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Abstract Calcium phosphate-based biomaterials are of

great interest due to their use in various biomedical ap-

plications. Current preparation methods of b-tricalcium

phosphate (b-TCP) require the processing of calcium

phosphate precursors at high temperatures for long periods.

Sol–gel-derived calcium-deficient carbonated hydrox-

yapatite (CHA) samples were synthesized and then aged at

different times (24 and 90 h), while other freshly prepared

samples were subjected to microwave (MW) radiation for

10 min in order to prepare b-TCP. All samples were cal-

cined (at 750 �C) and then were characterized using

scanning electron microscopy, Fourier transform infrared

spectroscopy and X-ray diffraction. The 24-h-aged samples

showed complete degradation into b-TCP and calcium

pyrophosphate (CPP) phases. However, only b-TCP phase

was detected in the 90-h-aged samples. Furthermore, b-

TCP as the major phase was also obtained in the

10-min MW-treated unaged samples. The aging of sol–gel-

derived CHA samples for 90 h had a positive effect on the

conversion of CHA into b-TCP phase. Furthermore, the

MW treatment of the unaged CHA samples enhanced its

total conversion into b-TCP in shorter time which could be

attributed to the MW irradiation-induced effect on the

CHA structure.
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1 Introduction

Calcium phosphate-based biomaterials have been used fre-

quently as bone substitutes and osteoconductive scaffolds

due to their chemical similarity to the inorganic phase of

bone [1]. Currently, they are widely used to promote bone

repair and regeneration instead of autogenous (self) bone

graft/flab transplantation used for orthopedics, oral and

maxillofacial bone defects [2] or implant coatings [3]. Cal-

cium phosphates (CAP) exist in different forms and phases

including hydroxyapatite (HA), calcium-deficient HA, tri-

calcium phosphates (a or b-TCP), calcium monophosphate

and biphasic calcium phosphate (BCP) [4]. Carbonated hy-

droxyapatite (CHA) differs from stoichiometric HA in which

carbonate ions substitute for the hydroxyl ion (A type) or

phosphate ion (B type) in the apatite structure [5]. Although

CHA is more similar to the biological apatites [6], it shows a

reduced crystallinity percent, sintering and decomposition

temperatures when compared to stoichiometric HA [5, 7].

CHA prepared via sol–gel method offers a distinct ad-

vantage of a molecular-level mixing of the calcium and

phosphorus precursors, which improves the yield and the

chemical homogeneity of the resulting CHA [8]. Further-

more, the high reactivity of the sol–gel powders usually

results in the decrease in the heat treatment and the sin-

tering temperatures [9].

b-Tricalcium phosphate (b-TCP) has been used recently

as bone and tooth implants due to its unique biocom-

patibility, osteoconductivity and bioresorbability [10, 11].b-

TCP is mainly prepared via solid-state [12, 13] and wet-

chemical methods [14]. In order to synthesize b-TCP, the

current preparation methods require the heating of calcium

phosphate precursors for very long periods [15] ([24 h) and/

or at very high temperatures (up to 1000 �C) [13, 16–18].

Microwave (MW) processing of materials is an advanced

processing technology with several advantages [19, 20]. It

provides a powerful and significantly different tool to process

materials and in most cases improves the performance char-

acteristics of the existing materials. These anticipated benefits

include more precise and controlled volumetric heating, faster

ramp-up to temperature, lower energy consumption, and en-

hanced quality and properties of the processed materials [21,

22]. Nano-structured calcium phosphates can be better tai-

lored to obtain desired chemical compositions, surface prop-

erties (specifically topography), mechanical properties and

distribution of grain size similar to those of physiological bone

(which contains 70 % by weight of HA ceramic with grain

sizes\100 nm) [23]. MW-assisted synthesized nano-HA was

approved for its cell biocompatibility [24] and the ability of

bioresorption in stimulated body fluid with a dissolution rate

fairly higher than conventional HA and closer to biological

apatite due to its nano-structure processing [25]. Others

investigated the effects of micro-sized MW synthesized ver-

sus nano-sized conventionally precipitated HA (l/n-HA) on

the osteogenic differentiation of rat bone marrow-derived

mesenchymal stem cells (rBMSCs) [26]. It was shown that

rBMSCs expressed higher levels of osteoblast-related mark-

ers with nHA than l-HA stimulation; thus, the size of calcium

phosphates used is an important factor for affecting the os-

teogenic differentiation of rBMSCs and to obtain more com-

mitted differentiated cells. The purpose of the current study

was to investigate the possibility to prepare b-TCP from sol–

gel-derived CHA via two different routes, the MW treatment

and the aging techniques.

2 Materials and methods

2.1 Sol–gel synthesis, aging and MW treatment

For the synthesis of the CHA, calcium nitrate tetrahydrate

(Ca(NO3)2�4H2O) and ammonium dihydrogen phosphate

((NH4)H2PO4) were used as the starting materials for Ca and

P (Oxford Chemicals, India). Sol–gel-derived CHA samples

were reported recently by Bakan et al. [27] and were pre-

pared according to the protocol. In the synthesis process, a

solution of Ca(NO3)2�4H2O in ethanol (1.67 M) was pre-

pared, whereas ammonium hydroxide (NH4)OH was used to

adjust the pH of the solution (pH = 10) (solution A). On the

other hand, a solution of (NH4)H2PO4 (1 M) was prepared

and adjusted at pH = 10 (solution B). Solution A was added

drop wise to solution B (in equal volumes) at a constant rate

(1 mL/min) under vigorous stirring at room temperature, in

which the total Ca/P feed ratio = 1.67. Immediately after

the solution has transformed into gel, the rate of stirring was

adjusted to keep vigorous stirring. A flow chart shown in

Fig. 1 outlines the experimental procedure and conditions

used to prepare four groups of samples.

The as-prepared group was just dried, neither aged nor

calcined. Groups A and B were subjected to an aging

process for 24 and 90 h, respectively. Group C was sub-

jected to MW treatment for 10 min using a domestic MW

oven working at 2.45 GHz and using 80 % power of the

total 1400 W. The three groups (A, B and C) were dried at

80 �C for 12 h and then calcined at 750 �C for 4 h using an

electrical furnace at a heating rate of 10 �C/min in air.

2.2 Characterization of the processed CHA samples

All groups were characterized using scanning electron mi-

croscopy (SEM). The morphology of the prepared samples

(gold coated) was observed using SEM (JEOL 5300-JSM-

Japan) operated at 30 keV. Semi-quantitative analyses of the

chemical composition of CHA and b-TCP samples were
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conducted by EDX (energy-dispersive X-ray spectroscopy).

Analysis was performed on uncoated powder samples at

15 kV for 60 s. Ca/P mole ratios of the samples were de-

termined as the average of five random runs on each sample.

The samples were analyzed using a spectrum 100 FT-IR

spectrometer (Perkin Elmer–USA) using KBr pellet tech-

nique, wave number region 400–4000 cm-1. XRD was

performed using an X’pert diffractometer (Philips–Nether-

lands), 2h ranging from 2� to 60�. The phases were identified

and compared with the literature reports as well as the Joint

Committee on Powder Diffraction Standards (JCPDS) for

calcium phosphate samples: CHA, b-TCP and CPP with the

PDF numbers: 74-0566, 70-2065 and 45-1016, respectively.

3 Results

In sol–gel synthesis of CHA, the pH of the reactant solu-

tions was found to be very critical. When the pH was lower

than 10, a very poor precipitation of amorphous white

precipitant with very low yield was observed. On the other

hand, solutions adjusted at pH = 10 produced an imme-

diate gel (when added drop wise).

3.1 Characterization of the CHA samples

3.1.1 Morphological and chemical composition analysis

(SEM and EDX)

Scanning electron micrographs of the as-prepared sol–gel-

derived powder showed the formation of flakes of highly

aggregated spherical calcium-deficient carbonated HA in a

submicron size (Fig. 2a). Groups A and B after calcinations

(750 �C for 4 h) revealed platelet-like morphology with

minor percent of rod-like particles (Fig. 2b, c). For group

C, the produced particles appeared to be agglomerated

spherical particles (diameter about 200–400 nm) and minor

rod-like particles (micro-size) (Fig. 2d). Aging was found

to significantly increase the particle size; however, MW-

treated samples showed minor increase in particle size.

Mixed morphologies were also observed in previous

studies [28, 29], where several researchers further used

other effective chemical (nucleating agents) [30] and

physical agents (ultrasonic waves) [7, 31] to control the

size and shape of the produced CHA. The EDX analyses

performed on the prepared samples are listed in Table 1.

Within the accuracy limits of this method, the as-prepared

group was identical to the expected Ca/P ratios of CHA

[32], while the MW-treated samples (group C) was very

close to the expected Ca/P ratios of pure b-TCP [14]

(Fig. 3).

3.1.2 Fourier transform infrared spectroscopy (FT-IR)

The FT-IR spectrum of the as-prepared gel group (unaged,

un-calcined) showed the formation of a pure CHA powder

when compared with the literature [33] (carbonate and

phosphate bands are shown in Fig. 4a). The carbonate ion

was formed and detected due to the reaction occurred with

the atmospheric carbon dioxide in the alkaline pH solutions

(pH = 10). The intensity of [CO3]-2 peaks was decreased

at high calcination temperature ([400 �C) due to its release

Fig. 1 Schematic of the

methodology to prepare

synthetic CHA via sol–gel,

classified into four groups
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as volatile gases [34]. The residual nitrate group (NO3
-)

was not detected (peaks 820 and 1380 cm-1) as it was

removed through washing [27].

The FT-IR spectrum of group A (aged for 24 h and

calcined at 750 �C) revealed that the [PO4]-3 band around

1000 cm-1 has appeared with peaks at 1034, 1070 and

1097 cm-1 which was attributed to the asymmetric

stretching of (O–P–O). A medium intensity band at about

970 cm-1 which correspond to the symmetric stretching

(O–P–O) indicated the degradation of CHA (Fig. 4b) [35].

In addition to the complete dehydration (absence of OH-

peak at 1640 cm-1) and the removal of carbonate ions

from the apatite structure, the appearance of peaks at 947

and 975 cm-1 (Fig. 4b, arrows) was characteristic of the

presence of b-TCP [36]. The peak at 1215 cm-1 was due to

the bending mode of the hydrogen belonging to the group

(–O3PO–H–O–PO3) [35], while the peaks at 748 and

1165 cm-1 indicated the formation of calcium pyrophos-

phate (CPP) with P2O7 group [37]. These results are also in

accordance with previous reports indicating that the pre-

pared CHA decomposes into b-TCP and CPP and calcium

hydrogen phosphate when calcined at temperature above

600 �C [34].

A similar decomposition of CHA was detected for group

B samples (aged for 90 h) (Fig. 4c); however, the bands of

CPP (748 and 1165 cm-1) were nearly absent. This indi-

cates the formation of b-TCP phase which could be at-

tributed to the positive effect of aging on the properties of

sol–gel-derived CHA [27]. On the other hand, group C

(Fig. 4d) showed almost the same peaks as in group B with

wider (PO4) peak around 1000 cm-1 which is character-

istic to the formed b-TCP.

3.1.3 X-ray diffraction (XRD)

The XRD phase analysis pattern of all groups compared

with the original b-TCP pattern are shown in Fig. 5. The

as-prepared group (Fig. 5b) was identical to the HA/CHA

with all its major peaks and in the absence of any other

phases (JCPDS-PDF no. 74-0566) [34]. The broad patterns

at (002) and (211) indicate that the crystallites are very tiny

in nature [33]. The produced CHA was not thermally

stable, as it degrades into major amounts of b-TCP and

minor amounts of CPP and CaO when calcined at 750 �C
(group A) (Fig. 5c) [34]. However, the XRD pattern for

Fig. 2 SEM of the as-prepared synthetic sol–gel-derived CHA (a) and the processed groups: b group A (aged for 24 h), c group B (aged for

90 h) and d group C (MW treated)

Table 1 Mean atomic Ca/P

ratio values of the prepared

samples using EDX

Sample Ca/P ratio

As-prepared group 1.58

Group A 1.49

Group B 1.59

Group C 1.51
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group B powder (90-h aging) (Fig. 5d) showed much

higher content of the formed b-TCP that appeared as the

dominant phase (JCPDS-PDF no. 70-2065). This indicates

that the phase type and structure of the sol–gel-derived

CHA are dependent on the aging time that affects its phase

maturation [9]. On the other hand, group C (unaged, MW-

treated for just 10 min) showed the development of pure b-

TCP after calcination without the need of any aging time

(Fig. 5e). Results also confirmed the absence of any other

minor phases (e.g., octacalcium phosphate that appear

around 5� (2h) form the final b-TCP product.

4 Discussion

Previous studies have demonstrated that pure carbonated

HA could be rapidly synthesized after exposing a freshly

prepared solution of biphasic HA/b-TCP (under reflux) to

sufficient MW radiation power [38]. This was attributed to

the assisting of the deaquation necessary to the formation

of apatite in aqueous solution via the MW energy that di-

minishes the bond between the Ca and its hydration sphere

[7, 38, 39].

On the other hand, the thermal degradation of HA into

a/b-TCP, tetra-calcium phosphates (TTCP), CPP and/or

CaO has also been widely discussed [40, 41]. The normally

precipitated CHA has two types of water: adsorbed water

(reversibly lost at low temperature up to 120 �C) and lattice

water (irreversibly lost between 400 and 500 �C) [42].

Further dehydroxylation (OH- loss) should begin when

HA is heated at temperatures more than 900 �C leading to

further decomposition of HA into oxyapatite (unstable)

which upon further heating up to 1200 �C decomposes into

b-TCP or TTCP. However, a-TCP and/or CaO are formed

only above 1200 �C [40, 43].

Previous studies have also showed that other irradiation-

induced phenomena were observed during HA examination

by high-resolution electron microscopy [44]. The high-

energy electron–crystal interaction was believed to cause a

local temperature raise (100–500 �C) of the irradiated

particles followed by hydroxyl, Ca and oxygen ions dis-

placement and thus the destruction of HA crystal into CaO

[45] or a-TCP [41]. Comparable results were mentioned in

a previous study, in which Mg?-stabilized CHA was

treated with domestic MW, in which the produced b-TCP

was the dominant phase but not as a pure phase [5].

Similarly, other studies have also reported that b-TCP

could be detected as an unstable minor phase when CHA

was heated between 600 and 800 �C [46, 47]. This low-

temperature phase transition could be related to the fact

that CHA was less crystalline than the stoichiometric HA

[48].

Furthermore, a single-phase b-TCP powders were pre-

viously produced by using a MW-assisted ‘‘combustion

synthesis (auto ignition)/molten salt synthesis’’ hybrid

route, with Ca/P feed ratio equal 3:2 [18, 49]. Other studies

have demonstrated that MW irradiation could reduce the

maturation time required for HA phase formation through

enhancing the biomimetic process that takes place at long

aging time [50].

Fig. 3 EDX of the MW-treated

sol–gel-derived b-TCP powder

(group C)
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In the present study, the MW treatment had reduced

the decomposition time of the unaged sol–gel-derived

CHA into a stable major b-TCP phase in just 10 min,

which had occurred at longer aging times (90 h). This

could be attributed to the effect and the interaction of

the MW with the CHA particles on the molecular level,

especially with water molecules exist on the CHA

structure. It is well known and established that the MW

energy interacts and heats the water (dipole) molecules

very efficiently due to its high dielectric properties [20,

21]. Hence, this interaction resulted in local temperature

raise within the CHA structure and reduced the

maturation time required for CHA phase, and

consequently, a rapid transformation and destruction of

CHA crystal into b-TCP phase took place [44, 45, 47].

5 Conclusions

Sol–gel method was used to prepare CHA powder. The

sol–gel-derived CHA powder was then used to produce b-

TCP after calcination via two different methods, aging and

MW treatment. Aging of the sol–gel-derived CHA for 24 h

caused its degradation into b-TCP with minor amounts of

CPP and CaO. Meanwhile, longer aging for 90 h caused

the formation of a b-TCP as the major phase with mixed

morphologies. This longer aging of the sol–gel-derived

CHA samples was having a positive effect on the

maturation of the CHA structure so it could be easily

converted into b-TCP phase after calcination. On the other

hand, the MW treatment (for only 10 min) of the freshly

prepared (unaged) CHA showed also the formation of b-

TCP as a major phase with highly agglomerated mor-

phology. This rapid conversion could be attributed to the

MW irradiation-induced effect on the CHA structure and

hence enhance its conversion into b-TCP. The preparation

of b-TCP via long-term aging process or via a fast and

short MW treatment of the sol–gel-derived CHA was

successfully achieved.
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