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Abstract In this study, N-doped anatase–rutile mixed

phase TiO2 nanorods assembled microspheres were syn-

thesized via a direct and simple sol–gel method. The

physical analysis via X-ray diffraction indicated that the

prepared sample had a mixed phase of anatase and rutile

TiO2. The morphology of the structure was observed with

field emission scanning electron microscopy, transmission

electron microscopy and atomic force microscopy, which

showed that the formation of TiO2 microspheres was

constructed by TiO2 nanorods or rice like structure nano-

rods. Besides, Fourier transform infrared analysis revealed

that the presence of N2O2
2- and NO- species in the spectra

while XPS study indicated the incorporation of nitrogen as

dopant in TiO2 at binding energies of 396.8, 397.5, 398.7,

and 399.8 eV. Furthermore, the optical properties deter-

mined by UV–Vis spectroscopy concluded that the pre-

pared sample exhibited excellent optical responses to UV

and visible region as well as being a potential material for

degradation of hazardous water pollutants. The photocat-

alytic activity of the prepared TiO2 exhibits excellent

photodegradation of methylene blue under UV and visible

light irradiation.
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1 Introduction

Titanium dioxide (TiO2) is one of the semiconductors that

have been widely used as a photocatalyst in water and

wastewater treatment due to its chemical stability, low cost,

excellent optical and electronic properties, as well as high

photocatalytic activity [1, 2]. Compared to rutile and brookite,

anatase had shown the highest photocatalytic activity in the

degradation of various organic pollutants in wastewater

treatment. Most of the previous studies have focused on the

preparation of single-phase TiO2 nanostructures [1–5]. In
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addition, a recent study revealed that the combination of

anatase–rutile mixed phase exhibited excellent photocatalytic

activity compared to its single constituents [6–10]. The

excellent photocatalytic activity is due to the synergy effect

between anatase and rutile, which promotes interfacial elec-

tron transfer from rutile to anatase [7].

Recently, many studies have been conducted to improve

the photoabsorption features of TiO2 under UV and visible

light irradiation [11, 12]. However, to the best of our

knowledge, there is hardly a report on the preparation of

nitrogen doped anatase–rutile mixed phase TiO2 nano-

structures [13, 14]. Therefore, it would be interesting to

prepare doped anatase–rutile mixed-phase TiO2 nano-

structure with high photocatalytic activity under UV and

visible light irradiation. The substitution with nitrogen

doping in TiO2 lattice structure is particularly effective to

narrow the band gap of TiO2, as well as to provide high

photocatalytic activity under visible light irradiation [11].

Thus, in this study, N-doped anatase–rutile mixed phase

TiO2 nanorods assembled microspheres with broad range

UV and visible light absorbing capacity was prepared via a

direct and simple sol–gel method. The crystallinity, mor-

phology, structural analysis, and optical properties of the

produced N-doped anatase–rutile mixed-phase TiO2

nanorods assembled microspheres had been characterized.

2 Experimental method

2.1 Materials

All the chemicals used were of analytical reagent grade and

were used as received. Titanium-n-butoxide Ti(OBu)4 from

Sigma-Aldrich was used as a titanium precursor. Nitric

acid (HNO3) 65 % and isopropanol (C3H7OH) were

obtained from QReC Chemicals. Isopropanol and distilled

water were used as the dispersing media.

2.2 Method

N-doped Anatase/Rutile Mixed Phase TiO2 was synthesized

through acid modified sol–gel method. At room temperature,

25 mL of Ti(OBu)4 was dissolved in 8 mL of isopropanol

under constant magnetic stirring. The mixture was added

dropwise into 200 mL of distilled water under vigorous

stirring for 30 min. Then 3 mL of 65 % of HNO3 was added

dropwise into the mixture under vigorous stirring for about

60 min. Subsequently, the obtained sol was aged in tight air

for 3 days or more at room temperature until gel formation

took place. The resultant gel was then dried at 75 �C for

3 days in a vacuum oven until a yellowish solid was obtained

and denoted as T75. The obtained solid was ground and

calcined at 400 �C for 2 h and denoted as T400.

2.3 Characterization

2.3.1 X-ray diffraction and BET surface area

An X-ray diffraction (XRD) analysis was carried out to

study the crystallinity and the phase formation of the

sample using an X-ray diffractometer (SIEMENS XRD

D5000). The measurements were carried out at 40 kV and

40 mA, which employed a CuKa radiation at a wavelength

of 0.15418 nm at an angular incidence of 2h = 20–80�.
The BET surface area was measured by nitrogen adsorp-

tion–desorption analysis.

2.3.2 Morphological analysis

A morphological study of the sample was carried out using

FESEM (HITACHI) at an accelerated voltage of 2.0 kV.

Transmission electron microscopy (TEM) was conducted using

EFTEM LIBRA-120, Carl Zeiss AG Company (Oberkochen,

Germany). The AFM measurement was performed using (XE-

100 Park System) an atomic force microscope with SSS-NCHR

non-contact probes at 1 lm/s of scan speed.

2.3.3 Fourier transform infrared spectroscopy

An investigation on the presence of N-dopant in the sample

was performed with Perkin Elmer FT-IR ATR spectro-

photometer and diamond ATR sampling accessory. The

spectrum of the sample was scanned with the wavenumber

ranging from 4,000 to 650 cm-1.

2.3.4 UV–visible spectroscopy

The optical property of the prepared sample was evaluated

with UV–Vis–NIR spectrophotometer (UV-3101PC Shi-

dmadzu) between 200 and 600 nm.

2.3.5 X-ray photoelectron spectroscopy (XPS)

The X-ray photoelectron spectroscopy (XPS) spectra of the

prepared sample were attained by means of Kratos Ana-

lytical Axis Ultra DLD photoelectron spectrometer using

AlKa radiation monochromatic source.

2.4 Photocatalytic activity measurement

In order to evaluate the photocatalytic activity of the pre-

pared N-doped TiO2, methylene blue was used as model

water pollutants under UV and visible light irradiation. The

prepared N-doped TiO2 (0.15 g) was added in an aqueous

solution containing 150 mL of methylene blue with a

concentration of 30 mg/L. The suspension was sonicated

for 15 min and stirred in dark place for 30 min to reach
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adsorption–desorption equilibrium. The suspension was

irradiated using ultraviolet (UV) lamp (Vilber Laurmat,

k = 312 nm, 30 W) and white light-emitting diode (LED)

flood light (CS-FL-30 W, k[ 420 nm, 30 W) manufac-

tured by Wuhan Co-Shine Technology Co., Ltd. China.

Before analysis, the suspension (3 mL) was taken through

a syringe filter and treated as initial concentration (C0).

Subsequently, the lamp was turned on and the suspension

was collected at regular time intervals during irradiation

and filtered through syringe filter. The differential absor-

bance at 664 nm for methylene blue (absorption peak

methylene blue) was measured. The change in the con-

centration of methylene blue of the irradiated sample with

time was monitored by Perkin Elmer UV–Visible spec-

trophotometer and compared with the blank (photolysis of

methylene blue under UV and visible light irradiation

without the presence of photocatalyst) carried out at the

same experimental conditions. The photocatalytic behavior

of the Degussa P25 and pure anatase supplied by Sigma-

Aldrich was also measured for comparison study.

3 Result and discussion

3.1 X-ray diffraction and BET Surface Area

The XRD patterns of the N-doped Anatase/Rutile Mixed

Phase TiO2 nanorod are shown in Fig. 1. It can be seen that

the main diffraction peak of anatase (101) and rutile (110)

were observed at 2h = 25.4� and 2h = 27.5�. Besides,

small traces of diffraction peak signals of the brookite

phase were observed in the sample at 2h = 30.85�. The

weight fraction (WR) between anatase and rutile was cal-

culated by using the following equation:

WR ¼ Ar

0:884Aaþ Ar
ð1Þ

where Ar represents the intergrated intensity of the rutile

(110) peak, and Aa is the intergrated intensity of the ana-

tase (101) peak [15], which had been found to be 39 %

anatase and 61 % rutile. The average sizes of crystallite for

anatase and rutile in each sample were estimated using the

Scherrer equation [16], and it had been discovered that the

average sizes of crystallites for anatase and rutile were 9

and 30 nm respectively, and 20 nm in average. The spe-

cific surface area of the prepared TiO2 was determined by

N2 adsorption–desorption isotherms. The results showed

that the BET specific surface area of the prepared TiO2

(73 m2 g-1) was higher than P25 (52 m2 g-1) and pure

anatase (15 m2 g-1). It is indicated that the prepared TiO2

had smaller crystallite size as compared to P25 and pure

anatase, which promote more catalytic active surface sites

per unit catalyst mass.

3.2 Morphological analysis

The morphological structure of the prepared TiO2 was

investigated using FESEM, TEM, and AFM. Both images

taken from FESEM and AFM showed that TiO2 micro-

spheres are constituted by assembled TiO2 nanorods or rice

like structures, as shown in Fig. 2. A similar result has been

reported by Ruan and coworkers [13]. Based on the AFM

images (see Fig. 2c, d, the size of TiO2 nanorod was

roughly estimated to be below than 50 nm. The single

formation of TiO2 microspheres assembled by TiO2 nano-

rods can also be observed by TEM image as shown in

Fig. 3. It is confirmed that the formation of this microsphere

was constructed by TiO2 nanorods with an average length of

70 nm and average width of 16 nm. These results were

consistent with the XRD results presented in the Sect. 3.1.

3.3 FTIR spectroscopic analysis

Figure 4 shows the FTIR spectra of the synthesized N-doped

anatase/rutile mixed phase TiO2 nanorods prepared at 400 �C
in the wavenumber range of 650–4,000 cm-1. It was observed

that all spectra exhibited two dominant absorption regions

found at 3,000–3,200 cm-1 and at 1,000–1,700 cm-1. The

broad peak located at 3,100 cm-1 is due to the stretching of

–OH groups. A relatively sharp peak observed at 1,625 cm-1

is associated to –OH bending mode of water on the surface of

the TiO2 [2]. Meanwhile, the absorption at 1,396 cm-1 is due

to –C–H stretching vibration peaks corresponding to the

presence of organic species contaminant on the surface from

alkoxide precursor [2, 17, 18]. Moreover, the obvious peaks

around 1,346 and 1,095 cm-1 in samples T75 and T400 are

due to the presence of N2O2
2- and NO- species [17, 19].

The presence of these two peaks indicate that N2O2
2- and

Fig. 1 XRD pattern of N-doped anatase/rutile mixed phase TiO2

nanorod calcined at 400 �C
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NO- species could be chemisorbed on the surface of the

synthesized TiO2 and not affected as they had undergone

calcination processes up to 400 �C. In the present study,

almost all the prepared TiO2 samples were activated in the

visible light, which might be ascribed to the N doping during

the preparation process using HNO3 [20].

Fig. 2 FESEM micrographs of N-doped anatase/rutile mixed phase TiO2 nanorod calcined at 400 �C: a low magnification, b high magnification;

AFM images, c 3D view, and d height view

Fig. 3 TEM image of the TiO2

microsphere assembled TiO2

nanorods
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3.4 UV–Visible spectroscopy

The optical response of the prepared TiO2 was investigated

by means of UV–Vis absorption spectra, as shown in Fig. 5.

The prepared TiO2 exhibited excellent optical responses to

UV and visible region. The introduction of nitrogen in the

TiO2 lattice structure led to the capability to absorb higher

fraction of photons from the visible region [21, 22]. Fur-

thermore, compared to the previous study, the uses of HNO3

as nitrogen doping sources significantly improved the

absorbance under visible irradiation [11]. The same finding

can also be found in a study conducted by Zhang et al. [17].

3.5 X-ray photoelectron spectroscopy (XPS)

The concentration and the electronic state of the nitrogen

on the surface of the prepared TiO2 were measured by

XPS. As shown in Fig. 6, it is revealed that the surface of

the prepared TiO2 was composed of Ti, O, N, and C con-

taminants. The C 1s spectra of the prepared TiO2 are shown

in Fig. 7. The peaks of the binding energies corresponding

to C 1s are observed at 283.1, 284.4, 286.8, and 288.2 eV,

which can be assigned to C, C–C or C–H, C–O, and C = O

[17, 23]. These peaks can be assigned to adventitious

carbon contamination species from XPS measurement [18,

24]. Recent study reported by Xing et al. [25] have sug-

gested that the peak at 283.1 eV can be ascribed to inter-

stitial carbon species in TiO2 to form Ti–O–C bonds. The

concentration of C in the TiO2 lattice is about 31.3 %

(atomic percent) which is relatively higher than reported by

previous study (0.19–0.28 %) [18]. Dong et al. [18]

reported that the low concentration of C doped in the

prepared TiO2 enhanced the visible light absorption

Fig. 4 FTIR spectra of T75 and T400

Fig. 5 UV–visible absorption spectrum of T75 and T400

Fig. 6 XPS survey spectra of T400 sample

Fig. 7 XPS spectra of C 1s peak of T400 sample
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capability. They also observed that the C 1s peaks at 282.3

and 282.5 eV was attributed to O–Ti–C bond. Furthermore,

previous studies suggested that the carbon substituting for

oxygen atom in TiO2 lattice structure which related to the

visible light responsibility was commonly observed at peak

281–282 eV resulting from Ti–C bonds [17, 26–28]. Thus,

the Ti–O–C bond might be not favourable to the visible

light absorption capability as compared to Ti–C and O–Ti–

C bonds. It is noteworthy that XPS results clearly ruled out

the existence of C as a dopant in the N–TiO2 photocatalysts

because the doped carbon in TiO2 exhibits a very low C 1s

binding energy at 281–282 eV [29].

The range of the binding energy from 404 to 394 eV

corresponds to the peak of N 1s are shown in Fig. 8. The

binding energies of N 1s for sample T400 was detected at

396.8, 397.5, 398.7, and 399.8 eV. Previous studies sug-

gested that the N 1s peak of the N-doped TiO2 was commonly

observed between 395 and 402 eV [15, 17, 30–34]. The

existence of the binding energy at 396.8, 397.5, 398.7, and

399.8 eV has confirmed the success of the N-doping in the

TiO2 lattice structure. The peak at 396.8 eV is attributed to

the Ti–N bonds in TiO2 [35]. Previous studies reported that

the binding energy at 397.5 eV is indicative of N atom

replacing oxygen in the TiO2 crystal lattice and the formation

of N–Ti–N bond [36–39]. The N 1s peak of the prepared

TiO2 at 399.8 eV can be attributed to interstitial nitrogen

species or the presence of oxidized nitrogen similar to

NOx species which the possibility of N–O–Ti or Ti–N–O

bond formed on the TiO2 crystal surface [40–42]. From XPS

analysis, the concentration of the nitrogen in the TiO2 crystal

lattice is about 1.5 % (atomic percent). At lower doping

levels (B2.1 % atomic percent), previous studies concluded

that the substitutional N atom in TiO2 crystal lattice will

introduce localized N 2p states above the valence band which

improves the absorption capability under visible light irra-

diation [43]. The results showed that the concentration of the

nitrogen in the prepared sample is varied as compared to the

previous study. It is might be due to the sample preparation

techniques and nitrogen sources [17, 22, 36, 44].

3.6 Photocatalytic activity measurement

The photodegradation of the methylene blue has been con-

ducted to evaluate the photocatalytic activity of the prepared

TiO2 under UV and visible light irradiation. Figure 9a, b

illustrate the photodegradation curves of methylene blue

under UV and visible light irradiation conducted for 360 and

Fig. 8 XPS spectra of N 1s peak of T400 sample

Fig. 9 Photodegradation of methylene blue under a UV light irradiation and b visible light irradiation
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540 min, respectively. It is indicated that the prepared TiO2

had photocatalytic activity under UV and visible light irradi-

ation with degradation percent of 92.2 and 95.7 %, respec-

tively. The photolysis study proved that the methylene blue is

stable under UV and visible light irradiation. In addition, the

reduction in the concentration of the methylene blue without

UV and visible light irradiation were very low with degrada-

tion percent of 2.2 and 2.8 %, respectively. These results

generally show that the system has reached the adsorption–

desorption equilibrium. It is indicated that the photodegra-

dation of the methylene blue can occur only with the present of

photocatalyst and light irradiation. The prepared TiO2 (T400)

was active under UV and visible light irradiation while P25

and pure anatase only active under UV light irradiation. It can

be seen in Fig. 7b that, both P25 and pure anatase exhibit very

low photocatalytic activity with degradation percent of 17.9

and 15.7 %, respectively. The prepared TiO2 (T400) exhibit

excellent photocatalytic degradation of methylene blue under

visible light irradiation. It is due to the present of nitrogen

atom in TiO2 lattice structure. The nitrogen doping in the TiO2

lattice structure could enhance the absorption capability in

visible light irradiation [34, 36, 44–47].

4 Conclusion

The N-doped anatase/rutile mixed phase TiO2 nanorod

assembled microspheres were successfully synthesized by

simple sol–gel method. The formation of TiO2 nanorod

assembled microsphere was confirmed via FESEM,

TEM, and AFM. The size of TiO2 produced was found

to be \50 nm with relatively high degree of crystallinity

in anatase/rutile mixed phase. The formation of anatase/

rutile mixed phase, assisted by calcinations temperature

at 400 �C, is believed to improve the photocatalytic

activity attributed to the electron affinity within the

anatase and rutile phases. The substitution doping with

nitrogen in the TiO2 lattice structure was confirmed by

XPS analysis. The results proved that the resultant TiO2

exhibited good optical properties as it could absorb both

UV and visible light irradiation suit for a broad range of

application for the elimination of organic pollutants in

wastewaters.
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