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Abstract
To investigate the activity concentrations of naturally occurring radionuclides such as 238U, 232Th, and 40K, as well as the 
presence of radon (222Rn) and thoron (220Rn) in the vicinity of the Aravalli Mountain range in Mahendergarh, India, a com-
prehensive study was conducted. We meticulously examined soil samples obtained from both field and hill areas using NaI 
(Tl) detector based on gamma spectroscopy. It is noteworthy that concentrations were found lower than the global average 
values. Notably, the hill soil samples exhibited a higher activity concentration in comparison to the field soil samples. Overall, 
in terms of radium equivalent activity (226Ra), gamma absorbed dose rate, and the internal hazard index, our findings did not 
reveal any significant radiological risks.

Keywords  Naturally occurring radionuclides · Smart RnDuo radon monitor · Hill soil · Exhalation rates · Aravalli 
mountain range

Introduction

Soil is the principal reservoir for all essential life support-
ing components either directly or indirectly. It contributes 
significantly to the natural background radiation and these 
radiations exposed to the surroundings [1, 2]. Soil consti-
tutes the uppermost layer of the earth crust, formed through 
a series of physiochemical changes including decomposi-
tion, water movement, and weathering of solid rock. Within 
the earth crust, rocks and minerals naturally emit low levels 
of radiation due to the presence of radioactive isotopes. Soil 
comprises minerals and rocks that naturally erode, releas-
ing radioactive elements, particularly uranium (238U), tho-
rium (232Th), and potassium (40K), along with their decay 

products, as inherent components of soil. Radiation is an 
integral aspect of our environment, and human exposure 
and radiation occurs through routine interactions, such as 
exposure to sunlight and natural background radiation [3].

Background radiation encompasses cosmic radiation 
that constantly permeates the atmosphere from space. The 
average annual natural background radiation exposure for 
humans is approximately 1.1 mSv, sourced from cosmic 
radiation (0.35 mSv) and from atmospheric sources its 
value is 0.05 mSv [4]. The distribution of radionuclides in 
soil and their radiological impacts significantly influence 
human health. These radionuclides account for at least 
80% of natural radiation exposure [5, 6], with the remain-
ing 20% stemming from human activities. Elevated levels 
of anthropogenic radiation, originating from 238U and its 
decay products in geological materials as well as 232Th, pre-
dominantly found in zircons, igneous rocks, and monazite 
sands are significant contributors to high background radia-
tion levels. In some regions, the presence of monazite sands 
has resulted in exceptionally high background radiation 
levels, increasing radiation exposure in various countries 
[7–15]. Pegmatite, granite, diorite, and gneiss rock samples 
of North Pakistan were highly radioactive and should not 
be used as constructing material [16]. Globally, naturally 
the high background radiation place is Ramsar City, Iran. 
In Iran, high background radiation is due to the presence 
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of 226Ra in local rocks [17]. Mrima Hill of Kenya country, 
known for high background radiation due to the presence of 
heavy minerals like carbonatites, and monazites. Here, activ-
ity concentration of naturally occurring radioactive elements 
and dose rate were found above the global value [18]. Also, 
in India, Kerala has a high level of radiation, and the attribu-
tion of radiation is due to monazite sand containing enriched 
thorium [8]. Prior research has shown that higher levels of 
radon and thoron in the environment significantly increase 
the risk of lung cancer even in non smokers [19–24]. Radon 
(222Rn) and thoron (220Rn) are released from soil and con-
struction materials into the environment through emanation 
and exhalation. The exhalation rate is influenced by various 
factors, including the content of 226Ra in the soil, rock com-
position, porosity, permeability, temperature, humidity, and 
meteorological conditions [25–28]. Thus, this study project 
also included the measurement of the exhalation rate for soil 
samples to assess potential health risks.

Although radionuclide levels in soil have been measured 
in various regions of Haryana over the past few decades 
[28–32]. No prior investigations have been reported on these 
radioactive elements in the soils of the Mahendergarh dis-
trict in Haryana. Given the common association of 238U and 
232Th with the Aravalli Hills, radiation exposure from this 
region could be an environmental concern. Consequently, it 
is essential to conduct a qualitative analysis of these radio-
nuclides in this specific research area. Buildings in India 
commonly utilize bricks that incorporate approximately 80% 
soil [20]. Therefore, this study aims to determine whether 
the soil in this area is suitable for construction without pos-
ing risks to human health.

Radionuclide 226Ra is known to migrate more readily in 
the environment and its decay product, radon gas escapes 
from the soil. While various natural radionuclides such as 
those in the 235U series, 176Lu, 87Rb, and 147Sm exist in the 
environment at low levels and their contributions to human 
radiation exposure are relatively low [33]. As a result, this 
study focuses on the assessment of radionuclides 238U, 
232Th, and primordial radionuclide 40K in the soil, utilizing 
a gamma ray spectrometer to measure element activity con-
centrations and calculate the exhalation rates of 222Rn and 
220Rn for the soil samples by employing the SMART RnDuo 
portable radon monitor.

Geological characteristics of the study area

The research was conducted in the vicinity of the Aravalli 
Mountain range located in Mahendergarh, Haryana, India. 
This district spans between 24° 47′ to 28° 26′ N latitudes 
and 75° 56′ to 76° 51′ E longitudes, covering an area of 
1899  km2. The region primarily falls within the Indo 
Gangetic plains geomorphological zone.

The predominant soil types in this district include arid 
soil, blown sand, and alluvium. These soils typically con-
tain subsurface lime nodules and exhibit calcareous char-
acteristics. The geological substrata of the district consist 
of rocks belonging to the Delhi and Delhi systems, over-
lain by recent alluvial deposits and blown sand.

The area surrounding the district features prominent hill 
formations, notably the Madhogarh Hill, Dhosi Hill, and 
the Tosham Hill range. These hills are situated within the 
Aravalli Mountain range and primarily consist of meta-
sedimentary rocks [34]. These metasedimentary rocks 
predominantly comprise quartzite and contain a relatively 
low number of pegmatites, slate granite, and phyllite. The 
Tosham Hill range, an essential component of the Aravalli 
Mountain range, falls under the Archean Bilwala basement 
rock category and primarily comprises quartz and granite 
porphyries known for their high thermal conductivity.

Climatically, the study area experiences an annual aver-
age rainfall of approximately 500 mm, with uneven distri-
bution across the region. Moreover, the district is situated 
near the Dohan River, which is currently facing the threat 
of extinction. The Krishnavati River originates from the 
Aravalli range, near the Dariba copper mine in the state 
of Rajasthan.

Experimental procedure

Sample preparation

In this research, a total of 28 soil samples were initially 
chosen randomly from various surface areas, including 
rock formations within the Aravalli range, for the deter-
mination of radionuclides. Subsequently, 17 of these soil 
samples were selected for the measurement of radon and 
thoron exhalation rates in Mahendergarh, Haryana, India, 
as illustrated in Fig. 1. Each sample was obtained at a 
depth of 45 cm and was accurately positioned using GPS 
coordinates.

The collected samples, each weighing approximately 
1 kg, underwent a series of processing steps, including 
grinding, sieving, and homogenization, resulting in a parti-
cle size of 100 mesh, achieved through the use of a crushing 
machine. Following this, the prepared samples were dried at 
110 °C for 12 h to ensure the complete removal of moisture. 
After the samples were weighed, they were placed into sun 
pet jars, hermetically sealed, and left undisturbed for over 
one month. This critical step allowed for the establishment 
of secular equilibrium, as described in previous studies [35, 
36]. By doing so, it ensured that radon gas was contained 
within the samples, and its decay products remained within 
the samples for subsequent measurements and analysis.
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Instrumentation and calibration

For the determination of the concentration of natural radio-
nuclides, a γ-ray spectrometer employing NaI (Tl) scintilla-
tion detector with dimensions of 2″ × 2″ was utilized. The 
detector (MODEL: NETS – ØM) was supplied by electronic 
enterprises (I) PVT. Ltd PARA Electronics-Mfg. Divi-
sion Mulund Mumbai. The detector boasts a resolution of 
(FWHM) 1.85 keV for the 1.33 MeV gamma line of 60Co 
[37]. Energy calibration was performed using point sources 
of 60Co and 137Cs.

Measurement of radioactivity concentration

The measurement of radioactivity concentration involved 
the use of γ- rays emitted by specific radioactive isotopes for 
analysis. Notably, the γ-rays of interest included 186.2 keV 
for 238U, 911 keV, 968 keV for 232Th, and 1460.8 keV for 
40K [38]. The counting period for each sample was set at 
80,000 s to ensure robust statistical data. Subsequent analy-
sis of the obtained counts facilitated the calculation of the 

activity concentration of radioactive elements, specifically 
238U, 232Th, and 40K reported in Bq/kg.

Theoretical calculations

Given the non-uniform distribution of natural radionuclides 
(238U, 232Th, and 40K) within the soil, an assessment of 
radiological risks associated with soil usage was performed 
using a single index incorporating the activity of various 
radionuclides. The activity concentrations of uranium, potas-
sium, and thorium were calculated employing the following 
Eq. (1) [39, 40].

Radium (Raeq) equivalent activity is used to compute 
the total radiation exposure caused by radionuclides (238U, 
232Th, and 40K). The calculation is performed by using the 
following Eq. (2) [38, 41, 42].

(1)
Activity concentration

(

Bq kg−1
)

=
Net count rate

efficiency × sample weight × abundance

Fig. 1   Surveyed area map for soil samples in Mahendergarh, district, Haryana India
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where AU, ATh, and AK are the concentrations of 238U, 232Th, 
and 40K in Bq kg−1 respectively [7].

Hazard index

Internal hazard index (Hin) measures the effect of radionu-
clides on the lungs and other organs. Its value must be less 
than unity. Using the following Eq. (3), one can determine 
the risks due to naturally occurring radionuclides [42].

The constant terms are used, it is assumed that the 
radiation doses for 238U, 232Th, and 40K were 185 Bq kg–1, 
259 Bq kg–1, and 4810 Bq kg–1 to provide equal gamma 
radiation dose [43, 44].

Absorbed dose rate (AAD)

It can be calculated by using the following Eq. (4) [7] using 
activity concentrations of 238U, 232Th, and 40K (UNSCEAR 
2000).

where AU, ATh, and AK are the radioactivity concentrations 
of natural radionuclides in soil samples [45].

Radon exhalation rate measurement

To determine the exhalation rate of 222Rn in soil samples, 
a Portable Radon Monitor developed by BARC (Bhabha 
Atomic Research Centre) was employed, as depicted in 

(2)
Raeq

(

Bq kg−1
)

= AU

(

Bq kg−1
)

+ 1.43 ATh

(

Bq kg−1
)

+ 0.077 AK

(

Bq kg−1
)

(3)Hin =
AU

185
+

ATh

259
+

AK

4810

(4)
AAD

(

nGyh−1
)

= 0.462 AU

(

Bq kg−1
)

+ 0.604 ATh

(

Bq kg−1
)

+ 0.0417 AK

(

Bq kg−1
)

Fig. 2. This monitor operates by detecting alpha particles 
produced by 222Rn and its progenies, namely 218Pb and 214Po.

The procedure involved placing the soil sample within 
a stainless steel cylindrical container with a known weight 
(M). The container measured 8.2 cm in height and had an 
inner diameter of 10 cm. A progeny filter was utilized to 
selectively collect radon while effectively eliminating the 
222Rn descendants. In addition, a pinhole plate was employed 
to suppress thoron, which is relatively short lived. This step 
was essential to account for the diffusion time delay, a phe-
nomenon in which the transmission of 220Rn takes longer 
compared to radon transmission due to the shorter lifetime of 
thoron. Each measurement was carried out for 9 h to ensure 
a comprehensive assessment of the accuracy and precision 
of the experimental setup, a quality control measure verified 
by the creator of the SMART RnDuo [46].

The radon mass exhalation (Jm) rate is calculated by ana-
lysing the radon concentration C(t), and applying Eq. (5) 
[46–50].

where Jm is the radon mass exhalation rate in mBq/kg/h, 
V (m3) is the sum of the effective chamber volume and the 
volume of the scintillation cell, M (kg) is the sample mass, 
λe(h–1) is the effective decay constant due to decomposition 
of 222Rn, back diffusion, leakage rate of chamber, C0 is the 
initial radon concentration in the chamber at time t = 0.

Measurement of thoron surface exhalation rate

To assess the concentration of 220Th, a flow mode sampler 
was connected to the inlet of the monitor pump as shown 
in Fig. 3. This sampler was exclusively used for the quan-
tification of thoron. The quantification process involved a 
15 min cycle during which measurements of thoron levels 

(5)C(t) =
JmM

V�e

(

1 − e
−�et

)

+ C0e
−�et

Fig. 2   Experimental set up used 
for the assessment of 222Th 
exhalation rate in soil samples
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and background counts were recorded. Following this cycle, 
a 5 min hold up period was observed to ensure that the 220Th 
had nearly completely decayed. Subsequently, a final 5 min 
count was conducted to determine the number of background 
counts associated with that specific cycle.

The surface rate (Jst) of thoron in Bq/m2/s was calcu-
lated using Eq. (6), as previously employed and validated in 
related studies [51–53].

where Ct is the build up 220Rn concentration (Bq/m3) within 
the chamber as determined by a portable monitor throughout 
15 min cycle. V (m3) is the leftover air volume enclosed by 
the loop. A (m2) is the sample surface area. λ is the decay 
constant of 220Rn (0.012464 s–1).

Results and discussion

Naturally occurring radionuclides

Using NaI (Tl) detector, the radioactivity concentration in 
the study area was determined. The activity concentration of 
238U, 232Th, and 40K varied within the range of (0.06–1.81) 
Bq/kg, (0.09–2.37) Bq/kg, and (3.09–10.9) Bq/kg with mean 
values of 0.84 Bq/kg, 1.16 Bq/kg, and 7.08 Bq/kg, respec-
tively. It is noteworthy that these activity concentrations of 
238U, 232Th, 40K, and 226Raeq radionuclides are below the 
permissible limits of the world average values of 32 Bq/
kg, 30 Bq/kg, 400 Bq/kg, and 370 Bq/kg, as outlined by 
UNSCEAR in 2000.

The coefficient of variability was highest for 238U (49%) 
and lowest for 40K (23%). Notably, the highest concentra-
tions of uranium, thorium, and potassium were found in 
Jhhankhadi village, Narnaul Singhana bottom hill, and 
Narnaul Dhosi hill, while the maximum radium equivalent 
activity concentration was observed in Narnaul Singhana 
bottom hill.

(6)Jst = C
t

V�

A

Analysis of Fig. 4 reveals that the activity concentration 
of 40K in all soil samples was greater than that of 238U and 
232Th, which is consistent with soil expectations. This vari-
ation may be attributed to geological disparities, the appli-
cation of chemical fertilizers for agricultural purposes, and 
the presence of the Aravalli Hills, all contributing to the 
increased radioactivity in the study area.

Furthermore, as illustrated in Fig. 4 the activity concen-
tration of 232Th surpasses that of 238U in all soil samples, 
except for seven locations. This finding suggests the preva-
lence of thorium rich soil in the study area, corroborating the 

Fig. 3   Experimental set up used 
for the assessment of 220Th 
exhalation rate in soil samples

Fig. 4   Variations of radioactive nuclides activity content in soil sam-
ples
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notion that thorium is more abundant in nature than uranium, 
in alignment with the World Nuclear Association Report 
in 2020 on thorium. The contribution of radionuclides to 
the absorbed dose rate in air depends on their concentra-
tion in the soil, with absorbed dose rates varying from 0.46 

to 2.28 nGy/h, averaging 1.38 nGy/h. In comparison to the 
world average absorbed dose rate of 86 nGy/h (UNSCEAR, 
2000), the calculated values in the soil samples are signifi-
cantly lower, underscoring the region safety in terms of radi-
ation exposure. Additionally, the calculated average value of 
the internal hazard index (Hin) was determined to be 0.01, 
indicating values lower than the safe threshold.

Radon and Thoron exhalation rate

The mean values of 222Rn mass and 220Rn surface exhalation 
rate were found to be 51.9 and 17.4 Bq/m2/h, respectively as 
reported in Table 1. The mean value of radon mass exhala-
tion rate is approximately 9% lower than the world average 
value of 57 mBq/kg/h, while the mean value of thoron sur-
face exhalation rate is nearly 99.5% lower than the world 
average value of 3600 Bq/m2/h, as reported by UNSCEAR 
in 2000.

In the bar graph presented in Fig. 5 and Table 1, it 
is evident that the maximum thoron exhalation rate was 
recorded for Madhogarh Mid Hill (location no. 5), meas-
uring 34.8 Bq/m2/h, while the maximum mass exhalation 
rate of 240 mBq/kg/h was also found in Madhogarh Mid 
Hill. The figure illustrates high peaks representing rock 
samples and lower peaks representing field area samples. 
Specifically, the samples with sample numbers 5, 6, 9, 
10, 11, and 12 correspond to hill soil samples, exhibiting 
higher radon mass and thoron surface exhalation rates 
compared to the rest of the samples, which are field soil 
samples.

Table 1   Radon mass exhalation rate at survey site areas

Locations Radon exhalation 
rate (mBq/kg/h)

Thoron surface 
exhalation rate (Bq/
m2/h)

Lawan, field soil 1.96 19.2
Majra Kalan, field soil 2.68 13.8
Khayra, field soil 7.05 17.4
Khatod, field soil 61.4 10.2
Madhogarh, mid hill soil 240 34.8
Madhogarh, top hill soil 90 20.4
Barda, field soil 4.38 6.6
Pali, field soil 2.99 31.8
Narnaul Singhana hill soil 119 31.2
Narnaul, Dhosi hill soil 224 25.8
Kaliana, mid hill soil 224 29.4
Kaliana, top hill soil 141 11.4
Mandola, field soil 5.4 11.4
Dholi, field soil 16.4 4.8
Digrota, field soil 3.01 5.4
Nangal Mala, field soil 16.9 9.0
Balana, field soil 14.7 16.2
Mean 51.9 17.4

Fig. 5   Radon mass and Thoron 
surface exhalation rate in soil 
samples of the area under study
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Correlation between radionuclides present in soil 
samples

Figure 6 illustrates the correlation between 238U and 222Rn, 
which is weak but positive, with an R2 value of 0.0044. As 
demonstrated in Fig. 7, thorium exhibits a weak yet posi-
tive correlation (0.0299) with thoron. It is important to note 
that no strong statistical relationship exists between these 
radionuclides, indicating that the radioactive content in soil 
samples is influenced by the diverse nature of these radio-
nuclides. Therefore, the distribution of one radionuclide in 

the soil does not depend on the concentration of another 
radioactive element.

To further contextualize the results, the study area was 
compared with hilly areas in India, particularly those sur-
rounded by the Aravalli hills, as shown in Table 2. The 
findings revealed that the radon exhalation rate in the study 
area was similar to that of Granitic hills in Karnataka [54]. 
However, the values for radon exhalation rate were lower 
in comparison to Kamaun Hills in Uttarakhand [55], sub-
mountainous regions in Jammu & Kashmir [56], Shivalik 
Hills in Himalaya [57], the Himalaya foothill region in Utta-
rakhand [7] and Shivalik Hills in Haryana and Himachal 
Pradesh [58].

Differentiation of natural radioactivity in rock soil 
samples

The natural hills in the study area, such as Madhogarh, 
Dhosi, Kaliana, and Singhana Hills are formed through vari-
ous geological processes. These hills can also result from 
erosion, where rocks, soil, and sediments accumulate in a 
particular area. The presence of natural radionuclides and 
the exhalation of 222Rn and 220Rn were found to be greater in 
hill soil samples as compared to field samples. The statistical 
data plotted for gamma absorbed dose rate values and haz-
ard index is presented in Fig. 8. Here, the maximum hazard 
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Table 2   Comparative study of 
surveyed area with India hilly 
areas

Hilly areas Radon exhalation rate (mBq/
kg/h)

References

Min Max

Kamaun hills region, Uttarakhand 16 54 Semwal et al. [55]
Sub mountainous region, J & K 15 ± 0.4 38 ± 0.8 Kaur et al. [56]
Siwalik hills Himalaya, Jammu & Kashmir 7 ± 0.6 48 ± 1.3 Kaur et al. [57]
Himalaya foothills region, Uttarakhand 16 111 Anamika et al. [7]
Granitic hills region, Karnataka 76 ± 6 269 ± 19 Poojitha et al. [54]
Shivalik hills, Haryana &Himachal Pradesh India 50 ± 1 143 ± 6 Chauhan et al. [58]
Aravalli hills, Mahendergarh Haryana 1.96 240 Present study
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index and absorbed dose rate were found for Narnaul Sing-
hana Bottom Hill. The distribution of radionuclides in hill 
soil samples is depicted in Fig. 9, where it can be observed 
that the activity concentration of 238U was highest for Dhosi 
Hill, 232Th was most prominent in Narnaul Singhana Hill, 
40K concentration was at its peak in Dhosi Hill, and 220Rn 
and 222Rn were elevated in Madhogarh Mid Hill soil sam-
ples. Narnaul Dhosi Hill predominantly consists of quartzite, 
with some pegmatite, slate, granite gneiss, phyllite, schist, 
and various basic rocks. The sharp contact between pegma-
tite and quartzite, along with the blurred contact between 
granite and pegmatite at Narnaul, serve as strong evidence 
of geological movement within the Aravalli orogenic belt 
[59]. The high concentration of heat producing elements in 
granite indicates the presence of radioactive elements like 
238U, 232Th, and 40K. Madhogarh Hill, an isolated hill within 
the Aravalli range, is believed to release significant amounts 
of radon and thoron gases due to the presence of basic rocks.

Rocks found in the Kaliana Hills predominantly consist 
of mica, quartz grains, sedimentary quartzite, and flexible 
sandstone known as Itacolumite. While both flexible and 
non flexible sandstone can be found in the Kaliana area, non 
flexible sandstone is more abundant relative to flexible sand-
stone. Cementing materials such as floor tiles are produced 

using these sandstones. Although the concentration of radio-
nuclides was higher in Kaliana Hill as compared to field soil, 
it remained within safe limits. This suggests that Kaliana 
soil samples can be utilized for building materials [60]. Nar-
naul Singhana Hill is part of parametamorphites belonging 
to the Delhi Subdivision, and it is characterized by schists, 
amphibole quartzite, and mineralized shear zones. These 
features may account for the high concentration of thorium 
in the area. Additionally, inhomogeneity in the distribution 
of radioactive elements in different geological layers of the 
hill was observed, with some layers being more radioac-
tive than others. This variation is attributed to temperature 
differences at different elevations of the hill, with the top 
elevation having lower temperatures than the midsection. 
The distribution of radioactive elements is also influenced 
by the type of rock in a given layer, emphasizing the need 
for future researchers to conduct radiometric measurements 
at specific hill locations.

Certain types of hills, such as those with sedimentary 
rocks like Kaliana Hill, exhibit lower radioactivity concen-
trations in comparison to hills containing granites and some 

Fig. 8   Gamma absorbed dose rate and hazard index (Hin) for various 
locations of the studied area

Fig. 9   Distribution of naturally occurring radionuclides material 
(238U, 232Th, 40K) and exhalation rate in different rock samples
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metamorphic rocks. As demonstrated in Fig. 9, Kaliana Hill 
did not have the highest radionuclide concentrations, as it 
primarily consists of sedimentary rocks. According to the 
literature survey, sedimentary rocks consist of low radioac-
tivity as compared to igneous rocks [61]. Deposition, soil 
erosion, and topographical variations affect the morphologi-
cal, chemical, and physical characteristics of the soil [62]. 
In hilly areas, the radioactivity is high which is interrelated 
with dental fluorosis [63]. Mahendergarh area is also a fluo-
rosis endemic red zone alert area, here fluoride distribution 
in groundwater is due to fluoride bearing rocks. Here dental 
fluorosis was diagnosed, and found high level of fluoride 
[64]. The present area is an industries free, pollution free 
area, and inhabitants of this area are dependent on agri-
culture. So, industrial aerosols are not responsible for high 
radioactivity in this area. This is the reason that there is no 
radioactivity was found in the field soil samples. Also, one 
can say that the geology of this area, and radiation bearing 
rocks may be responsible for high activity concentration in 
hills soil samples.

Conclusions

In conclusion, the activity concentration values in the study 
area are influenced by geographical conditions, soil compo-
sition, and the presence of the Aravalli hills. These values 
were found to be lower than the world average, indicating 
that the radiation levels in the area are within safe limits. 
Additionally, the prevalence of higher 232Th concentration 
over 238U in all samples suggests that the soil in the study 
region is thorium enriched. The hills with granite and gneiss 
rocks exhibited the highest radioactivity concentrations, 
whereas sandstone rocks had lower concentrations. When 
compared to the world average absorbed dose rate, the cal-
culated values suggest that the study area is safe in terms 
of radiation levels. As this study is the first of its kind, it 
holds importance for future researchers in the field of natu-
ral radioactivity mapping and radiometric measurements in 
hilly areas. In summary, the results of this study indicate 
that the soil in both hill and field areas is suitable for use in 
construction materials and does not pose any health risks 
to residents.
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