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Abstract Search of new pigment for the green synthesis of

nanoparticles has emerged new scope for the chemist. In this

report, we describe the synthesis of silver nanoparticles

(AgNPs) using notorious weed, Lantana camara L. flower

extract. The AgNPs were characterized by visual, UV–visi-

ble spectrophotometer, transmission electron microscopy

(TEM), dynamic light scattering and X-ray diffraction

(XRD). UV–visible spectroscopy showed surface plasmon

resonance at 470 nm clearly reveals the formation of AgNPs.

TEM analysis confirmed that the AgNPs are spherical and

33 ± 5 nm average sized. XRD analysis reveals the forma-

tion of pure silver metal with face-centered cubic symmetry

and confirms crystalline nature. The AgNPs showed signif-

icant antioxidant efficacy at different time intervals against

1,1-diphenyl-2-picrylhydrazyl and photocatalytic activities

by the degradation of the methylene blue. From the results

obtained, it is suggested that surface-modified AgNPs could

be used effectively in future biotechnology concerns.
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1 Introduction

The development of an economically and ecologically

favorable technique for the synthesis of nanoparticles is a

great challenge in nanotechnology. Nanostructured mate-

rials or nanomaterials have one spatial dimension in the

range of 1–100 nm [1] which includes thin films and bulk

materials made of nanoscale building blocks and consisting

of nanoscale structures, e.g., nanorods, nanowires and

nanoparticles (NPs). In the past few years, there has been

much attention in using silver nanoparticles (AgNPs) in

new technologies, due to the surface plasmon resonance

(SPR) in the visible region, which can be easily monitored

by UV–visible spectrophotometer. The applications of

AgNPs in the field of medicine, optoelectronics, optics,

catalysis, sensors are well known [2–5].

Nowadays, plant-mediated synthesis of metal nanoparti-

cles (MNPs) has become very important to protect the

environment by increasing the use of environmentally benign

solvent, reducing agent [6, 7] and replacing the use of haz-

ardous/toxic chemical, harsh conditions or low yielding.

Many natural products containing amine, carboxyl, hydroxyl

and carboxylic groups are considered as candidates for non-

toxic reducing agents or particle–surface stabilizers, because

this functional group facilitates the formation of complexes

of metal ions and then oxidizes itself to reduce metal ions to

elemental metal. Hence, plant-based methods for AgNPs

synthesis using the Sacha inchi oil, agriculturalwastes, leaves

[8–10], Citrus sinensis peel extract [11], edible mushroom

extract [12], Aloe vera [13], clove extract [14] and extracts

from coffees and teas [15] are widely grown in popularity.

Lantana camara L. is a woody straggling plant with

various flower colors, red, pink, white, yellow and violet

(Fig. 1). The plant is growing luxuriantly at elevations up

to 2000 m in tropical, subtropical and temperate regions

[16]. It is regarded both as a notorious weed and a popular

ornamental garden plant and has found various uses in folk

medicine in many parts of the world. In Central and South

America, a tea prepared from the leaves and flowers was

taken against fever, influenza, stomachache, chicken pox,

measles, rheumatisms, asthma and high blood pressure [17,

18]. In Asian countries, leaves were used to treat cuts,

rheumatisms, ulcers, leprosy and scabies and used as a

vermifuge [17]. In Ghana, infusion of the whole plant was

used for bronchitis and the powdered root in milk was

given to children for stomachache [19]. The major phyto-

constituents of L. camara are mono- and sesquiterpenes

(bisabolene, b-curcumene, c-curcumene, safrole), triterpe-

nes (lantanolic and lantic acids, ursolic acid, lupane), iri-

doid glycosides (theveside, lamiridoside, epiloganin),

flavonoids (hispidulin, glycoside camaraside, trimethoxy

quercetin derivatives) [16].

On looking overall biological importance of L. camara,

we are trying to explore their new application in material

science. Thirumurugan et al. [20], Ajitha et al. [21] and Dash

et al. [22] already reported the biosynthesis of AgNPs and

gold NPs using leaf extracts of L. camara, due to the pres-

ence of reducing agents within their leaves. But the use of the

flower extract may also be a novel alternative for this pur-

pose. The present study describes the synthesis of AgNPs

using L. camara flower extracts at room temperature, char-

acterization and its applications in degradation of methylene

blue (MB) and antioxidant activities. Thus, the utilization of

this weed in industrial processes for the production of high-

performance materials could be an additional source of

revenue for farmers. However, to the best of our knowledge,

L. camara flower has never been used to prepareAgNPs.MB

is one of the well-known cationic/thiazine dyes, used in the

analysis of trace levels of sulfide ions in aquatic samples. It

has been widely used in dying materials for wood, silk,

cotton [23], antimalarial and chemotherapeutic agent,

microbiology, surgery and diagnostic field [24–26]. Though

MB is not highly hazardous, but acute exposure can cause

some harmful effects like increased heart rate, vomiting,

shock, cyanosis, jaundice, quadriplegia and tissue necrosis

in humans [27]. Thus, removal of MB from wastewater

effluent is very important due to their potential toxicity to

human and environment.

2 Materials and methods

2.1 Synthesis of silver nanoparticles

All chemicals were of analytical grade and used without

any purification. Silver nitrate (AgNO3, 99.0 %) was pur-

chased from Spectrum (USA), and L. camara flowers were

collected from the local garden near Universidad de lasFig. 1 Lantana camara flower
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Fuerzas Armadas, Sangolqui, Ecuador. 1,1-Diphenyl-2-

picrylhydrazyl (DPPH�, [99.5 %) was purchased from

Sigma-Aldrich, USA. Milli-Q water was used in all

experiments. The collected fresh L. camara flowers (2 g)

were washed thoroughly with Milli-Q water and heated

(55–60 �C) in 20 mL of ethanol (95 %) for 10 min. After

cooling, the yellow color extract was filtered using What-

man No. 1 paper. The filtrate was collected in 20-mL

Erlenmeyer flask and stored at 4 �C for further use. For

green synthesis, 2 mL of filtrate was mixed with 18 mL of

1 mM AgNO3 solution at room temperature (22–25 �C).
Reduction occurs rapidly as indicated by the appearance of

wine red color after 30 min and studied the formation of

the AgNPs at different time intervals.

2.2 Evaluation of antioxidant activity

The scavenging activity of the AgNPs at different time

intervals was measured by using DPPH� as a free radical

model and a method adapted from Kumar et al. [10]. An

aliquot (1.0–0.2 mL) of AgNPs or control and 1.0–1.8 mL

of H2O was mixed with 2.0 mL of 0.2 mM (DPPH�) in

95 % ethanol. The mixture was vortexed vigorously and

allowed to stand at room temperature for 30 min in the

dark. Absorbance of the mixture was measured spec-

trophotometrically at 517 nm, and the free radical scav-

enging activity was calculated using Eq. (1):

Scavenging effect %ð Þ¼
1 � fabsorbance of sample/absorbance of controlg½ � � 100

ð1Þ

The scavenging percentage of all samples were plotted.

The final result was expressed as % of DPPH� free radical

scavenging activity (mL).

2.3 Evaluation of photocatalytic activity

To evaluate the photocatalytic activity of the AgNPs,

degradation of MB in aqueous solution as a model system

was investigated [8]. The UV light was used as direct

sunlight source. 0.2–1.0 mL of AgNPs and 0.8–0.2 mL of

H2O were added to 5 mL of 10 mg/L MB solution. A

control setup was also maintained without AgNPs. The

dispersion was put under the sunlight (950–1050 cd/m2).

The absorbance spectrum of the solution was subsequently

measured using UV–visible spectrophotometer at wave-

length 664 nm for different time intervals.

2.4 Characterization of silver nanoparticles

The L. camara flowers-mediated AgNPs were confirmed

by UV–visible, single-beam spectrophotometer (Thermo

Spectronic, GENESYSTM 8, England, Quartz Cell, path

length 10 mm and graph plotted on the Origin 6.1 pro-

gram). Size and selective area electron diffraction (SAED)

pattern of nanoparticles were studied on transmission

electron microscopy, TEM (FEI, Technai, G2 spirit twin,

Holland). The hydrodynamic particle size distributions of

nanoparticles were determined using the HORIBA,

Dynamic Light Scattering (DLS) version LB-550 program.

X-ray diffraction (XRD) studies on thin films of the

nanoparticle were carried out using a BRUKER D8

ADVANCE brand h–2h configuration (generator-detector)

X-ray tube copper k = 1.54 Å and LynxEye PSD detector.

The diffracted intensities were recorded from 20� to 70� 2h
angles.

3 Results and discussion

3.1 Visual and UV–Vis study

As shown in Fig. 2, the use of L. camara flower extract was

hypothesized to be an efficient way to synthesize and sta-

bilize AgNPs. With the addition of L. camara flower

extract (b) to AgNO3 solution (a), the color of the solution

turned from pale yellow to light pink (c–e) and then to wine

red (f–i) after 168 h of the reaction, which indicated the

reduction of Ag? and formation of AgNPs. UV–visible

spectroscopy is an important technique to determine the

formation and stabilization of aqueous metal nanoparticles.

The color change from yellow to wine red was due to the

excitation of SPR. SPR is a collective oscillation of free

conduction electron induced by an interacting electro-

magnetic field [28]. The position of the SPR band in the

UV–visible spectra is sensitive to particle size, shape, local

refractive index and the extent of charge transfer between

the medium and the particle [29]. As shown in Fig. 3, the

ethanolic L. camara flower extract exhibited a broad

absorbance at kmax = 330 nm due to the presence of

mono- and sesquiterpenes, triterpenes, iridoid glycosides,

flavonoids, etc. [16]. Initially, the progress of the new

absorbance band at visible region, kmax = 480–470 nm

clearly indicates the preliminary synthesis of AgNPs. It

was observed that SPR band becomes narrower and shifted

toward shorter wavelength region and finally a sharp

absorption peak occurs at 470 nm after 168 h of the reac-

tion. It may likely result from varied natural capping agents

coming from L. camara flower extracts.

3.2 TEM and SAED study

The size and morphology of the synthesized AgNPs were

confirmed by TEM analysis. The obtained TEM images of

the AgNPs prepared by L. camara flower extracts are
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shown in Fig. 4. It clearly indicates that the synthesized

AgNPs are roughly spherical and a layer of organic

material surrounding the synthesized AgNPs which may

explain the good dispersion in solution exhibited by these

synthesized AgNPs. The particle size was distributed in the

range of 16–40 nm with a small degree of agglomeration.

Further, crystalline nature of the AgNPs was confirmed by

the selected area electron diffraction (SAED) pattern with

bright circular spot.

3.3 DLS study

DLS measures the hydrodynamic diameter of the synthe-

sized AgNPs, whereas the diameter observed by TEM

indicates that of dried AgNPs. Figure 5 shows the size

distribution histogram of the AgNPs. The particle size was

distributed in the range of 20–150 nm with a mean particle

size of 53.5 nm. The particle size obtained by DLS study

was larger than the particle size obtained by TEM study.

This is due to the ligands/phytochemicals attached to the

surface of AgNPs [18, 22].

3.4 XRD study

The peaks in the X-ray diffraction pattern (Fig. 6) are due

to three Bragg reflection peaks at 2h values of 38.290�,
44.606� and 64.462� corresponding to (111), (200) and

(220) planes of silver which are observed and compared

with the ICSD No.: 01-087-0717. All the reflections cor-

respond to pure silver metal with face-centered cubic

symmetry [30] and confirm crystalline nature. Since that

Bragg peak is wide, implying the products are in nanosize.

The diameter of the synthesized AgNPs was calculated

using the Scherrer equation which was around 33 ± 5 nm

and was in good agreement with TEM results.

3.5 Mechanism of reduction of Ag1 to AgNPs

The possible mechanism for the reduction of Ag? is pro-

posed and shown in Fig. 7. The formation of AgNPs from

Ag? ions is initiated by the chemical reactions in the

presence of the major phytochemicals (flavonoids, mono-

and sesquiterpenes, ursolic acid, iridoid glycosides, etc.)

[16] present in the L. camara flower extract as reducing and

stabilizing agents. In this scheme, Ag? ions can interact

with O–H groups, which subsequently undergo oxidation to

–CHO and –COOH forms with consequent reduction of

Fig. 2 Color change of reaction mixtures prepared by a 1 mM AgNO3 (aq) containing and b L. camara flower extract at different time intervals
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Fig. 4 TEM images of AgNPs prepared by L. camara flower extract

Fig. 5 DLS pattern of prepared

AgNPs

Fig. 6 XRD images of AgNPs

prepared by L. camara flower

extract

Fig. 7 Schematic diagram for

biosynthesis of AgNPs using

flower extract of L. camara
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Ag? to AgNPs. Finally, –COOH groups help in the stabi-

lization of AgNPs.

3.6 Antioxidant study

DPPH� is a stable compound, and it will be reduced by

accepting the hydrogen or electrons. The reducing activity

of L. camara flower extract and AgNPs was quantified

spectrophotometrically by changing the DPPH� color from
purple to yellow. In the present study, percent of inhibition

of DPPH� radical scavenging activity was shown in Fig. 8.

It was found that the DPPH� scavenging activity of the L.

camara flower extract was increased in a dose-dependent

manner, whereas AgNPs has a slight deviation at higher

dose with lapse of time. It was due to the involvement of

phytochemicals for the stabilization of AgNPs. The maxi-

mum scavenging/antiradical efficacy for the L. camara

flower extract was 87.41 % in 1 mL and for AgNPs was

found to be 77.44, 69.10, 65.60, 68.69, 66.32, 63.11,

61.76 % at 1, 2, 3, 4, 5, 48, 168 h in 0.8 mL/0.2 mM. The

antioxidant efficacy may be due to encapsulation of

bioactive molecules on the spherical surface of AgNPs

through the electrostatic attraction between negatively

charged bioactive compounds (COO-, O-) and neutral or

positively charged nanoparticles [10, 31]. The effect of

activity depends on the site of attachment of the metals and

its consequent impact on the activity of the antioxidant

agent.

3.7 Photocatalytic effect

Besides the optical properties, AgNPs have excellent cat-

alytic activity. Generally, it is accepted that chemistry

changes with size [9]. The role of metal nanoparticle as an

electron transfer catalyst is thus expected to vary with size.

The characteristic absorption peak at 664 nm of MB dye

was used for monitoring the catalytic degradation process

[8]. The rate of MB decomposition catalyzed by AgNPs is

assumed to be fitted by a first-order rate law [32] which

shows a linear relationship between ln (At/Ao) and reaction

time and the slope gives the negative rate constant in each

case. The rate constant (k) of photocatalytic degradation of

MB dye was investigated at different time intervals in the

presence of different quantities (0.2–1.0 mL) of AgNPs,

and the rate constant that was evaluated from the slope of

the straight line is shown in Fig. 9a. From the study, it

revealed that the rate constant was increased gradually

(k5\ k4\ k3\ k2\ k1) with increasing the concentration

of AgNPs, due to increase in the surface area of the active

site of AgNPs. The rate constant was found to be higher

(k1 = 3.40736 9 10-3 min-1), when 1 mL of AgNPs was

used in the photocatalytic degradation reaction. Figure 9b

shows the main MB absorption peak at 664 nm, decreased

gradually with the extension of the exposure time, indi-

cating the optimized photocatalytic degradation, 70.20 %,

10 mg/L dye of MB in 6 h. Decrease in the absorption
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intensity of the band at kmax during the irradiation also

expresses the loss of the conjugation of the organic mole-

cule, MB. When the reaction is carried out under sunlight

using glass tubes (glass is opaque to UV light), the

degradation activity increased drastically.

4 Conclusions

The current study shows the utilization of L. camara flower

extract as both the reducing and stabilizing agent in the

ecofriendly synthesis of AgNPs. UV–visible spectroscopy,

TEM, DLS and XRD analysis confirmed that the AgNPs

are spherical, crystalline and 33 ± 5 nm average sized.

The formed AgNPs exhibited more than 70 % degradation

of MB in sunlight for 6.0 h. In addition, the surface-mod-

ified AgNPs clearly demonstrated significant antioxidant

activity (C60 % for 0.2 mM) against DPPH� and could be

used effectively in future biotechnology concerns.
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