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Abstract
The tritium content in the surface water of the Suifen River in China was measured using an ultra low-level liquid scintil-
lation spectrometer. In August and October, a total of 30 samples were collected (15 per month) The measured 3H activity 
concentration ranged from 5.08 to 9.75 Bq  L−1, and the annual effective dose ranged from 0.07 to 0.13 μSv. These values 
are below WHO’s recommendations, indicating no risk to human health. Although the 3H activity concentration was higher 
in October than in August, statistical analysis did not show a significant difference between the two months.
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Introduction

Tritium (3H) is a radioactive isotope of hydrogen, which 
decays into the stable element helium through beta decay, 
with a half-life of 12.3 years. The average energy of β ray 
emitted by the decay of tritium is 5.7 keV, with a maximum 
energy of 18.6 keV, Its maximum range in air is 5 mm, and 
about 0.56 μm in water. Natural tritium originates from the 
interaction between neutrons generated by cosmic rays in 
the upper atmosphere and nitrogen atoms, constituting the 
“stable” background of environmental tritium, accounting 
for 65% in the oceans and 27% on land and in the biosphere 

[1]. In nature, tritium primarily exists in the form of triti-
ated water (HTO), and participates in the natural water cycle 
through the transportation of rainwater and the exchange 
of water vapor between the air and the sea. Artificial trit-
ium holds a significant place in the global tritium inven-
tory, with its primary sources being nuclear tests and the 
operation of nuclear power reactors. Tritium emitted from 
nuclear facilities mainly exists in the form of tritiated water 
(HTO), tritiated hydrogen (HT), and a small amount of tri-
tiated methane  (CH3T) [2, 3]. Natural tritium is present in 
the environment and food, existing in three chemical forms: 
HT, HTO and organically bound tritium (OBT), which enter 
the body through inhalation, skin absorption, or ingestion 
[4–6]. Moreover, nuclear power stations and nuclear explo-
sions also release large amounts of tritium into the environ-
ment, far exceeding natural tritium levels, and transferring 
among natural ecological chains, such as aquatic food chains 
[7–10].

On August 24th, 2023, Japan began discharging Fuku-
shima contaminated water into the ocean. The sources of 
Fukushima contaminated water mainly include: the orig-
inal coolant in the reactors, the cooling water injected at 
the time of the accident, and the groundwater and rainwa-
ter that flows through the reactors [11]. The contaminated 
water directly contacts the damaged reactor cores and con-
tains more than 60 fission products and transuranic ele-
ments found within the cores [12]. Despite Tokyo Electric 
Power Company (TEPCO) using multiple decontamination 
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systems, including the Advanced Liquid Processing System 
(ALPS) and strontium and caesium adsorption devices, to 
treat the radioactive nuclides in the contaminated water, no 
decontamination system can remove all radioactive nuclides, 
especially tritium (3H) [13]. In September 2023, TEPCO 
announced the latest measurement results of ten artificial 
radioactive nuclides in nearly 310 contaminated water stor-
age tanks [14]. The results showed that the concentration 
of 3H in the contaminated water storage tanks ranged from 
1.31 ×  105 to 2.50 ×  106 Bq  L−1, which is significantly higher 
than the World Health Organization (WHO) recommended 
limit concentration of 3H in drinking water (1 ×  104 Bq  L−1), 
and also exceeds the maximum discharge concentration of 
3H permitted by Japanese law (6 ×  104 Bq  L−1). As of Janu-
ary 2024, Japan has discharged 23,351 tons of contaminated 
water. Liu et al. established diffusion models of radioactive 
materials at both macroscopic and microscopic levels and 
achieved long-term simulations of the Fukushima contami-
nated water discharge plan. The simulation results found 
that the contaminated water would reach the coastal waters 
of China 240 days after discharge and the North Ameri-
can coast 1200 days later, covering almost the entire North 
Pacific [15].

Chum salmon (Oncorhynchus keta Walbaum) belong to 
the salmon family and the genus of large salmonids. They 
are typical anadromous fish species. As one of the Pacific 
salmon species, they are widely distributed along the coast 
of the North Pacific. Born in freshwater rivers, chum salmon 
migrate to the sea after hatching, where they grow and 
develop. Upon reaching maturity, they migrate upstream to 
their birthplaces to spawn and reproduce. After spawning, 
the parent fish gradually die [16]. Therefore, chum salmon 
can serve as indicator organisms to monitor the migration 
of radioactive nuclides from the ocean to freshwater rivers 
[17]. Every year, a large number of chum salmon from the 
North Pacific migrate to the Suifen River in China to spawn. 
With their migration, the radioactive nuclide tritium (3H) 
from the ocean may be brought into and released into the 
Suifen River [7–9, 17, 18]. Suifenhe is located at the junc-
tion of the eastern segment of the North China Platform 
and the Jilin-Heilongjiang fold belt. It is also in the overlap 
zone between the ancient Asian tectonic domain and the 
Binhai-Pacific tectonic domain, specifically belonging to 
the Jiamusi-Xingkai micro-block and its southern margin. 
The geological strata from the Middle and Late Proterozoic 
eras to the Paleozoic era have undergone varying degrees of 
regional metamorphism and tectonic deformation. This has 
resulted in the formation of different types of folds and duc-
tile deformation zones, accompanied by activities of magma 
intrusion. The concentration of 3H in the geological genesis 
is very low and can be considered negligible [19]. Thus, by 
analysing the content of the radioactive nuclide 3H in the 
water of the Suifen River, it is possible to determine whether 

the Suifen River is affected by the discharge of contaminated 
water into the sea, while also assessing radiation hazards.

Materials and methods

Study area

The study area is located in the Dongning section of the 
Suifen River in the eastern part of Heilongjiang Province, 
China. The river is approximately 20 km long, with no 
nuclear facilities nearby. The Suifen River, the main water 
source of Dongning, is one of the five major river systems 
in Heilongjiang Province. It has two sources: the southern 
source is the Dasuifen River, which originates from the 
Tumen Mountain northwest of Hunchun in Jilin Province; 
the northern source is the Xiaosuifen River, which origi-
nates from the south side of the Shendong Mountain, Taip-
ing Ridge. The Dasuifen River and the Xiaosuifen River 
converge near Daohe Town, forming the Suifen River which 
flows northeast through Dongning into Russian Primorsky 
Krai, and then into the Sea of Japan near Vladivostok. Each 
year, a large number of chum salmon from the North Pacific 
migrate to the Suifen River to spawn.

Collection and preparation of samples

In this study, due to the narrow width of the Suifen River 
(less than 10 m), sampling was conducted at the center of the 
river. To obtain a comprehensive understanding of the dis-
tribution of tritium content in the Suifen River, a total of 15 
sampling points were established at approximately 1.5 km 
intervals along the river. The sampling took place in August 
and October 2023, corresponding to the pre- and post-
salmon migration period. The locations of the sampling sites 
are shown in Fig. 1. The sample numbers from right to left 
in Fig. 1 are sequentially labelled as R1–R15. Water samples 
were stored in brown glass bottles, which were pre-washed 
with hydrochloric acid and then rinsed with distilled water. 
Prior to sampling, the sampling equipment was thoroughly 
cleaned. During sampling, the equipment was washed three 
times with the water to be sampled before collection began. 
Then, about 1 L of surface water was collected from 0.5 m 
below the water surface into the polyethylene plastic barrel 
containers and sealed. When immersing the sampler into the 
water, orient the opening towards the upstream direction to 
prevent disturbance of the water and entry of debris. First, 
use the sampler to collect the water, and then transfer it into 
a container to prevent contamination of the outer surface of 
the container. After sample collection, record the location 
information of the sampling points.
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Measurements of radioactivity and calculation 
of radiation hazard indicators

The analysis of tritium in water was based on the Chinese 
National Standard “HJ 1126–2020 Analysis method for 
tritium in water” [20]. A 300 mL water sample was placed 
into a round-bottom flask, with about 0.5 g of potassium 
permanganate added, and then subjected to atmospheric 
pressure distillation. Approximately 150–200 mL of distil-
late with an electrical conductivity lower than 10 μS  cm−1 
was collected, discarding the first 50 mL of distillate and 
collecting the middle portion. After distillation, 8 mL of 
the distillate and Ultima Gold™ LLT scintillator (Perkin 
Elmer, USA) were placed into a plastic liquid scintillation 
vial, with the sample-to-scintillator ratio being 8:12 mL. 
The prepared samples were then analysed for tritium con-
centration using a SIM-MAX LSA3000 (SIM, China) 
ultra low-level liquid scintillation spectrometer (LSS). A 
standard tritium solution (971 ± 27 Bq  g−1, reference date: 
October 10, 2022), calibrated by the National Institute of 
Metrology, China, was used to determine the counting effi-
ciency. The prepared samples were placed in the ultralow-
level liquid scintillation spectrometer for dark adaptation 
for over 12 h and measured for 1000 min.

The counting efficiency of the instrument for tritium is 
calculated based on Eq. (1) [20].

where E is the counting efficiency of the liquid scintillation 
for tritium,  Ns is the counting rate of the standard tritium 
solution  (min−1),  Nb is the counting rate of the background 
solution  (min−1), m is the mass of the sample (g),  Cs is 
the activity concentration of the standard tritium solution 
(Bq  L−1) and 0.06 is the conversion coefficient (0.001 L 
 g−1 × 60  min−1  Bq−1).

The tritium activity concentration in the water samples 
is calculated according to Eq. (2) [20].

(1)E =
Ns − Nb

0.06 ×m × Cs

where C is the activity concentration of tritium in the water 
sample (Bq  L−1), and  Nc is the counting rate of the water 
sample  (min−1).

Estimation of internal dose of water

As the Suifen River serves as a source of drinking water for 
the local area, it is necessary to assess the internal dose after 
ingestion of the water. The annual effective dose (AED) for 
tritium was calculated according to Eq. (3) [21].

where D is the annual effective dose from the ingestion of 
tritium in the water (Sv),  DW1 is the daily consumption of 
water (the value was estimated to be 2 L  d−1) [22],  DCF is the 
dose conversion factor of 3H for adults (1.8 ×  10−11 Sv  Bq−1) 
[12, 23], Y is the ingestion period (365 d), and C is the 
tritium activity concentration in the water sample (Bq  L−1).

Geo‑spatial analysis

Using ArcGIS 10.6, the spatial distribution map of radionu-
clides within the water of the study zone was created through 
the application of the Inverse Distance Weighted (IDW) 
technique. This approach facilitated spatial analysis on the 
generated maps. The study evaluated the distribution zone 
for 3H concentrations. IDW interpolation, a widely adopted 
method for variable mapping, is recognized for its exact-
ness and ability to conform to continuous spatial variation 
models. It employs a weighted linear combination of sample 
points, leveraging statistical and mathematical methodolo-
gies to generate surfaces and forecast values at points where 
measurements are not available [24]. The IDW interpolation 
relies on a fundamental equation as follows:

(2)C =
Nc − Nb

0.06 ×m × E

(3)D = DW1 × DCF × Y × C

Fig. 1  Distribution of sampling points in surface water



 Journal of Radioanalytical and Nuclear Chemistry

where Z represents the interpolated value at a specific grid 
node, while  zi refers to the values of neighbouring data 
points and  dij0 denotes the distances between the grid node 
and these data points.

The IDW becomes feasible by moving data into the GIS 
context. Consequently, analyses can be carried out in regions 
lacking data. This makes IDW particularly suited for inte-
gration into a GIS environment, enabling analysis in areas 
where data might be sparse or completely absent, by utiliz-
ing the spatial relationships and distances between known 
data points to estimate values at unknown locations.

Statistical analysis

IBM SPSS Statistics, a robust statistical analysis software 
developed by IBM, caters to a wide range of functions 
including data management, advanced analytics, multivari-
ate analysis, business intelligence and applications in crimi-
nal investigations. The analysis involving multiple variables 
was performed with IBM SPSS version 23, leading to the 
creation of box plots derived from experimental data.

Results and discussion

Activity concentration and annual effective dose

Table 1 displays the 3H activity concentration and annual 
effective dose in the surface water of Suifenhe for August 
and October. Figures 2 and 3 illustrate the spatial distribu-
tion of 3H in surface water for these months, respectively. 
The range of 3H activity concentration in surface water was 
5.08–9.75 Bq  L−1, with an average of 6.92 Bq  L−1, which is 
below the WHO recommended limit of 10,000 Bq  L−1 for 
drinking water. The annual effective dose varied from 0.07 
to 0.13 μSv, with an average of 0.09 μSv, remaining under 
the WHO recommended guideline of 0.1 mSv for drinking 
water [22].

In Table 2, the 3H activity concentrations of surface 
water samples were compared with the those of other 
researchers in different regions around the world [25–40]. 
In this study, the 3H activity concentration in surface water 
was notably higher than that in countries like France, 
Romania and Greece. However, it aligns with the findings 
of Ren et al. in China, falling within the normal range 
for northern China. The variance can be attributed to the 
study area's location in a high-latitude region, higher than 
that of France, Romania and Greece. The production of 
natural tritium in the atmosphere shows an increase with 

(4)Z
(

x0
)

=

n
∑

i=1

z
(

xi
)

⋅ d
−p

ij
∕

n
∑

i=1

d
−p

ij

latitude. This latitudinal dependency on the production 
rate, coupled with the enhanced transfer of tritium from 
the stratosphere to the troposphere at higher latitudes, 
leads to a non-uniform distribution of natural tritium in 
precipitation [41]. Moreover, the release points of anthro-
pogenic tritium into the atmosphere (nuclear test sites and 
nuclear power plants) are predominantly situated in the 
mid to high latitudes of the Northern Hemisphere [40, 42]. 
The intensity of cosmic ray neutrons also increases with 
latitude, thereby raising the levels of cosmogenic tritium. 
Additionally, within the same latitude, moving from the 
coast towards inland, the tritium content in precipitation 
increases with distance from the coastline, known as the 
continental effect. This effect is primarily due to two rea-
sons: coastal areas experience high rainfall and moisture 
levels, leading to greater dilution of tritium by tritium-
poor ocean water; and as water masses move from the 
coast inland, the longer distance allows for more exten-
sive isotopic exchange opportunities than in coastal areas, 
gradually increasing tritium content inland. Therefore, the 
tritium content in the surface water within this study area 
is comparatively higher than in other countries and regions 
[43]. However, when compared to Russia [27] and Ger-
many [37], the tritium content in the rivers is significantly 
lower. This is because the two rivers in Russia and Ger-
many have nuclear power facilities in their vicinity, which 
leads to an increase in tritium content.

Table 1  3H activity concentration and annual effective dose in surface 
water

Sample 3H activity concentration 
(Bq  L−1)

Annual effective dose 
(μSv)

August October August October

1 5.27 ± 0.21 7.11 ± 0.17 0.07 0.09
2 8.04 ± 0.15 6.19 ± 0.19 0.11 0.08
3 7.02 ± 0.15 7.94 ± 0.17 0.09 0.10
4 7.21 ± 0.19 6.19 ± 0.17 0.09 0.08
5 6.47 ± 0.18 6.65 ± 0.18 0.09 0.09
6 7.67 ± 0.16 7.39 ± 0.16 0.10 0.10
7 6.00 ± 0.16 7.48 ± 0.16 0.08 0.10
8 7.48 ± 0.17 7.85 ± 0.16 0.10 0.10
9 7.30 ± 0.18 6.28 ± 0.16 0.10 0.08
10 6.37 ± 0.16 7.67 ± 0.18 0.08 0.10
11 7.57 ± 0.16 5.91 ± 0.19 0.10 0.08
12 5.08 ± 0.19 6.74 ± 0.22 0.07 0.09
13 5.17 ± 0.18 6.56 ± 0.22 0.07 0.09
14 6.28 ± 0.17 6.84 ± 0.16 0.08 0.09
15 8.13 ± 0.15 9.75 ± 0.20 0.11 0.13
Min 5.08 5.91 0.07 0.08
Max 8.13 9.75 0.11 0.13
Ave 6.73 7.10 0.09 0.09
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Seasonal variation of concentration in surface water

To investigate if the tritium content in the Suifen River is 
influenced by marine nuclear pollution, water samples were 
collected during two periods: before and after the migration 
of chum salmon, specifically in August and October. The 
variation of tritium content in various environmental waters 
across different regions also changes with the seasons. In 
China, the tritium content in precipitation is higher in win-
ter and spring, and lower in summer and autumn [44, 45]. 
Figure 4 presents the box plot of 3H activity concentration in 
surface water samples for August and October, showing that 
the concentration in August is lower than in October. This 
observation could be attributed to the increased precipita-
tion in the Suifen River basin during this period, with the 
continuous influence of precipitation and monsoon provid-
ing a plausible explanation for the rapid dilution patterns of 
tritium [46, 47]. On the other hand, chum salmon migrate 
from the ocean to the Suifen River for spawning and die 
every year between September and October [48, 49]. During 
their 3–5 years in the ocean, chum salmon may absorb and 
transform tritium from nuclear-polluted water discharged 
into the ocean, which is then released into freshwater 
when they spawn and die in the Suifen River [7–9]. After 
the Fukushima Daiichi nuclear disaster, Arai conducted 
research on salmonids, which are migratory, and found 

Fig. 2  Spatial distribution map of 3H activity concentration in surface water for August

Fig. 3  Spatial distribution map of 3H activity concentration in surface water for October

Table 2  Surface water activity concentration (Bq   L−1) in different 
regions around the world

Country 3H (Bq  L−1) References

Range Average

France 0.12–0.86 0.41 [25]
Russia 0.56–3.49 1.43 [26]
Russia 13–26 – [27]
India 1.9–42.1 4.0 [28]
Turkey 1.606–4.417 2.493 [29]
Turkey 2.45–3.17 – [30]
Japan 0.36–2.66 1.06 [31]
Romania 0.83–1.45 – [32]
Greece 0.82–1.03 0.94 [33]
Spain 0.71–6.44 3.6 [34]
Iraq – 0.562 [35]
Poland 0.43–0.94 0.74 [36]
Germany – 32.4 [37]
China (Heilongjiang) 14.9–17.8 – [38]
China (Liaoning) – 14.4 [38]
China (Gansu) – 7.55 [39]
China (Nei Mongol) – 6.13 [39]
China (Nei Mongol) 1.57–2.62 2.03 [40]
China (Xinjiang) – 9.25 [39]
China (Qinghai) – 9.37 [39]
China 5.08–9.75 6.92 (Present work)
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that they accumulate radioactive nuclides such as 137Cs and 
134Cs, migrating these substances between freshwater and 
the ocean [17]. Similarly, Madigan et al. sampled and ana-
lysed Pacific Thunnus orientalis, revealing that these fish 
could rapidly transport radioactive nuclides from the Fuku-
shima accident across the entire North Pacific [50]. Thus, 
the higher 3H activity concentration in the Suifen River in 
October compared to August could also be related to the 
migration of chum salmon. However, statistical analysis 
(paired t test) of the 3H activity concentration in surface 
water samples from August and October showed no signifi-
cant difference between the two periods (p > 0.05, at the 95% 
significance level). Therefore, further research focusing on 
the Suifen River and chum salmon is required, involving the 
collection and analysis of a large number of water and fish 
samples for tritium content.

Conclusion

The analysis of 3H activity concentration and annual effec-
tive dose in the Suifen River, China, indicates that both 
metrics are below the guidelines provided by the World 
Health Organization (WHO). The 3H activity concentra-
tion falls within the normal range for northern China. It 
was observed that the 3H activity concentration in the 
Suifen River before the migration of chum salmon is 
lower than after, meaning the concentration of 3H in sur-
face water samples is higher in October than in August. 

This variation could be attributed to climate factors and 
possibly the influence of nuclear pollution water discharge, 
although statistical analysis showed no significant differ-
ence between the two periods. Future research should thus 
focus on the mechanism of tritium migration and transfor-
mation by chum salmon. The findings from this study will 
serve as foundational data for evaluating the dose impact 
on the regions concerned in the event of an unforeseen 
tritium release.
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