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Abstract Novel mechanically strong and lightweight

cellulose aerogels were successfully prepared by the pro-

cedures in four steps: (1) dissolving bamboo fiber in a

mild NaOH/PEG solution; (2) freeze–thaw treatment; (3)

regeneration; (4) freeze drying. The aerogels with dense

interconnected and hierarchical pore structures had high

specific surface area of 204 m2 g-1, large pore volume of

0.99 cm3 g-1, high porosity as high as 97 % and low

density of 0.054 g cm-3, and showed cellulose II crystal

structure. Moreover, the aerogels exhibited strong resis-

tance to compression load with high Young’ modulus of

1.85 MPa, yield stress of 83.57 kPa, and toughness of

52.34 kJ m-3.
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1 Introduction

Aerogels with their large specific surface area, high

porosity and low density have been extensively considered

as potential candidates for multifarious advanced applica-

tions [1]. However, some drawbacks including fragility,

hydrophilicity, and demand of supercritical drying in pro-

duction hamper commercialization of aerogels [2, 3],

especially for fragility. The last two issues could be con-

ceivably dealt with by some special modification and

alternative means, nevertheless, the inherent fragility

problems widely occurring in some inorganic and ther-

moset polymer aerogels impose severe restrictions on the

handling and long-term use. Recently, green cellulose

aerogels combined traditional good qualities with some

new properties from cellulose such as biocompatibility have

attracted increasing attention [4, 5]. Meanwhile, native cel-

lulose aerogels are not found to significantly suffer from the
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fragility problems, and usually show excellent flexibility

according to some literatures [6–8]. Notwithstanding some

hybrid cellulose aerogels incorporated with reinforcing

agents exhibit improved mechanical properties [9, 10], the

reports aiming at mechanically strong pure cellulose aero-

gels are not abundant. Therefore, in this paper, a kind of

mechanically strong and lightweight native cellulose aero-

gels had been successfully prepared by dissolving cellulose

in a green cellulose solvent named NaOH/PEG solution,

followed by freeze–thaw treatment, regeneration and freeze

drying. The micromorphology, structure and properties of

the products were characterized by scanning electron

microscope (SEM), nitrogen adsorption measurements,

X-ray diffraction (XRD), and universal testing machine.

2 Experimental

2.1 Materials

Bamboo fiber was supplied by Beijing Murun Technology

Development Co. Ltd. and further completely cleaned and

dried at 60 �C for 24 h. All chemicals were purchased from

Tianjin Kemiou Chemical Reagent Co. Ltd. and used as

received.

2.2 Preparation of cellulose aerogel

Dried bamboo fiber was added to 10 % aqueous solution of

NaOH/PEG-4000 (9:1 wt/wt) with magnetic stirring at room

temperature for 6 h to form 2 wt% homogeneous cellulose

solution. Then, the cellulose solution was frozen at -15 �C

for 12 h, and subsequently thawed at room temperature with

vigorous stirring for 30 min. After being frozen again at

-15 �C for 5 h, the frozen cake was successively regener-

ated in 1 % HCl solution, distilled water and tertiary butanol

until the formation of an amber-like hydrogel. Finally, the

cellulose aerogel was successfully prepared after the 48 h of

freeze drying at -30 �C of the hydrogel.

2.3 Characterizations

SEM observations of cellulose aerogels morphology were

performed using a FEI, Quanta 200 SEM at the accelera-

tion voltage of 10–15 kV. Nitrogen adsorption measure-

ments were carried out at -196 �C by an accelerated

surface area and porosimetry system (3H-2000PS2 unit,

Beishide Instrument S & T Co. Ltd.). All of the samples

were outgassed at 90 �C for 10 h to remove any moisture

or adsorbed contaminants prior to the measurements.

Besides, the cellulose aerogels were tested in triplicate to

ensure reproducibility. Specific surface area and pore

characteristic parameters were calculated by the Brunauer–

Emmett–Teller and Barrett–Joyner–Halenda methods.

Crystalline structures were identified by XRD (Rigaku,

D/MAX 2200) operating with Cu Ka radiation

(k = 1.5418 Å
´

) at a scan rate (2h) of 4� min-1 and the

accelerating voltage of 40 kV and the applied current of

30 mA ranging from 5� to 40�. Compression tests were

performed in a universal testing machine (Suns,

UTM4304X) with a compressing velocity of 2 mm min-1.

3 Results and discussion

Figure 1 showed the SEM images of the cellulose aerogels.

As can be seen in the image at a low magnification

(Fig. 1a), the aerogels exhibited homogeneous three-

dimensional (3D) network structure. Moreover, the higher

magnification image (Fig. 1b) showed dense intercon-

nected and hierarchical pore structures with pores of dif-

ferent sizes from micro- to nano-scale. The inset in Fig. 1a

showed the macrograph of the aerogels, and the aerogels

sample maintained well-defined form without significant

collapse, indicating the superior molding ability. The bulk

density of the aerogels was calculated by dividing the

weight by the sample volume measured with a micrometer,

and the value was low (ca. 0.054 g cm-3).

Figure 2 presented N2 adsorption–desorption isotherms

and pore diameter distribution of the cellulose aerogels. As

shown in Fig. 2a, the typical IV adsorption isotherm could

be identified according to the IUPAC classification,

involving adsorption on mesoporous adsorbents with

strong adsorbate–adsorbent interaction [11]. Furthermore,

the as-prepared aerogels had high specific surface area of

204 m2 g-1 and large pore volume of 0.99 cm3 g-1 with

porosity as high as 97 %, which was comparable to some

porous cellulose aerogels from other approaches [12, 13],

and high values were desirable for applications like catalyst

carrier, supercapacitor, fuel cell and drug release. In

Fig. 2b, the aerogels were mainly made up of micropores

(\2 nm) and mesopores (2–50 nm).

The XRD patterns of the cellulose aerogels and the

bamboo fiber were shown in Fig. 3. The bamboo fiber

exhibited peaks at around 14.9�, 16.4�, 22.1� and 34.7�,

corresponding to the (101), (10�1), (002) and (040) planes of

cellulose I crystal structure. For the aerogels, the existence

of diffraction peaks at around 12.0�, 20.0� and 21.6�
revealed the transformation of cellulose I–cellulose II [14].

The compression mechanical properties of the aerogels

were investigated by universal testing machine, and the

tests were performed in triplicate and were done at least

two different times to ensure reproducibility. Figure 4

showed the compression stress–strain curve and the digital

photograph of the aerogels. It was observed that the aero-

gels sample could bear 2.5 kg load without obvious

J Sol-Gel Sci Technol (2015) 74:256–259 257

123



collapse and deformation (inset a in Fig. 4), indicating

promising compression resistance. Moreover, the com-

pression stress–strain curve could be divided into four

stages [15]. First, the linear elastic behavior in nature (inset

b in Fig. 4) attributed to elastic cell wall bending occurred

in low strain (\6 %); second, the curve gradually trans-

formed from linear to non-linear in higher strain, and the

material would collapse in this region; third, a horizontal

plateau region appeared after reaching yield stress, and the

Fig. 1 a Low-magnification and b high-magnification SEM images of the cellulose aerogels. Inset showed the digital photograph of the dried

cellulose aerogels sample

Fig. 2 a N2 adsorption–desorption isotherms and b pore diameter distribution of the cellulose aerogels

Fig. 3 XRD patterns of the cellulose aerogels and the bamboo fiber

Fig. 4 Compression stress–strain curve of the cellulose aerogels.

Inset a the aerogels sample with a load bearing of 2.5 kg. Inset b:

expanded low-strain range
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resulting plastic hinges would result in cell collapse; final,

the loose porous 3D network structure started to touch

leading to considerable stiffening. The aerogels had high

Young’ modulus of 1.85 MPa, yield stress of 83.57 kPa,

and toughness of 52.34 kJ m-3, which were calculated

based on the curve. Especially, the cross-linked and hier-

archical micro-nano pore structures could effectively resist

compression load and relieve deformation.

4 Conclusions

In conclusion, we successfully fabricated a class of

mechanically strong and lightweight nanoporous cellulose

aerogels with cellulose II crystal structure via dissolution in

a mild NaOH/PEG solution, freeze–thaw treatment,

regeneration and freeze drying. The aerogels with hierar-

chical pore structures had high specific surface area

(204 m2 g-1), pore volume (0.99 cm3 g-1), and porosity

(97 %) as well as low density (0.054 g cm-3); meanwhile,

the material also exhibited strong resistant to compression

deformation.
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