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Abstract The water soluble charged silsesquioxane that

contains the bridged 1,4-diazoniabicyclo[2.2.2]octane

chloride group, was used as stabilizing agent and size

controller in the synthesis of gold nanoparticles smaller

than 15 nm in aqueous medium. The gold nanoparticle

dispersion was converted in solid powder form by evapo-

ration. This powder presented organized structure imposed

by the presence of charged organic group, similar to

organized structure already observed for pure silsesquiox-

ane. The gold nanoparticles in solid powder form presented

high storage stability for several months, at ambient con-

ditions, and can be completely redispersed in water again.

After redispersion, the optical properties of gold nanopar-

ticles, observed by ultra-violet and visible spectroscopy,

and their morphological characteristics, investigated by

transmission electron microscopy, are preserved. The gold

nanoparticle aqueous dispersion was used as a vehicle of

nanoparticles in the synthesis of sol–gel silica based hybrid

material. This xerogel was characterized by N2 adsorption–

desorption isotherms, showing 260 m2g-1, and it was

applied in a satisfactory way as catalyst for p-nitrophenol

reduction to p-aminephenol.

Keywords Metal nanoparticle powder � Ionic

silsesquioxane � Charged silane � Gold nanoparticle

storage � Gold xerogel catalyst

1 Introduction

Silica materials are a very suitable media to support gold

nanoparticles due to its inherent characteristics as chemical

inertness, mechanical rigidity, swelling resistance, thermal

stability, optical transparency and others. Considering these

characteristics several systems silica/gold nanoparticles have

been studied in the last decade aiming numerous applications,

mainly as catalysts, sensors and biosensors [1–7]. In a general

way these systems are obtained by reduction in situ of gold

salt solutions or starting from nanoparticle aqueous disper-

sions used as precursors. In these dispersions, several stabi-

lizing agents were applied; however, their stability, storage

and transport are still a subject to be improved. In general, the

commercially available nanoparticles are dispersed in liquid

medium, and it is very difficult to find nanoparticles in

commercial products accessible in powder form. In this

context, it is very important the search for new stabilizing

agents for nanoparticle that allow the preparation of stable

aqueous dispersions and also metal nanopowders, which can

be easily storage and transported to be used as nanoparticle

vehicles for synthesis of other materials and devices.

The use of stabilizing agents for metal nanoparticles is

not only important to avoid the particle aggregation but

also in the size and shape control of these materials [8, 9].

Quaternary ammonium salts and thiols are used as nano-

particle stabilizing agents since they may provide both
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steric and electronic protection to the nanoparticles [10,

11]. In particular, ionic liquids are very versatile stabilizing

and template agents for the generation of several nanom-

aterials [12–15]. It is also possible to use organosilanes

containing amine, thiol or imidazolium groups as nano-

particle stabilizer in solid matrices [15–19]. These orga-

nosilanes can be used as molecular precursors to prepare

new silica based hybrid materials that may combine both

organic and inorganic properties.

A particular kind of organosilane precursors are the

charged ones, which can be used to prepare ionic hybrid

materials. Although the charged silsesquioxanes have been

studied by few research groups, they present several impor-

tant characteristics like water solubility, which enable to form

films over metal or oxide surfaces allowing the application in

different systems [20–23]. These charged silsesquioxanes

were used as molecular precursors in sol–gel and grafting

reactions to generate materials: with uniform porosity [24],

with anisotropic organization imposed by the charged

organic moiety [25], adsorbent for anionic dyes [26, 27],

adsorbent for metal complex [28], long chain surfactants for

dispersion of multiwall carbon nanotubes in ceramic matrices

[29] and also materials for electrochemical sensors [26, 30].

The sol–gel method is very important to prepare silica based

hybrid materials due to the slow reactivity of the silicon in

sol–gel precursors that allows design the morphological and

textural characteristics of the final material. Additionally the

sol–gel products can be obtained in the form of powders,

monoliths and films, enlarging the possibilities of applica-

tions [31, 32]. Thus, these materials show potential to stabi-

lize metal nanoparticles by the sol–gel method, resulting in

innovative materials. However, in general charged hybrids

were few used as metal nanoparticle stabilizer [7, 15, 33].

In this work the charged silsesquioxane containing the

charged 1,4-diazoniabicyclo[2.2.2]octane chloride group

bonded in a bridged way (Fig. 1), was used as stabilizing

agent of gold nanoparticles in liquid and powder form. The

liquid dispersion was applied to prepare new material with

catalytic activity, by using the sol–gel method.

2 Experimental section

The colloidal gold nanoparticle dispersions were prepared

by reduction of chloriauric acid (HAuCl4) by sodium

borohydride (NaBH4) in a water solution of silsesquioxane

containing the charged 1,4-diazoniabicyclo[2.2.2]octane

chloride group bonded in a bridged way (Fig. 1), assigned

as dabcosil. The dabcosil silsesquioxane was prepared

according to published procedure [25]. It was used 0.5 mL

of 5 10-3 mol L-1 HAuCl4 solution, which was added to

20 mL of dabcosil solution (8 g L-1). In this solution it

was added 10 mL of NaBH4 0.02 mol L-1, resulting in a

dark red solution assigned as Au-dispersion. The analysis

by ultraviolet and visible spectroscopy (UV–Vis) of col-

loids containing gold nanoparticles were carried out in a

Shimadzu UV 1601PC and collected in the range from 300

to 700 nm. The Au-dispersion was evaporated to form the

solid assigned as Au-dabcosil. This solid was completely

redispersed in water to form Au-redispersion. A part of the

Au-dabcosil sample was storage and redispersed after

3 months, to result in Au-redispersion-3-months.

Transmission Electron Microscopy images of disper-

sions and of the solid were performed in JEOL JEM1200

microscope operating at 120 kV. The samples were dis-

persed in acetone with the aid of ultrasound bath and

deposited on a copper grid coated with carbon. The

nanoparticle diameter distribution was obtained by the

Quantikov software, using several images.

Solid state NMR spectroscopy was performed on a

Bruker 300/P spectrometer using the MAS (Magic angle)

with CP (Cross-polarization) for solid Au-dabcosil and

dabcosil (pure charged silsesquioxane). The 13C experi-

ments were obtained using pulse length of 1 ms and

recycle delay of 2 s while the 29Si measurements were

made utilizing pulse length of 2.5 ms and recycle delay of

1 s. X-ray photoelectron spectra (XPS) were also obtained

for solid Au-dabcosil and dabcosil samples using a hemi-

spheric Specs VSW HA 100 spectrometer. X-ray diffrac-

tion patterns of the Au-dabcosil and dabcosil powdered

samples were obtained with a Siemens diffractometer

model D500 using CuKa as radiation source.

To apply the Au-dabcosil system as source of gold

nanoparticles in the synthesis of new materials, a silica

based hybrid xerogel was prepared. In this procedure, 2 mL

of Au-dispersion were gelified in presence of 1 mL to

tetraethylorthosilicate, using ethylic alcohol as solvent and

HF as catalyst. The xerogel was characterized by N2

adsorption–desorption isotherms using Micromeritics 3020

Krypton II equipment. The catalytic activity of xerogel was

tested in the reduction of p-nitrophenol, which was con-

ducted in a standard quartz cell with path length of 1 cm

and 3 mL of volume. The solution of p-nitrophenol at

concentration of 0.015 g L-1 was adjusted at pH 10. This

solution was first mixed with NaBH4 0.6 mol L-1 aqueous

solution, and after 10 mg of the xerogel catalyst was added

and the absorption spectra were recorded by UV–Vis in a

Shimadzu UV 1601PC.
Fig. 1 Structure of the water soluble silsesquioxane, containing the

charged 1,4-diazoniabicyclo[2.2.2]octane chloride group
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3 Results and discussion

The Au-dispersion obtained is very stable for several

months, and exhibits a typical UV–Vis spectrum, showing

an absorption maximum at 527 nm (Fig. 2), typical of

nanoparticles with diameter lower than 20 nm [34]. The

Au-dispersion can be evaporated to form the solid assigned

as Au-dabcosil, which is showed in the supplementary

Fig. 1. This solid can be completely redispersed in water to

form Au-redispersion, which displays the same UV–Vis

spectrum of the Au-dispersion. The solid Au-dabcosil is

very stable, since it can be redispersed after 3 months, to

result in Au-redispersion-3-months that presents similar

UV spectrum (Fig. 2).

The resulting solid Au-dabcosil, obtained from the Au-

dispersion evaporation was analyzed by 13C and 29Si NMR,

and the results are presented in Fig. 3a and b, respectively.

The 13C NMR spectrum of Au-dabcosil is practically the

same obtained for pure charged dabcosil silsesquioxane,

indicating that its structure did not undergo changes during

the nanoparticle synthesis and drying process [25]. It can

be observed that the relative intensity of 13C due to carbon

atom of hydrolysable methoxy group decreases its intensity

in the Au-dabcosil sample (Fig. 3a), suggesting that this

sample is more hydrolyzed and possibly more crosslinked

Fig. 2 UV–Vis spectra of Au-dispersion, Au-redispersion and Au-

redispersion-3-months

Fig. 3 NMR spectra of dabcosil and Au-dabcosil. a 13C and b 29Si

Fig. 4 X-ray diffraction pattern of the dabcosil and Au-dabcosil
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than pure dabcosil charged silsesquioxane. This hypothesis

is also supported by the 29Si NMR results, presented in

Fig. 3b. The 29Si spectrum of dabcosil silsesquioxane

shows three peaks, characteristic of T1 C–Si*(OR)2(OSi),

T2 C–Si*(OR)(OSi)2 and T3 C–Si (OSi)3 species at -50.0,

-59.3 and -69.0 ppm, respectively [25], while the Au-

dabcosil sample shows only the T2 and T3 species, at -58.3

and -67.8 ppm, respectively.

Fig. 5 TEM images and

particle size distribution of Au-

dispersion, Au-redispersion and

Au-redispersion-3-months
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The Au-dabcosil and pure dabcosil silsesquioxane were

characterized by X-ray diffraction (Fig. 4). In the angle

region 2h below 30�, it was observed a large peak for both

samples, with angle 2h near 228, which is characteristic of

silica, and the peaks at 6.2� and 12.5�, which correspond to

the interplanar distances of 1.43 and 0.71 nm. These two

peaks indicate the existence of organized structure imposed

by the presence of the charged organic group, as already

reported [25]. This organization was not disturbed by the

presence of gold nanoparticles. For the Au-dabcosil sam-

ple, diffraction peaks were clearly observed in the high

angle region, 2h above 308. These peaks correspond to the

gold close packed cubic structure according to Joint

Committee on Powder Diffraction Standards (JCPDS) card

65-2870. The calculated mean diameter of 14.7 nm for the

Au(0) nanoparticles, using the Scherrer equation, is in good

agreement to that found by TEM, as discussed in sequence.

Typical TEM images of Au-dispersion, Au-redispersion

and Au-redispersion-3-months are presented in Fig. 5,

simultaneously with the particle size distribution diagrams.

The average gold nanoparticle sizes for Au-dispersion, Au-

redispersion and Au-redispersion-3-months were, respec-

tively, 9.3, 9.3 and 10.6 nm, with standard deviation lower

than 4.0 nm for the three dispersions. These results are in

agreement to the UV–Vis spectra confirming that the

average gold nanoparticle size is smaller than 20 nm and

remains the same after the redispersion.

Binding energy values for 4f gold and 2p chlorine peaks,

obtained from XPS spectrum of solid Au-dabcosil, are

showed in the Table 1. It was observed the presence of

metallic gold in major proportion in a relation about 3/1 of

A0/Au? [35, 36]. Regarding the chlorine binding energies,

it was detected inorganic chloride for dabcosil and Au-

dabcosil. However there is an increasing of 0.8 eV in the

Cl 2p1/2 for sample containing gold nanoparticles, sug-

gesting an interaction between chloride ions and gold

nanoparticles, contributing to their stabilization [10].

To explore the stability and possibility of application of

this new system, the Au-dispersion was applied as gold

nanoparticle vehicle in the synthesis of silica based hybrid

material using the sol–gel method. In this method, the

precursor components, such as tetraethylorthosilicate,

charged silsesquioxane and nanoparticles are dispersed in a

nanometric level in an initial liquid, which in sequence

undergo polycondensation reactions forming homogeneous

Table 1 XPS analysis

Sample Binding energies/eV

Au0

4f7/2

Au0

4f5/2

Au?

4f7/2

Au?

4f5/2

Cl

2p3/2

Cl

2p1/2

Dabcosil 196.8 198.4

Au-

dabcosil

83.9 87.6 85.2 88.7 197.6 199.2

Fig. 6 TEM image and particle

size distribution of gold

nanoparticles dispersed in

hybrid xerogel

Fig. 7 N2 adsorption–desorption isotherms of xerogel. Inset figure:

BJH pore size distribution
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and amorphous solid, maintaining the high dispersion of

the components. Thus the gold nanoparticles become dis-

persed in all sample, bulk and surface. The resulting

xerogel is transparent and presents reddish colour typical of

gold nanoparticles, and a picture is showed in the supple-

mentary Fig. 2. TEM image of the xerogel is presented in

Fig. 6, simultaneously with the particle size distribution

diagram. It can be observed a higher nanoparticle con-

centration than in the liquid dispersions; however the

average size of gold nanoparticles remains the same,

10.5 nm with a standard deviation of 4 nm, indicating that

the coalescence of the nanoparticles did not occur.

The N2 adsorption–desorption isotherms of the xerogel

are showed in the Fig. 7, together with the BJH pore size

distribution curves. It was observed a type IV isotherm,

typical of mesoporous materials [32, 37], with predominant

pore diameter near 10 nm, characteristic of amorphous

xerogels obtained in the presence of HF [32]. From the BET

multipoint method, it was obtained a specific surface area of

260 ± 15 m2g-1, making this system very promising as

heterogeneous catalyst. Therefore, the catalytic properties

of the xerogel were studied and the evolution of the reaction

of p-nitrophenol being reduced by sodium borohydride, in

the absence and presence of catalyst, is showed in the

Fig. 8. The reduction process of p-nitrophenol using sodium

borohydride is monitored by measuring the UV–Vis spectra

at different time t. The characteristic peak at 400 nm

ascribed to p-nitrophenol decreases gradually with time,

while a new peak at 310 nm indicates the appearance of a

new reduced product, p-aminophenol. This reaction cata-

lyzed by gold nanoparticle was reported for the first time in

2001 [38] and it has been widely applied as model reaction

to evaluate the catalytic rate of new catalyst systems con-

taining gold nanoparticles. Different matrices have been

used as support for immobilization of gold nanoparticles as

polymer, resins [39–42], carbon nanotube [43], natural

matrices [44] and inorganic matrices such alumina, silica

and clay [45–49]. For these materials the kinetic constant of

the reaction are in a range from 3.3 10-5 to 3.6 10-2 s-1. In

the present work the reduction reaction of p-nitrophenol

using the hybrid xerogel was performed at 298 K, and the

kinetic constant of the reaction was determined as

3.5 10-3 s-1. The value found was in the same range of the

previous reports. However, it is important to point out that

in the present work the amount of gold was very low.

Considering the weight of catalyst used, the amount of gold

did not exceed 8.3 10-9 mol of gold atoms in the form of

nanoparticles, making this system promising.

4 Conclusions

The charged water soluble dabcosil silsesquioxane, con-

taining the charged 1,4-diazoniabicyclo[2.2.2]octane group

was successfully applied as stabilizer for gold nanoparticle

synthesis, without addition of other components. The gold

nanoparticles were smaller than 15 nm. The organic moiety

of silsesquioxane does not undergo structural changes in

the presence of gold nanoparticles. The gold nanoparticles

dispersion can be evaporated, transformed in solid form,

stored by several months and completely redispersed in

water, without any changes in the optical and morpholog-

ical properties. Therefore, this system opens the possibility

to easy storage and transport of metal nanoparticles in solid

form and allows reusing them as vehicle of gold nano-

particles in the preparation of new materials with catalytic

activity.
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