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Abstract
This paper delves into the Bayesian statistics applications of three preeminent models, Poisson distribution, Gaussian dis-
tribution, and Binomial distribution, in the continuous surveillance of artificial radionuclides. It introduces a slide-window 
method to accelerate the updating of the prior distribution of model parameters and compares the performances of three 
models before and after utilizing this method. Comparisons among the three models are made before and after using the 
slide-window. Experimental results demonstrate a marked enhancement in the performances of all models.

Keywords  Bayesian statistics · Artificial radionuclides monitoring · Beta distribution · Poisson distribution · Gaussian 
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Introduction

The Guide to the Expression of Uncertainty in Measurement 
(GUM) by the International Organization for Standardiza-
tion (ISO) is considered the de facto standard for evaluat-
ing and expressing uncertainty in measurement [1]. The 
International Organization for Standardization’s Guide to 
the Expression of Uncertainty in Measurement (GUM-ISO) 
advocates for the representation of the measurement pro-
cess through a measurement equation Y = f(X1,X2,…Xn) . 
Within the context, Xi represents the measurement condi-
tions or inputs, categorized as Type A variables; whereas 
Y denotes the outcome of the measurement, categorized as 
a Type B variable. For Type A quantities, the guide sug-
gests their evaluation using conventional statistical methods. 
This involves characterizing the true value with the sample 

mean and the uncertainty of Xi with the sample variance 
or standard deviation. Conversely, for Type B quantities, 
the ISO-GUM suggests the application of alternative scien-
tific approaches, with Bayesian statistics being particularly 
prevalent.

According to the Bayesian theory, the estimator Y is 
treated as a random variable, initially described by a prob-
ability distribution with known parameters. To determine 
these parameters, Bayesian approaches utilize past knowl-
edge to construct a prior distribution. This prior distribution 
evolves through an iterative process into a posterior distri-
bution as new measurements are obtained. The central ten-
dency (such as the posterior mean or median) and spread of 
this posterior (such as the posterior standard deviation) then 
quantitatively describe the measured results of the parameter 
and its associated standard uncertainty. The discrepancies in 
the interpretation of uncertainty, thus provoked, have been a 
recurrent subject of discussion [2–4], with some even sup-
porting for a complete substitution of the ISO-GUM to be 
grounded entirely in Bayesian statistics in the realm of meas-
urement science [5].

In the application of Bayesian approaches, it is often 
presumed that the measurement process is directed by a 
probabilistic model contingent on certain parameters. The 
determination of these parameters’ states is derived from 
actual data, factoring in any available prior insight. Con-
sequently, the ensuing measurement outcome is typically 
represented as the expectation of the posterior probability 
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distribution, with the associated uncertainty depicted by a 
confidence interval [6]. This leads to an engaging query: 
In the Bayesian framework, for a particular quantity of 
interest in the measurement process, would the outcomes 
vary if different statistical models (likelihood functions) 
were employed to articulate the quantity?

As with the majority of measurements, the artificial 
radionuclides monitoring also adheres to the framework 
of the ISO-GUM, specially concerning online monitoring 
that necessitates the subtraction of natural background [7, 
8], a process that is far from trivial. The principal dif-
ficulties are twofold: Firstly, due to the stochastic decay 
of natural background, the particle flux registered by the 
detector is subject to a Gaussian or Poisson distribution 
governed by specific parameters; secondly, the online sur-
veillance of artificial radionuclides occurs in the presence 
of a natural background, where the sparse counts are easily 
obscured by background counts. In most cases, the statis-
tics employed to characterized the background (typically 
the mean count) is deemed to follow a Poisson or Gaussian 
distribution with defined parameters. Conversely, in select 
scenarios, such as with delayed coincidence systems, the 
background level is characterized by the ratio of short-
lived progeny counts to the total counts within the natural 
radon, thorium decay chain, a ratio that can be perceived 
as a parameter for a binomial distribution [9]. Hence, there 
are at least three distinct analytical perspectives in estimat-
ing the background counts: using Poisson, Gaussian and 
Binomial distribution respectively. Zabulonov et al. [10] 
have introduced an expedited method for detecting radio-
activity based on the normal distribution model. In their 
work, Zabulonov treats the natural background counts as 
normal distributed, and he devises another normal dis-
tribution as a prior of the expectation using historical 
data, and calculates the posterior distribution to evalu-
ate the background radiation. Pyke et al. [11] try using 
the Gamma distribution as a prior for the Gaussian dis-
tribution to tighten the bounds of the confidence interval. 
Complementarily, Qingpei et al. [12] have employed the 
normal distribution to depict the characteristic γ peaks 
of radionuclides to identify various radioactive species 
by using Bayesian sequential analysis. Concurrently, Luo 
et al. [13] have depicted the natural background through a 
Poisson distribution, resorting to the Gamma distribution 
as a prior for the parameter of the Poisson. Furthermore, 
Dailibor Nosek have experimented two separate Poisson 
distributions with distinct parameters for source counts 
and backgrounds counts by opting for Gamma, uniform, 
and Jeffrey priors as priors of parameters [14]. Li et al. 
[9] have captitalized on the ratio of short-lived progeny 
to total α counts within the radon-thoron decay series to 
construct a binomial distribution model, employed a Beta 
distribution as a priori knowledge to infer the posterior 

parameters, and facilitated the model for ongoing surveil-
lance of artificial radionuclides contamination.

This paper investigates the applications of Bayesian 
statistical models in the continuous monitoring of artifi-
cial radionuclides. The principal objective is to dissect the 
disparities and origins in the measurement outcomes when 
employing Gaussian, Poisson and Binomial distribution 
models for artificial radionuclides monitoring. The quest is 
for a universally applicable method within Bayesian mode-
ling that diminishes uncertainty. Accordingly, the main con-
tributions of this paper are: (1) Describe the basic method-
ologies and principles for continuous surveillance of natural 
background radiation and artificial radionuclides using the 
models in detail, including the selection of prior distribution, 
the calculation of posterior distribution and the construction 
of the confidence interval; (2) Introducing a slide-window 
method to speed up the update of prior distribution param-
eters; (3) Evaluating and comparing the performances of 
models before and after using slide-window method under 
varying natural background conditions.

Theory

Bayes’ theorem

Consider a measurement process involving a quantity of 
interest, denoted by θ. Before the measurement start, we 
construct a distribution π(θ) based on historical data or 
expert knowledge. With the refinement from measured data 
x, the posterior distribution of θ, denoted by π(θ|x), can be 
represented as shown in Eq. 1:

Here, P(x|θ) represents the likelihood of observing data 
x given the parameter θ, and m(x) is the marginal distribu-
tion of x, which is independent of θ. Therefore, the posterior 
distribution of θ can also be written in a form proportional 
to the product of the likelihood and the prior:

It is clear that the posterior distribution’s mathemati-
cal form is influenced by both the likelihood and the prior 
distribution. In theory, π(θ) can be any distribution for any 
parameter. However, an incompatible prior with the like-
lihood often results in a posterior distribution excessively 
complex and intractable. Consequently, it is customary to 
select a prior from the conjugate family of distributions that 
is compatible with the likelihood’s form. Alternatively, we 
might opt for a uniform distribution as a default descrip-
tion of θ even we have no knowledge about it. References 

(1)�(�|x) = P(x|�)
m(x)

�(�)

(2)�(�|x) ∝ P(x|�)�(�)
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[15–17] point out that perturbing the prior distribution does 
not necessarily affect the outcome of Bayesian estimations. 
Yet, the influence of the likelihood P(x|θ) on the posterior 
distribution, despite its significance, is seldom addressed. 
Given that all inferences in Bayesian statistics are founded 
on the posterior, we believe that varying likelihood functions 
will exert distinct impacts on the posterior outcomes.

After obtaining the posterior distribution π(θ|x) for the 
parameter θ, one can construct a credible interval with a 
confidence level of 1-α (where α is typically chosen as 5%), 
denoted as [ ̂� − k�, �̂ + k� ], where k = 3 represents the criti-
cal value that defines the bounds of the credible interval, θ̂ 
and σ represent the expectation and the standard deviation 
of the posterior distribution. If the expectation falls within 
this interval, the sample is regarded to be free of issues; 
otherwise, it is deemed contaminated. In the process of con-
tinuous monitoring, the Bayesian approaches calculate the 
first posterior distribution by choosing a “well-designed” 
prior and likelihood. Then they sequentially use the previ-
ous posterior as the new prior in subsequent measurements, 
continually updating the posterior in combination with the 
actual data.

The Poisson distribution model

To characterize the natural background using a Poisson dis-
tribution, two conditions must be met. The first is that the 
observation time must be sufficiently short in comparison 
to the half-life of 222Rn (3.83d). The second is that the num-
ber of decay events observed during the monitoring period 
should be sufficiently high. If we denote the Poisson dis-
tribution parameter as θ, then the likelihood of observing 
x decays (where x = 0, 1, 2, …) is given by the probability 
P(x|θ), which also serves as the likelihood function with 
respect to θ:

The goal of Bayesian analysis is to obtain the posterior 
distribution of θ, which represents a synthesis of the prior 
belief about θ and the actual data x. In this study, given that 
the likelihood function for θ follows a Poisson distribution, 
a Gamma distribution is employed as the conjugate prior for 
θ. Thus, the posterior distribution of θ can also be expressed 
in the form of a Gamma distribution. The probability den-
sity density function of a Gamma distribution, denoted as 
Gamma(a,b), is:

where a represents the shape parameter, b is the rate param-
eter, and Γ(a) is the Gamma function. When there is no 

(3)P(x|�) = �x

x!
e−�

(4)�(�) = Gamma(a,b) =
ba

Γ(a)
�a−1e−b�

knowledge about θ, one can assign a Jeffrey prior to θ, which 
is given by a = 1/2, b = 0 and �(�) = �−1∕2[14]. Combining 
with Eqs. (2), (3) and (4), the posterior distribution for θ, 
can be expressed as:

The detailed derivation of the posterior distribution for 
θ, along with the computation of its posterior expectation 
and variance, is presented in Appendix A. It is possible to 
establish a credible interval for natural background level. If 
the total alpha counts of a new sample is within the interval, 
the sample is deemed normal, and its information is incor-
porated into the prior distribution for the next measurement. 
Conversely, if the alpha counts lie outside this interval, it 
indicates a likely contribution from artificial radionuclides. 
Such samples should raise alarms and will not be included 
in the prior for the subsequent measurement.

The Gaussian distribution model

It is more common and more complex to describe the natural 
background as a Gaussian distribution [18]. Let the random 
counts of the background x follow a Gaussian distribution 
with mean θ and variance σ2, denoted as x|θ ~ N(θ, σ2). The 
likelihood function for θ is then given by:

where σ2 is assumed to be known and can be calculated 
from historical data [8]. Therefore, Gaussian distribution 
with parameters μ0 and σ0 is served as the conjugate prior 
for θ. This choice ensures that the posterior distribution for θ 
will also be a Gaussian distribution. The mathematical form 
of the conjugate prior distribution for θ is:

When combined with the likelihood function, the pos-
terior distribution for θ can be derived by applying Bayes’ 
theorem. Due to the complexity of the posterior distribution 
for θ, we provide the expectation α and variance β of the 
posterior here. For more detailed derivation can be found 
in Appendix B:

(5)�(�|x) ∝ P(x|�)�(�) = Gamma(a + x, b + 1)

(6)P(x��) = 1
√
2��

exp

�
−
(x − �)2

2�2

�

(7)�(�) = N(�0, �
2
0
) =

1
√
2��0

exp

�
−
(� − �0)

2

2�2
0

�

(8)

� =

(
�0

�2
0

+
n

�2
x

)/(
n

�2
+

1

�2
0

)

=
�−2
n

�−2
n

+ �−2
0

x +
�−2
0

�−2
n

+ �−2
0
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In the Eqs. (8) and (9), n and x represent times of observa-
tions and the mean counts respectively. If we denote sample 
mean square error as ​ �2

n
 , which is �2

n
= �2∕n , then Eq. (8) can 

be written as the second form. On one hand, in the context of 
artificial radionuclides monitoring, each measurement yields 
one sample which means n = 1 and �2

n
= �2 . On the other hand, 

the posterior expectation α for θ can be regarded as a weight 
average of the sample mean x and the prior mean μ0. One can 
tell that the weights are inversely proportional to prior vari-
ance �2

o
and sample variance �2

n
 . If the sample mean’s variance 

�2
n
 is small, indicating precise measurements, then the weight 

on the sample mean x is large, and vice versa. The judgement 
whether a sample is contaminated is similar to that used with 
the Poisson distribution.

The Binomial distribution model

The natural background radiation composed of radon and tho-
rium progeny, alpha emitting radionuclides originating from 
radon decay products significantly impact the online monitor-
ing artificial radionuclides. The total alpha count is primarily 
attributed to 218Po and 214Po, with the ratio of 214Po counts 
to the total alpha count denoted as θ and regarded as a stable 
constant [19]. Consequently, the ratio θ together with the total 
alpha counts from the natural background follow a binomial 
distribution. With knowledge of the 214Po counts and the ratio 
θ, one can estimate the approximate range of the total natural 
background alpha counts. The methodology for calculating 
the 214Po counts which has been detailed discussed in previ-
ous work is identical to this paper [9]. Furthermore, this paper 
selects the Beta distribution as the prior for θ based on the like-
lihood function’s characteristics. This choice make sure that 
the posterior distribution for θ retains the same mathematical 
form. The probability density function of the Beta distribution 
is given by:

where a is the shape parameter indicating the number of 
214Po counts, and b is the scale parameter representing the 
total alpha counts except for 214Po. It’s worth noting that the 
uniform distribution U(0, 1) is a special case of the Beta 

(9)� =

(
n

�2
+

1

�2
0

)−1

(10)Beta(a, b) =
Γ(a + b)

Γ(a)Γ(b)
�a−1(1 − �)b−1

distribution Beta(0, 1) and can be used as uninformative 
prior for θ. In the measurement, the relationship between 
214Po counts denoted as x and the total alpha counts n can be 

represented as 
(
n

x

)
�x(1 − �)n−x , which serves as the likeli-

hood function. According to Bayes’ theorem, the posterior 
distribution can be expressed as (See Appendix C for more 
details):

The detailed derivation of the posterior distribution for θ, 
along with the computation of its posterior expectation and 
variance, is presented in Appendix C. We can similarly con-
struct a credible interval to describe the natural background 
based on the posterior expectation and variance. Since θ com-
prises 214Po counts and total alpha counts, it is not appropri-
ate to compare the ratio of a new sample with the interval, 
as this ratio diminishes the impact of artificial radionuclides 
contribution. Instead, one should first calculate the posterior 
expectation of the ratio in the current sample and then compare 
it with the credible interval from the previous measurement. If 
the expectation falls within the interval, the sample is adjudged 
to be normal; conversely, contamination.

Improvement and evaluation of Bayesian models

In the process of background monitoring, the continuous 
incorporation of natural background samples leads to a 
progressive accumulation of prior distribution parameters. 
Consequently, the computation of posterior expectation 
estimates and decision intervals becomes challenging. 
Additionally, as the natural background changes constantly 
due to factors such as atmospheric conditions and wind 
direction, long ago information contained in the prior 
might be less valuable for the current assessment. Hence, 
the timely elimination of outdated information from the 
prior distribution is crucial and beneficial for both the pos-
terior computation and estimations of the current meas-
urement. This paper introduce a slide-window method to 
periodically purge the distant historical information form 
the priors. The principle of the slide-window method is 
illustrated in Fig. 1, with the following specifics: (1) The 
algorithm upholds a window of fixed length which can be 
customized and a window length of 10 is employed in this 
paper; (2) The windows logs the prior parameters in a first-
in-first-out queue, with each data-set entry occupying a 

(11)�(�|x) ∝ P(x|�)�(�) = Beta(a + x, b + n − x)

Fig. 1   Illustration of the slide-
window method



Journal of Radioanalytical and Nuclear Chemistry	

unit of length; (3) Upon the window’s record length reach-
ing its capacity, the most ancient record is automatically 
abandoned.

Upon concluding the analysis of artificial radionuclides 
monitoring, it is imperative not to ignore the assessment 
of models’ performance. In binary classification tasks such 
as contamination surveillance, a confusion matrix is often 
employed to contrast the models’ diagnosis with the ground 
truth, as illustrated in Fig. 2. This comparison enables the 
computation of specific performance metrics for mod-
els [20]. Generally, the primary metric is accuracy which 
encompasses two key facets of models: the proportion of 
true positives when artificial radionuclides contamination 
is present, and the likelihood of avoiding false positives in 
the absence of contamination. It can be concluded that the 
accuracy of models is fundamental and still inadequate. 
Moreover, it’s well known that a model would be unsuitable 
for extensive applications if it refrains from false alarms in 
natural background situation but falters to sound true alarms 
promptly upon the occurrence of artificial contamination. 
Hence, the inclusion of precision and sensitivity becomes 
essential. Precision denotes the ratio of true positives among 
all positive alarms; sensitivity denotes the ratio of true posi-
tives correctly identified in scenarios of artificial contamina-
tion. Both metrics ought to be maximized. Furthermore, the 
unique property of continuous monitoring should be taken 
into accounts, specifically, its efficacy being dependent on 
the varying levels of background radiation.

Simultaneously, the False Positive Rate (FPR), calculated 
from the confusion matrix and defined as the ratio of false 
positives to the sum of false positives and true negatives 
(FPR = FP/(TN)), is used as the x-axis. The True Positive 
Rate (TPR), also known as recall, which represents the 
proportion of correct alarms when contamination occurs 
(TPR = TP/(TP + FN)), is plotted on the y-axis. These cre-
ate the Receiver Operating Characteristic (ROC) curve, a 
widely recognized visual technique based on classification 
performance [21]. The area beneath the ROC curve, termed 
AUC (Area Under Curve), serves as a significant metric for 

model evaluation where a larger AUC value indicates a bet-
ter model performance [22].

Experimental

Geant4 tool kits are widely regarded as an effective suite for 
simulating nuclear decay processes, particularly the alpha 
decay of naturally occurring radon and thorium, which 
has been highly acclaimed in literature [23, 24]. Its core 
functionalities include particle trajectory tracking and time 
recording. In this study, Geant4 software is employed to 
emulate the physical decay mechanisms of natural radon 
(222Rn), thorium (224Ra), and artificial alpha-emitting nuclei 
(242Cm as a representative example). The simulation meth-
odology adheres closely to that of previous investigations 
[9], with the code architecture illustrated in Fig. 3.

To assess the efficacy of the three models in monitor-
ing natural background, the study simulates an atmospheric 
environment with a blend of radon and thorium in a 10:1 
ratio. The experimental design is as follows: the activity 
of 222Rn ranges from 0.5 Bq to 10 Bq increasing by 0.5 Bq 
interval; For 224Ra, the activity spans from 0.05 Bq to 1 Bq 
with increments of 0.05 Bq. This generates a comprehen-
sive set of 20 data groups, starting from a mix of 0.5 Bq 
222Rn with 0.05 Bq 224Ra and ending at a blend of 10 Bq 
222Rn with 1 Bq 224Ra. From each data group, a continuous 
sequence of 50 h of counting and particles’ time is extracted 
as the measurement sample. These sample serve to compare 
the discrepancies between the estimated natural background 
levels measured by the three models and the actual total 
alpha counts, as well as to evaluate the impact of using a 
slide-window method on the results.

In addition, this study utilizes a 1.5 Bq 242Cm to repre-
sent artificial alpha-emitting radionuclides and procures a 
continuous data set of 50 h as the validation samples. These 
samples are introduced into the background at the 10th, 20th, 
30th, 40th, and 50th hours respectively to assess the accu-
racy, precision and sensitivity of the models in detecting 

Fig. 2   A schematic representa-
tion of using a confusion matrix 
to evaluate model accuracy, 
precision and sensitivity
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artificial contamination against varying background radia-
tion. The Geant4 simulation data format for the mixture of 
individual radon and thorium nuclei is depicted in Table 1. 
One can see that each particle has a “from” ID which means 
its parent nuclei ID, a global time indicating the its arriving 
time. Through these global time, we are able to calculate 
the total alpha counts and 214Po counts during a sampling 
period, which also facilitate comparisons with outcomes 
derived from the three models.

Results and discussion

The estimation of natural background

Figure 4 depicts the scenario of the natural background 
monitoring using a Poisson distribution model. The upper 
surface of the figure illustrates the discrepancy between the 

Fig. 3   The architecture of 
Geant4 code

Table 1   Data format of one 
single 222Rn mixed with one 
single 224Ra

Name ID From Global time (μs) Name ID From Global time (μs)

Thread 0 (222Rn)
 Alpha 3 1 2,214,075,205,419 222Rn 1 0 0
 Alpha 263 2 2,214,175,036,026 218Po 2 1 2,214,075,205,419
 e- 587 262 2,217,706,400,891 214Pb 262 2 2,214,175,036,026
 e- 592 588 2,219,265,212,014 214Bi 588 262 2,217,706,400,891
 Alpha 606 603 2,219,265,212,115 214Po 603 588 2,219,265,212,014
 e- 1079 605 4,292,963,692,692,529 210Pb 605 603 2,219,265,212,115
 e- 1082 1077 4,293,090,596,405,458 210Bi 1077 605 4,292,963,692,692,529
 Alpha 1088 1080 4,333,136,785,719,434 210Po 1080 1077 4,293,090,596,405,458

206Pb 1087 1080 4,333,136,785,719,434
Thread 1 (224Ra):
 Alpha 3 1 600,739,858,561 224Ra 1 0 0
 Alpha 280 2 600,746,692,087 220Rn 2 1 600,739,858,561
 Alpha 625 279 600,747,220,529 216Po 279 2 600,746,692,087
 e- 1021 624ara> 637,748,155,007 212Pb 624 279 600,747,220,529
 e- 1047 1022 641,698,006,405 212Bi 1022 624 637,748,155,007
 Alpha 1050 1045 641,698,006,405 212Po 1045 1022 641,698,006,405

208Pb 1049 1045 641,698,006,405

Fig. 4   The discrepancy between the model-estimated total alpha 
counts and the actual background alpha counts before and after using 
a slide-window for a Poisson model
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model-estimated total alpha counts and the actual back-
ground alpha counts. It is evident that as time progresses, 
there is an increasing divergence between the estimated out-
comes and the actual counts across various activities of the 
natural background. However, it is crucial to note that this 
does not imply an increase in estimation deviation. Instead, 
it is due to the accumulation of outdated information in the 
prior, which causes the estimates to become increasingly 
conservative and less responsive to the natural fluctuations 
of the background, resulting in a widening gap. More spe-
cifically, the initial monitoring employs a Jeffreys prior for 
the parameter θ, which is �(�) = �−1∕2 corresponding to 
Gamma(0.5, 0). The posterior adheres to a Gamma distri-
bution as stipulated by Eq. (5). The priors utilized in subse-
quent measurements are inherited from the posteriors of the 
preceding measurements, with parameter a accumulating the 
total alpha counts and parameter b tallying the number of 
measurements. As Eq. (16) shown in Appendix A, the influ-
ence of the prior mean on the posterior expectation progres-
sively intensifies, thereby pushing the expected alpha counts 
further away from the true values.

The key to resolve this issue is to eliminate the outdated 
information from the prior, which can be accomplished by 
employing the slide-window method. For instance, a length 
of 10 slide-window is used to record the parameter a and 
b of the prior for a Poisson model parameter. When meas-
urements reach the 11th hour (with a measurement taken 
every hour), the slide-window automatically discards the 
alpha counts from the first observation from a and param-
eter b becomes b-1. Then the slide-window adds the current 
measurement to the end of the queue, and renews the param-
eter a as a + alpha counts from the current measurement and 
parameter b as b + 1. Specifically, the growth of parameter 
a is inhibited and the value of parameter b is maintained at 
9, which leads a balance between the prior mean and the 
sample. In this way, the update of the prior becomes twofold: 
the regular update from the posterior and the elimination 
records from the parameter a and b. The lower surface of 
Fig. 4 exhibits the results after using the slide-window. One 
can see that the surface no longer grows steep over time and 
background activity for the second reasons, validating the 
use of the slide-window in background activity estimation.

The application of the Gaussian model for background 
estimation mirrors that of the Poisson model, yet it diverges 
in that the Gaussian model inherently comprises two param-
eters: the expectation and the variance. To met conjugate 
conditions of the prior, it is important to presume a known 
overall variance which equals to the variance deduced from 
a successive series of 50 measurements. The outcomes 
derived from the Gaussian model before and after using a 
slide-window are depicted in Fig. 5, wherein the upper sur-
face represents the discrepancy between the estimated total 
alpha counts and the actual total alpha counts. Notably, this 

surface is considerably steeper compared with the Poisson 
model, signifying that the estimated discrepancies magnify 
with time and activity. This stems from the gradual augmen-
tation of prior distribution’s expectation μ0, which escalates 
its impact on the posterior expectation as shown in the sec-
ond form of Eq. (8).

The results of using a slide-window are manifested in the 
lower portion of Fig. 5. Although this model yields a more 
moderated surface, the efficacy is less pronounced com-
pared to the Poisson model. The underlying cause of this 
distinction relates to the disparate methodologies by which 
the models accumulate prior information: whereas the prior 
distribution of the Gaussian model’s expectation is accumu-
lated from the arithmetic mean of total alpha counts of previ-
ous measurements, denoted as x in Eq. (8). And removing a 
outdated record from the arithmetic mean x has a negligible 
impact on the value of x itself.

The binomial distribution model diverges from the pre-
viously discussed models in its complexity for it requires 
for supplementary data. It is widely believed that, in the 
absence of artificial radionuclides contamination, substan-
tial fluctuations in total alpha counts are accompanied with 
corresponding increase or decrease in the alpha counts of 
214Po. Therefore, the ratio of alpha counts of 214Po to the 
total alpha counts serves as an indicator of the natural back-
ground level. The estimation of background using the bino-
mial distribution involves a two-step process: Firstly, the 
alpha counts of 214Po can be measured for the very short 
half-life of 214Po (164 μs) through a coincidence system 
as described in the earlier work. This yields the ratio θ of 
alpha counts of 214Po to the total alpha counts; Secondly, 
a Beta distribution with parameters a and b is constructed 
as the prior for θ through historical measurement data. The 

Fig. 5   The discrepancy between the model-estimated total alpha 
counts and the actual background alpha counts before and after using 
a slide-window for a Gaussian model
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parameters a and b represents the fractions of the total alpha 
counts contributed by 214Po (“successful events”) and non-
214Po (“failures events”) respectively. When measuring the 
natural background using the binomial distribution, one can 
employ a uniform distribution U(0,1) corresponding to a 
special case of Beta(1,1) as the prior for θ. With the alpha 
counts from 214Po, the total alpha counts can then be esti-
mated. The results from the binomial distribution model are 
illustrated in the upper surface of Fig. 6, revealing the most 
uniform surface among the three models, closest to the true 
level of the natural background. Implementation of a slide-
window simply requires the subtraction of outdated entries 
from a and b to refresh the Beta distribution, resulting in 
the estimates displayed in the lower half of Fig. 6, where the 
surface becomes more refined.

Application of artificial radionuclides monitoring

To assess the effectiveness of the three models in artifi-
cial radionuclides monitoring, this study conducts two 

experiments. For experiment 1, five test point of a 1.5 Bq 
242Cm source are introduced to background range from 0.5 
Bq 222Rn mixed with 0.05 Bq 224Ra to 10 Bq 222Rn mixed 
with 1 Bq 224Ra at 10th, 20th, 30th, 40th, 50th h in con-
secutive observations. The results of artificial radionuclides 
monitoring using the three models are shown in Fig. 7a. It is 
evident that with lower levels of natural background radia-
tion (Below 3 Bq of 222Rn mixed with 0.3 Bq 224Ra), all 
three models successfully identify the five points of contami-
nation over the 50 h period. However, as the natural back-
ground radiation increases, the ability to discern the artificial 
radionuclides’ alpha counts becomes progressively hindered 
by the elevated background, leading to a diminished detec-
tion performance across all models. Notably, when the 
background radiation surpasses 7 Bq of 222Rn and 0.7 Bq of 
224Ra, the Gaussian model fails to detect any contamination, 
whereas the binomial and the Poisson distribution models 
continue to exhibit similar effectiveness of detection.

Experiment 2 is conducted under identical background 
conditions and contamination sources, comparing the results 
of the three models after using a slide-window method 
improvement. The effectiveness of the enhanced triad of 
models is depicted in Fig. 7b: an enhancement is evident 
across all three models. Notably, the Poisson and binomial 
distribution models exhibit the most significant enhance-
ments, with the detection rates for artificial radionuclides 
attaining almost 100%, while the Gaussian model experi-
ences a modest increase in detection efficiency. This dem-
onstrates that refreshing the model priors using the slide-
window method is validated. The less notable improvement 
in the Gaussian model primarily stems from the fact that 
historical information in the the prior is stored as a mean 
value, and influenced by the overall variance. When outdated 
information is removed, it has a minimal impact on the mean 
value of the prior.

Model performance analysis

By constructing confusion matrices across varying back-
ground levels, we obtain three metrics for the three models 

Fig. 6   The discrepancy between the model-estimated total alpha 
counts and the actual background alpha counts before and after using 
a slide-window for a Binomial model

Fig. 7   Results of artificial 
radionuclides monitoring for 
three models (a The slide-
window method is not applied; 
b The slide-window method is 
applied)



Journal of Radioanalytical and Nuclear Chemistry	

both before and after utilizing a slide-window, as depicted 
in Fig. 8. The left part of the figure provides a comparison 
of model performance under normal conditions, while the 
right part shows the results after applying the slide-window 
method. Figure 8a, b respectively present the accuracy com-
parisons for the models. It can be seen that at low back-
ground levels (activities less than 3 Bq 222Rn mixed with 
0.3 Bq 226Ra), all models exhibit exceptionally high accu-
racy, effectively identifying points of artificial radionuclides 
contamination and without triggering false alarms in the 
absence of such contamination. However, as background 
level rise, the alpha particles emitted by artificial radionu-
clides become increasingly obscured by those of background 
radiation, leading to a decline in the number of contamina-
tion detection. Nevertheless, due to the low false alarm rates 
maintained by the three models, their accuracy remains con-
sistently above 90%. Following the update of model priors 
with a slide-window, the accuracy of both the Poisson and 
Binomial models significantly improves, primarily due to 
the increase of the number of identified artificial contami-
nation as described in the previous section, resulting in an 
enhancement of the true positives in the confusion matrix. 
The Gaussian model shows a less significant improvement 
in accuracy compared to the other two.

The precision metric is commonly believed to reflect the 
balance between a model’s correct and false alarms. A preci-
sion below 50% suggests that for every two alarms, there is 
likely one false alarm, indicating its practical importance in 
artificial radionuclides monitoring. Figure 8c, d illustrate the 
differences in precision for the three models before and after 
using the slide-window method. The precision trends for 
the three models are similar to the accuracy trends, initially 

high but subsequently declining. It is important to note that 
the Gaussian model becomes unquantifiable beyond a back-
ground level of 7 Bq because both the true positives and 
false positives of the confusion matrix are zero. Specifically, 
the Gaussian model does not issue any false alarm either 
beyond the background level of 7 Bq. The Poisson model 
also exhibits deficient performance with a swift decline in 
precision beyond a 7 Bq background. The decline is primar-
ily due to the combination of a decrease in the true positives 
and an increase in the false positives. The former derives 
from the failures of identifying contamination, and the later 
derives from the emergence of false alarms. The root of false 
alarms can be resorted to the posterior estimation being 
influenced by outdated prior. After the adoption of the slide-
window method, the three models show a marked rise in 
identifying contamination, which considerably boost mod-
els’ precision. Particularly, the Poisson distribution shows 
a 40% improvement once the natural background attains 7 
Bq. In contrast, the Binomial distribution model consistently 
maintains a precision close to 100%, indicating it virtually 
never issues false alarms.

The sensitivity metric is a crucial indicator of the mod-
els’ capability to identify artificial radionuclides contami-
nation. Figure 8e, f respectively depict the differences in 
sensitivity for the three models before and after employing 
a slide-window method. It is not surprised to see that sen-
sitivity decreases as the natural background level increases, 
for alpha particles emitted from artificial radionuclides are 
more difficult to be discovered as those from background 
increase. However, through using the slide-window method, 
the prior information in both the Binomial and Poisson mod-
els is updated more rapidly, Estimations of the models are 

Fig. 8   Comparison of per-
formances among the three 
models (a the accuracy of 
models before modification; b: 
the accuracy of models after 
modification; c the precision of 
models before modification; d: 
the precision of models after 
modification; e the sensitivity 
of models before modification; 
f: the sensitivity of models after 
modification)



	 Journal of Radioanalytical and Nuclear Chemistry

more accurate and thereby enhancing sensitivity. The sen-
sitivity of both the Poisson and Binomial models has been 
amplified by a factor of 4–5. But for the Gaussian model, 
the improvement in sensitivity is not significant because the 
prior uses the mean of historical information.

When all three indicators are considered, we find that the 
Poisson distribution model performs similarly to the Bino-
mial distribution model. A more intuitive method performs 
is to calculate the FPR as the a-axis and TPR as the y-axis 
for the three models, resulting in binary pair (FPR, TPR). At 
the same time, we add two points, (0, 0) and (1, 1), to create 
an ROC curve, with the area under the curve representing 
the AUC value, as shown in Fig. 9. The left image shows 
the AUC areas for the three models without using the slide-
window method. It can be seen that the performance of the 
Binomial distribution model is slightly higher than the Pois-
son distribution, both of which significantly outperform the 
Gaussian model; On the other hand, after improving with the 
slide-window method, the Binomial and Poisson distribu-
tion models almost achieve “perfection” while the Gaussian 
distribution model also improves about 5%.

Conclusions

This paper provides a detailed description of the specific 
applications of three common Bayesian models in the field 
of continuous online monitoring of artificial radionuclides, 
including the prior selection and posterior calculation of 
model parameters. Using radon, thorium series decay data 
and artificial radionuclides decay data simulated with the 
Geant4 tool kits, the differences between the three mod-
els in estimating background are verified. We find that 
although Bayesian models between the three can accu-
mulate historical experience during the prior updating 
process, overly outdated information would reduce the 

accuracy the posterior expectation estimates. Therefore, 
this paper proposes a slide-window method to quantita-
tively update the prior distribution of model parameters, 
and describes the specific process of updating the prior 
distribution of models’ parameters using this method. 
Finally, this paper compares the accuracy, precision, and 
sensitivity of the three models in the continuous online 
monitoring of artificial radionuclides before and after 
using this method. The analysis results show that: (1) 
among the three models, the Gaussian model performs 
moderately, while the Binomial and Poisson distribution 
models perform comparably; (2) the slide-window method 
can effectively improve the speed of updating the prior of 
model parameters, so as to improve the accuracy, precision 
and sensitivity of models.

However, the implementation of the Binomial distribu-
tion model is not only dependent on the total alpha counts 
but also requires alpha counts from 214Po. The complex-
ity necessitates further research into the measurement of 
214Po based on the Bayesian approach, given that the half 
life of 214Po is 164 μs, where the measurement is eas-
ily influenced by the 216Po (164 ms) and 212Po (0.3 μs). 
Ultimately, the Bayesian models discussed here are not 
merely applicable to the online monitoring of artificial 
radionuclides, but equally relevant to other measurement 
systems that experience background interference such as 
dose monitoring system.

Availability of date and materials

All data generated or analyzed during this study are 
included in this published article [and its supplementary 
information files].

Fig. 9   The AUC area for the three models (a The slide-window method is not applied; b The slide-window method is applied)
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Appendix A

Let X = (X1, …, Xn) be a random sample from a Poisson 
distribution P(θ). The probability density function of the 
sample X is given by:

where x = 1

n

n∑
i=1

xi , The above expression is the likelihood 

function of θ. Let the prior distribution of θ be a Gamma 
distribution Γ(a,b), with its density function given by

In the above equation, both a and b are known hyper 
arguments. Combining Eqs. (12) and (13), we have:

The above expression is the kernel of Γ(nx+a, n + b). 
After adding a normalizing constant factor, we obtain:

Which indicates that the posterior distribution of θ is 
a Gamma distribution Γ(nx+a, n + b). In the continuous 
monitoring of artificial radionuclides, each measurement 
yields a result, thus n = 1, x = x . The posterior expecta-
tion is:

In the above equation, a/b is the prior mean value, and 
x is the sample value. As the number of measurements 
increase, the weight of the prior mean increase, while the 
weight of the sample decreases.

Appendix B

Let X = (X1, …, Xn) be a random sample drawn from a 
normal distribution N(θ, σ2). The sample mean X is a suf-
ficient statistic for θ and it follows an another normal dis-
tribution N(θ, σ2/n). Therefore, the likelihood function of 
θ is given by:

(12)

f (x|�) = P(X1 = x1,… ,Xn = xn|�)

=

n∏

i=1

�xie−�

xi!
=

�nxe−n�

x1!… xn!
∝ �nx exp{−n�}

(13)

�(�) = Gamma(a,b) =
ba

Γ(a)
�a−1e−b� ∝ �a−1 exp{−b�}

(14)�(�|x) ∝ f (x|�) ⋅ �(�) ∝ �nx+a−1 exp {−(n + b)�}

(15)�(�|x) = (n + b)nx+a

Γ(nx + a)
�nx+a−1 exp{−(n + b)�}

(16)

E(�|x) = �E = (x + a)∕(b + 1)

=
1

b + 1
x +

(
1 −

1

b + 1

)
a

b

= �x + (1 − �)
a

b

Let the conjugate prior distribution of θ be a normal dis-
tribution N(�0, �

2
0
) . The likelihood function of θ is given by:

Note �2
n
= �2∕n , the posterior distribution density of θ is:

w h e r e  A =
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0
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0
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2
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0
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2
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0
+�2n

 , 
which can be further simplified as:

From the above equation, the posterior of θ follows a nor-
mal distribution N(B/A, 1/A), with its posterior expectation α 
and variance β respectively given by:

In the continuous monitoring of artificial radionuclides, 
each measurement yields a result, thus n = 1, �2

n
= �2.

Appendix C

Let X be a random sample drawn from a Binomial distribu-
tion b(n,θ). The probability density function of the sample X 
is given by:

where the kernel is �x(1 − �)n−x . Let the prior distribution 
of θ be a Beta distribution Beta(α, β), the kernel of which is 
also �x(1 − �)n−x , the posterior distribution of θ is:

(17)
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The mathematical forms for the posterior expectation and 
the posterior variance of θ are as follows:
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