparticles in transparent

glass [1, 2] or polymers [3, 4] has also been investigated for

optical application but remains complicated due to particles

instability during the preparation process, and to a difficult

control of the shape/size of the nanostructures. In situ

growth of metal nanoparticles in glass matrices can be

achieved through several processes such as laser, thermal

or chemically induced growth but remain limited to mostly

spherical nanoparticles or wires-type nanostructure and

generally with poor homogeneity [1–22]. The use of
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polymers for colloidal stabilization has already been

described in the case of metal nanoparticles and in par-

ticular gold nanoparticles (AuNPs). Thus, various systems

have been studied such as thiolated polyethyleneglycol

(PEG-SH) [23–26], polyelectrolytes [27–29], polyelec-

trolytes combined with silica shell and hydrophobation

using octadecyltrimethoxysilane [30], mercaptosuccinic

acid followed by TOAB [31] or mercaptopropy-

ltrimethoxysilane followed by hydrophobation by octade-

cyltrimethoxysilane [32]. Despite the important amount of

studies, the obtained systems are either complicated to

achieve or do not offer the desired stability in organic

solvent allowing their use during sol–gel process.

We propose an original approach, which involves the

surface modification of metal nanoparticles of various

shapes and sizes using a functional thiolated silicon polymer.

This polymer acts as a stabilizing agent of the colloids both in

wide range of solvent and in transparent glassmaterials using

the sol–gel process. In this paper we intend to develop the

synthesis and optimization of the silicon polymer structure

and the surface modification of gold nanostructures.

2 Experimental details

2.1 Synthesis of silicon polymer P1

8.3 mL (46.95 mmol) of diethoxydimethylsilane, 760 lL
(4.18 mmol) of (3-mercaptopropyl)-methyl-dimethoxysi-

lane and 780 lL (3.62 mmol) of (3-glycidoxypropyl)-

methyl-dimethoxysilane (GLYDMO)weremixed together in

a round bottom flask, equipped with a condenser, containing

4 mL MilliQ water and 40lL HCl (0.1 M). After 20 min of

stirring at room temperature, 380 lL of triethylamine

(2.7 mmol) was added. The mixture was then refluxed at

65–70 �C for 2 h. Finally, the condenser was replaced with a

distillation apparatus, 10 mL of ethanol was added and the

mixture heated at 120 �C until all the solvents were removed.

The final residue is dispersed in ethanol (30 mL) for storage.
1H NMR (300 MHz, CDCl3) d 3.92–3.81 (m, &1H),

3.59–3.43 (m, &2H), 3.50–3.38 (m, &2H), 2.74–2.56 (m,

&2H), 2.65–2.46 (m, &2H), 1.81–1.53 (m, &4H), 1.33 (t,

J = 7.1 Hz, &0.3 9 1H), 0.72–0.54 (m, &2H), 0.60–0.41

(m, &2H), 0.19–0.02 (m, &6H ? 13 9 6H). 29Si NMR

(99 MHz, Acetone) d -13.62 (D1 OH), -14.18 (D1 OH),

-14.98 (D1 OH), -19.19 (cycles D4), -21.93 to -22.21

(D2), -22.83 (D2).

2.2 Synthesis of silicon polymer P2 (with n and p

around 0.1)

The synthesis was achieved in two steps.

2.2.1 Coupling of GLYMO with 2-mercaptoethanol

619 lL (2.8 mmol) of (3-glycidoxypropyl)trimethoxysi-

lane, 199 lL (2.8 mmol) of 2-mercaptoethanol and 500 lL
of methanol were mixed together in a 5 mL vial filled with

argon. After the addition of 12.5 lL (0.1 mmol) of TMG

(tetramethylguanidine), the mixture was stirred and heated

5 min at 60 �C and let cool down to RT for 30 min. The

completion of reaction was checked by IR analysis (dis-

appearance of epoxy bands around 900 cm-1).

2.2.2 Synthesis of polymer P2

500 lL (2.8 mmol) of (3-mercaptopropyl)-methyl-dimethoxysi-

lane, 550 lL of MilliQ water and 50 lL of 0.1 M HCl

solution were mixed together under vigorous stirring in a

round bottom flask, equipped with a condenser. After

10 min, 4.1 mL (23.2 mmol) of diethoxydimethylsilane was

added to the mixture. Finally, after 10 min, the modified

GLYMO mixture and 380 lL (3.3 mmol) of TMG were

added to the flask. The mixture was then refluxed at 120 �C
for 3 h. Finally, the condenser was replaced with a distilla-

tion apparatus, until all volatiles were removed. The residue

was dispersed in diethylether (20 mL), washed briefly with

10 mL ofwater, dried onMgSO4 and concentrated. The final

viscous liquid was diluted into 20 mL of ethanol for storage.
1H NMR (300 MHz, CDCl3) d 3.92 (m, &1H), 3.77 (t,

J = 6.9 Hz,&2H), 3.45 (m,&4H), 2.78 (m,&2H), 2.68 (m,

&2H), 2.53 (m,&2H), 1.64 (m,&4H), 1.33 (t, J = 7.1 Hz,

&1H), 0.62 (m, &2H), 0.52 (m, &2H), 0.14–0.02 (m,

&6H ? 8x6H). 29Si NMR (99 MHz, CDCl3) d -10.9 to

12.8 (D1 OH), -19.0 (D4 cycles), -20.7 to -23.1 (D2),

-65.4 to 68.6 (T3).

2.3 Functionalization of nanoparticles

2.3.1 Quick functionalization of nanoparticles for THF

extraction process

The gold nanobipyramids and nanospheres were prepared

as described in our previous articles [33–36] and freshly

purified by centrifugation (8000 rpm, one time) followed

by redispersion in 5 mM CTAB at a concentration of

0.25 mM Au0.

Typically, 1 mL of those nanoparticles were mixed with

25 lLof an ethanolic 1 %solutionofP2 (madewithn = 0.08

and m = 0.1) and sonicated for 30 s in a sonic bath. 1 mL of

THF was added to the mixture with manual stirring, followed

by 225 lL of diethyl ether. The stirring was continued for five

seconds, and then, the phase separation occurred. The water

phase can be removed easily using a glass pipette. The organic

phase can be diluted two times in THF for storage.
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2.3.2 Functionalization of nanoparticles with isolation

by centrifugation

4 mL of gold or silver nanoparticles (at 0.25 mM [Au0] or

[Ag0] in 2 mM CTAB or CTAC) was mixed with 100 lL
of an ethanolic 1 % solution of P2 (made with n = 0.1 and

m = 0.1), sonicated for 5 min in a sonic bath. The mixture

was incubated for at least one hour (up to 18 h for the

bigger particles) at 50 �C. After centrifugation (8000 rpm),

the particles were redispersible using a sonic bath in

ethanol, acetone and THF.

3 Results and discussion

The design and synthesis of silicon-based polymers was

investigated in order to (1) stabilize the gold nanoparticles

in wide range of solvents and (2) overcome the instability

of gold nanoparticles in sol–gel media during the formation

of monolithic transparent metal doped materials.

Typically, transparent silica-based composite materials

are prepared using MTEOS-based sols diluted in tetrahy-

drofuran (THF) [37–40]. For the present study, the selected

nanoparticles possess different geometries, either aniso-

tropic in the case of gold bipyramids or isotropic gold

nanospheres. Both systems are prepared in cationic sur-

factants media, which make them difficult to stabilize

efficiently in organic solvents such as THF. One efficient

way to stabilize the AuNPs in the sol–gel media is to coat

the surface of the particles with a silica shell. Unfortunately

the synthesis is not always easily controlled (silica layer

homogeneity) and time consuming, and the particles shape

can be affected during the coating process [30, 41]. We

decided to develop a new series of silicon-based polymer,

which will bring strong affinity of the covered particles for

the sol–gel media, and bearing thiol pending groups

ensuring efficient surface grafting on the metal.

The preparation of linear functional silicon polymers

can be achieved by simply mixing different alkoxysilanes

monomers that can be selectively hydrolyzed together or

separately in order to obtain the desired oligomers. It is

important to note that for this study, the polymer length did

not need to be perfectly controlled in order to improve the

particle stabilization.

Since gold particles are prepared in water-based solutions,

the polymers have to be compatiblewith such environment for

efficient grafting. The first attempts to functionalize AuNPs in

water with 3-mercaptopropylsilanes and diethoxydimethyl-

silane (DEDMS)-based polymers were unsuccessful. The

main reasonwas because of the bad compatibility between the

polymer and the water dispersion of AuNP. Therefore, an

epoxy-silane, (3-glycidoxypropyl)methyldimethoxysilane

(GLYDMO), was added to increase the hydrophilicity of the

polymer and consequently improve the homogeneousmixing.

The preparation of polymer P1 is shown in scheme 1. It was

prepared and used for particle functionalization such as pre-

viously reported [40]. Unfortunately, despite its good com-

patibility with the particles solution, P1 led to dispersion

showing low stability, in particular in THF, after few days of

storage.Moreover, the reactivity toward themetal surfacewas

sometimes too low (especially for gold nanospheres).

We assumed that to overcome this lack of reactivity and to

improve the time stability, higher amount of thiol units were

needed together with hydroxyl functions along the polymer

chain. Indeed, coupling between the mercaptopropyl units

and the epoxy occurred during the reaction leading to a lower

amount of available thiols for anchoring on the AuNPs. We

thus designed a system derived from P1, with several

important changes. Prior to its inclusion within the polymer,

the epoxy-silane was reacted with 2-thioethanol to avoid

coupling on the MPDMS during the synthesis. Using this

approach, more thiols were available from the mercapto-

propyl units, the hydrophilicity was high and the beta-hy-

droxysulfide groups were still present. The GLYDMO

precursor was replaced by (3-glycidoxypropyl)trimethoxysi-

lane (GLYMO) in order to compensate the loss of epoxy/thiol

crosslinking. The (3-mercaptopropyl)-methyl-dimethoxysi-

lane (MPDMS) was hydrolyzed alone, to favor the formation

of oligo-mercaptopropylsilicone blocks inside the final

polymer chains. Finally,TEAwas replacedwith thewaymore

basic tetramethylguanidine (TMG). Less water was used,

which made the control of the chain length easier. The poly-

mer P2 was thus obtained in two steps (Scheme 2). This

polymer showed much higher reactivity toward AuNPs,

which reduced the time of functionalization and increased

considerably the stability of the dispersions in the final media.

The reactivity and stabilizing efficiency of the new P2

polymer was evaluated on several kinds of metallic

nanoparticles exhibiting different geometries such as gold

bipyramids, silver nanorods and gold nanospheres. Effi-

cient grafting was evidenced on anisotropic particles by

electronic microscopy. Figure 1 shows the polymer shell

thickness covering gold bipyramids of different length. In

the case of silver nanorods, aggregation was observed with

non-grafted systems. Functionalized rods did not exhibit

any packing (Fig. 2).

Interestingly, condensation between silanol groups

along P2 could increase both the polymer chain length and

densification of the shell surrounding the nanoparticles. As

a direct consequence, the shell thickness could be con-

trolled by varying the reaction time between the nanopar-

ticles and the polymer. Figure 1 shows the impact of the

reaction time on the thickness of the final shell.

Efficiency of grafting was also evidenced through sol-

vent extraction of the particles from water to THF (Fig. 3).

The metallic colloids in a surfactant/water mixture were
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incubated with either P1 or P2 for different durations. THF

was then added, followed by a small amount of diethyl ether

leading to two different phases. The organic phase was

quickly separated from water and became the same color as

the previous particles suspension. Moreover, the surfactant/

water mixture became colorless proving that all the polymer-

functionalized particles were extracted from the aqueous

phase to the organic one (Fig. 3). The higher reactivity of P2

compared to P1 was evidenced by the faster incubation time

from few minutes to few hours, respectively.

The THF phase was easily recovered, concentrated by

evaporation and stored. Such suspension could be used

directly to prepare AuNPs containing sol–gel materials

(Fig. 4) [40].

O
Si

O +m
n mn

SH
O

Si
O

O
O

Si
O

O
+n p

p-n

OH

OS

Si O Si O Si OOH O

SH

Si H
1) H2O pH=3, RT, 10 min

2) TEA 0,1 eq, 65°C, 2h

Scheme 1 Synthesis of the polymer P1
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Scheme 2 Synthesis of polymer P2

Fig. 1 Left Transmission electron microscopy (TEM) photograph of

gold nanobipyramids freshly functionalized with P2. 1 mM of NiNO3

was introduced in the particle solution to enhance polymer contrast.

The particles were in contact with the polymer for one night before

isolation by centrifugation. Right Scanning electron microscopy

(SEM) imaging of 6-month old water dispersion of functionalized

nanobipyramids showing the important growth of the thick shell
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The ratio between the different monomers during poly-

mer synthesis is a way to control the reactivity and the

compatibility of the polymer with the organic solvent. The

amount of opened epoxy units (n) mostly control the polarity

and the reticulation of the polymer. For the THF extraction,

polymers with a low polarity (with 0.05\ n\0.08 and

p = 0.1) are better, despite being less soluble in water.

When the particles are redispersed in ethanol, after cen-

trifugation, a polymer with n = p = 0.1 gives better results.

Therefore, one can tune easily the behavior and the solvent

compatibility of the final particles by changing the amount

of polar crosslinking units in the polymer backbone.

The spectroscopic characterization on the modified

nanoparticles showed no broadening, but only a little shift

of the absorption band when transferred from water to

THF, in particular for anisotropic bipyramids for which the

spectrum is mostly affected on the longitudinal resonance

(Fig. 5). The most important shift is observed in the case of

the more elongated bipyramids. Such behavior, attributed

to the sharpness of the tips, was already described in pre-

vious work [33]. Similarly, when transferred into the sol–

gel silica materials, no broadening of the absorption band

was observed demonstrating the quality and homogeneity

of the dispersion in the solid phase [40].

Fig. 2 Surface modification of silver nanorods showing the high dispersibility with polymer (left), while without polymer it showed important

self-assembling aggregation (right)

Fig. 3 Efficient extraction and stabilization into THF phase (top)

versus aqueous phase (bottom) of 40 nm gold nanospheres (left),

40 9 23 nm gold bipyramids (middle) and 85 9 26 nm gold bipyra-

mids (right) using P2

Fig. 4 Example of dispersion of 45 nm gold nanospheres (top left,

respective concentrations from left to right 0.03, 0.06, 0.13, 0.25,

0.5 mM in Au0) and gold nanobipyramids (top right, respective

concentrations from left to right 0.06, 0.13, 0.25 mM in Au0) at

various concentrations in sol–gel silica-based materials. Side view of

the materials with gold nanospheres (bottom). The diameter of the

prepared xerogels is 1 cm
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4 Conclusion

As a conclusion, we were able to design a new silicon-

based polymer, which allowed easy and efficient surface

functionalization of metal nanoparticles of different size

and shape. This surface modification allowed important

stabilization of the nanoobject in suspension and further-

more permitted their transfer in organic solvents such as

THF for further use. Such approach is extremely conve-

nient for the preparation of very thin layer of silicone at the

surface of any metal nanoobject and even allows a good

control of this thickness together with easy processing. As

demonstrated by our group, this strategy gave the oppor-

tunity to prepared for instance sol–gel-based monoliths or

films with incorporation of metallic nanostructures of

controlled shape and size with highly homogeneous dis-

persion. This opens the route toward new plasmonic hybrid

materials for fundamental investigations on the under-

standing of charge and energy transfers and further devices

for enhancement of optical responses in sensors, optical

filters or imaging technologies. By changing the nature of

the monomers, for example using aminosilanes, the poly-

mer was also adapted to other systems such as rare-earth

fluoride or oxide nanoparticles.
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