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Abstract In this work, CuCr2O4 nanoparticles were

successfully prepared by an improved hydrothermal pro-

cess, and a resistive switching memory behavior with Ag/

CuCr2O4/fluorine-doped tin oxide structure is demonstrat-

ed. Specially, the resistive switching memory characteris-

tics can be controlled by white-light illumination. The

device can maintain superior stability over 100 cycles with

an OFF/ON-state resistance ratio of about 103 at room

temperature. This study is useful for exploring the

promising light-controlled resistive switching memory

device in the development of resistive switching random-

access memory.

Graphical Abstract We demonstrate a resistive switching

device based on Ag/CuCr2O4/FTO structure, and the de-

vice shows light-controlled resistive switching memory

characteristics.

Keywords CuCr2O4 � Hydrothermal method � Resistive
switching � White light � Memory device

1 Introduction

The resistive switching phenomenon basing on the elec-

trical-pulse-regulated resistance in a metal–insulator–metal

sandwich structure has recently attracted a great deal of

attention due to potential application for nonvolatile ran-

dom-access memory [1–6]. So far, the resistive switching

phenomenon, in which the resistance can be switched
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between a high resistance state (HRS) and a low resistance

state (LRS) by electrical pulse, has been observed in many

semiconducting and insulating materials including binary

transition metal oxides [7–11], perovskite oxides [12–14],

chalcogenides [15, 16], sulfides [17], amorphous silicon

[18], organic materials [19, 20], and ferroelectric materials

[21, 22]. Accordingly, various models have been suggested

to explain the resistive switching phenomenon, including

the metal–insulator phase transition [14, 23], the ferro-

electric polarization [24–26], the conductive bridge con-

structed by the migration of localized metal atoms or

defects [11, 27], and the formation and elimination of

conductive pathways induced by the external electric field

[28]. However, the resistive switching mechanisms are still

being debated [1, 2].

In past few years, nanoscale transition metal oxides

and composites significantly exhibit enhanced physical,

chemical, electrical, optical, or magnetic properties, which

lead to extensive applications in electronic device, elec-

trochemistry, biomedical device, and other fields [29–33].

Copper–chromium oxide CuCr2O4 often acts as numerous

oxidation, hydrogenation, decomposition of alcohols and

alkylation reactions, and so on [34]. On the other hand,

CuCr2O4, a p-type semiconductor with narrow band gap,

is a versatile catalyst due to its stable structure [35].

CuCr2O4 has been reported as an efficient catalyst for

various chemical processes such as oxidation, hydro-

genation, dehydrogenation, dehydrocyclization, hydrogen

production, and decomposition of organic compounds [36,

37]. Therefore, the applications of CuGr2O4 are par-

ticularly extensive.

Although there are a large number of reports on various

applications of CuCr2O4 in previous works, the resistive

switching properties of CuCr2O4 have not been reported so

far. Herein, we report resistive switching behavior of Ag/

CuCr2O4/FTO device. Specially, the resistive switching

characteristics of Ag/CuCr2O4/FTO device can be con-

trolled by white light.

2 Experimental procedures

2.1 Preparation of CuCr2O4 nanoparticles

The CuCr2O4 spinel nanoparticles were prepared by an

improved hydrothermal process using cetyltrimethylam-

monium bromide (CTAB) as the surfactant, which is

similar to the methods suggested in previous works [38,

39]. All the chemicals used in this work were of analytical

grade and used directly without further purification. The

distilled water was used as a solvent throughout the ex-

periments. First, Cu(NO3)2�2.5H2O (3.2 g) and Cr(NO3)3-
9H2O (8.0 g) were dissolved in 200 ml distilled water with

stirring. Then 200 ml of solution with (CH2)6N4 of

0.01 mol and NH4HCO3 of 0.1 mol was added into above

solution. After stirring continuously for 2 h, the precipitate

was filtered and washed with distilled water and ethanol for

several times until the pH value was 6.5–7.5. Second, the

co-precipitate was redispersed in 80 ml of distilled water

under vigorous stirring for 30 min. Then 0.5 g cationic

surfactant cetyltrimethylammonium bromide (CTAB) was

added into above solution under stirring. Then the solution

was transferred to a 100-ml sealed Teflon-lined steel au-

toclave. And the sealed Teflon-lined steel autoclave was

heated at 180 �C for 24 h. After the autoclave was cooled

to room temperature, the powder obtained was washed with

distilled water and ethanol and dried at 60 �C for 12 h.

Finally, we annealed the as-prepared CuCr2O4 powder at

900 �C in air for 2 h with a gradual heating rate of

10 �C min-1.

2.2 Preparation of Ag/CuCr2O4/FTO device

First, fluorine-doped tin oxide (FTO) substrates were

cleaned by acetone, ethanol, and deionized water and

subsequently dried on the spin coater. Second, CuCr2O4

films were prepared on FTO substrate by spin-coating

method. The detailed preparation process of CuCr2O4 films

is as follows: First, we grinded the as-prepared powder for

2 h. Next, we dissolved the powder in toluene solution to

prepare precursor gel. Then the precursor gel was spin-

coated on the FTO substrate. The spin-coating process at

5000 rpm for 10 s was used for film deposition. Second,

these samples were subsequently dried at 60 �C in vacuum

for overnight. The thickness of the films was detected by

the step profiler.

2.3 Characterizations

Crystal structure of CuCr2O4 film was characterized at

room temperature by X-ray diffraction (XRD) with Cu Ka
radiation. The microstructure of the CuCr2O4 film was

observed by transmission electron microscopy. In the test

of resistive switching characterizations, Ag is top electrode

and FTO is bottom electrode. Ag electrodes were prepared

by vacuum deposition. And the preparation process of Ag

electrodes is as follows: First, we covered surface of

CuCr2O4/FTO with a mask. Second, we put it into the

vacuum sputtering system to grow Ag electrodes. Finally,

we chose the superior electrodes for characterization.

Current density–voltage (J–V) and resistance–cycle curves

were tested using the electrochemical workstation at room

temperature. We used an ordinary filament lamp with

various power densities as light source. The wavelength

range of light is 400–760 nm.
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3 Results and discussion

Figure 1a shows the schematic representation of the device,

where the CuCr2O4 film was spin-coated on the FTO sub-

strate, and the electrodes of Ag with the area were deposited

onto the CuCr2O4 film. The crystalline structure of the sam-

ples was characterized by XRD patterns. Figure 1b displays

the XRD of CuCr2O4/FTO structure. The peaks of FTO sub-

strate are obvious (Fig. 1b). In order tomake diffraction peaks

of CuCr2O4 film more clear, we also present the XRD pattern

of the pure FTO substrate without CuCr2O4 film in Fig. 1b.

Figure 1b exhibits theXRDpattern ofCuCr2O4/FTO.We can

see there are only the peaks of CuCr2O4 besides peaks of FTO

substrate. The diffraction patterns in Fig. 1b agree with te-

tragonal CuCr2O4 with spinel structure [38–40]. The XRD

demonstrates the characteristic diffraction peaks of CuCr2O4

with spinel structure,which is ingoodagreementwith JCPDS-

No 34-0424 [38]. No characteristic diffraction peaks owing to

CuO andCr2O3 are detected. Therefore, the films contain only

pure CuCr2O4, and the sharp peaks demonstrate good crys-

tallinity of the CuCr2O4.

Figure 2a presents the high-resolution transmission

electron microscope (HRTEM) image of CuCr2O4 film.

The fringes with a spacing of 0.27 nm correspond to (311)

planes of CuCr2O4, which indicates that the CuCr2O4 film

is single-crystalline structure for individual CuCr2O4

nanoparticle. The composition of CuCr2O4 film is further

confirmed by elemental analysis carried out from energy-

dispersive X-ray spectra (EDX). The EDX data in Fig. 2b

confirm that the compositions of the film are Cu, Cr, and O

without any other impurities. And the atomic percentage

Cu/Cr/O of CuCr2O4 film is about 1:2:4 from the inset of

Fig. 2b.

Figure 3 displays the UV–Vis absorption spectrum of

CuCr2O4 nanoparticles without FTO substrate. The onset

of the absorption located at about 580 nm indicates that as-

prepared CuCr2O4 nanoparticles have good light absorp-

tion properties in the visible light region.

In order to obtain the resistive switching characteristics

of Ag/CuCr2O4/FTO structure under white-light illumina-

tion with various power densities, we employed the ex-

perimental test circuit shown in inset of Fig. 4a. Figure 4a

displays the current density–voltage (J–V) characteristic

curves of Ag/CuCr2O4/FTO device in linear scale under

illumination with various power densities, which exhibits

an asymmetric behavior with significant hysteresis. The

Fig. 1 a Schematic

representation of the device.

b The X-ray diffraction (XRD)

of CuCr2O4/FTO structure and

FTO substrate

Fig. 2 a High-resolution

transmission electron

microscope (HRTEM) image of

CuCr2O4 film. b The energy-

dispersive X-ray (EDX)

spectrum of CuCr2O4 film; the

inset shows that the atomic

percentage of CuCr2O4 film is

about 1:2:4
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arrows in the figure denote the sweeping direction of

voltage. We found that the response time is about

0.1–0.2 s.

Figure 4b shows a corresponding J–V curve of Ag/

CuCr2O4/FTO device in logarithmic scale with resistance

switching effects. The arrows in Fig. 4b denote the

sweeping direction of voltage. We can see that a sudden

current increase occurs at about 0.85 V (VSet) in the dark

and about 0.9 V (VSet) under white-light illumination with

power density of 5 mW/cm2, indicating a resistive

switching from the high resistance state (HRS or ‘‘OFF’’)

to the low resistance state (LRS or ‘‘ON’’), which was

called the ‘‘Set’’ process. With further increasing the power

density to 10 mW/cm2, the VSet reaches to 0.98 V. When

the applied voltage sweeps from zero to negative voltage of

about -0.75 V (VReset) in the dark and -0.98 V under

white-light illumination with power density 10 mW/cm2,

the device can return to the HRS, which was called the

‘‘Reset’’ process. During the successive ‘‘Set’’ and ‘‘Reset’’

cycles on the same device, the device shows the identical

J–V curves. The VReset and VSet are almost unchanged in

subsequent cycles. The threshold voltages in the device are

B1.0 V, which is an attractive advantage for practical

memory applications in an expansive condition [41, 42].

Figure 5a displays the evolutions of VSet and VReset over

100 successive resistive switching cycles on the device. We

find that there is only little fatigue for switching voltages

VSet and VReset. The VSet and VReset are 0.75 ± 0.06 V and

-0.7 ± 0.1 V, respectively, in the dark, and the VSet and

VReset are increased to 0.92 ± 0.08 V and -0.9 ± 0.1 V,

respectively, under white-light illumination with power

density of 10 mW/cm2, indicating low fatigue for switch-

ing voltages of the Ag/CuCr2O4/FTO structure, which re-

flects excellent switching stability of VSet and VReset to a

certain extent. It is worth noting that the illumination can

control the switching voltage VSet and VReset. The absolute

values of VReset and VSet increase with the increasing power

density of illumination. That is to say that the illumination

can control the resistive switching, which is consistent with

the reported results in previous literature [43–47].

To estimate the probably practicability of white-light-

controlled resistive switching behaviors of the Ag/CuCr2-
O4/FTO structure device, the resistance–cycle number

curve for the HRS and LRS with a positive bias of 0.1 V is

tested and shown in Fig. 5b. It is obvious that the resis-

tances are about 1.1 KX at the LRS (ON state) and 2.5 MX
at the HRS (OFF state) in the dark, and the resistances are

about 1.05 KX at the LRS (ON state) and 2.48 MX at the

HRS (OFF state) under illumination with power density of

10 mW/cm2. The OFF/ON-state resistance ratio is up to

103. Both the LRS resistance and the HRS resistance de-

crease with the increasing power density of illumination.

According to the above results, the steady white-light-

controlled resistive switching behavior in Ag/CuCr2O4/

FTO structure with an OFF/ON-state resistance ratio of

about 103 provides the potential for light-controlled non-

volatile memory applications.

The mechanism for resistive switching in a metal/ox-

ides/metal structure has been extensively investigated, but

Fig. 3 PL behavior of CuCr2O4 powders at room temperature

Fig. 4 a Current density–

voltage (J–V) characteristic

curves in linear scale of Ag/

CuCr2O4/FTO structure in the

dark and under white-light

illumination with various power

densities; the inset presents the

real test circuit. b The

corresponding J–V

characteristic curves in

logarithmic scale
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is still controversial [34, 44]. In our works, the asymmetric

behavior of J–V curve indicates that a Schottky barrier is

formed at the interfaces of Ag/CuCr2O4 and CuCr2O4/

FTO. This bipolar resistive switching behavior should be

resulted from the trapped and detrapped charge in the

Schottky-like depletion layer [48–54]. The white light can

modulate the resistive switching behavior by a large

number of photogenerated charges [44–47].

4 Conclusions

In brief, the reversible bipolar resistive switching charac-

teristics of Ag/CuCr2O4/FTO device are observed. In par-

ticularly, the white light can control the resistance

switching behavior. Therefore, the superior resistance

switching characteristics of the Ag/CuCr2O4/FTO device

hold a great promise for next-generation nonvolatile light-

controlled memory applications.
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