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Abstract
Three types of magnetic mesoporous silicas (MMSs), namely, MMCM-41, MMCM-48 and MSBA-15 were prepared by 
a hydrothermal method using CTAB and P123 as templates. The structure and physicochemical properties of MMSs were 
characterized by small angle XRD, VSM, ζ potential analyzer, contact angle measurer, and XPS, etc. The potential applica-
tions of MMSs in U(VI) recovery were thoroughly investigated. The adsorptive kinetics, thermodynamics, and selectivity of 
MMCM-41, MMCM-48 and MSBA-15 were compared. The results show that MSBA-15 revealed a high capacity for U(VI) 
(341.94 mg·g−1) and a superior selectivity than MMCM-41 and MMCM-48. The adsorption mechanism was explored by 
using the relevant adsorption models and XPS. The results indicated that MSBA-15 could be considered a strong candidate 
for the adsorption and recovery of U(VI) from radioactive wastewater.
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Introduction

Uranium is a primary and valuable constituent of nuclear 
fuel of pressurized water reactor [1]. Additionally, U(VI) 
is a highly toxic and radioactive metal ion [2], even in trace 
amounts, can harm organs such as the kidneys, liver, and 
bones [3], etc. Uranium-containing wastewater may have 
generated during nuclear fuel fabrication including min-
ing, hydrometallurgy, and conversion. Therefore, there is 
an urgent need to efficiently eliminate and reuse uranium 
from contaminated water [4].

Among numerous techniques for U(VI) capture, adsorp-
tion is considered the most favorable owing to its high 
effectiveness, simple operation, and lack of secondary pol-
lution. Moreover, fostering a high efficient adsorbent is the 
key for this certain objective. Mesoporous silicas (MSs) has 
attracted increasing attentions for their excellent properties, 
such as remarkable stability, controllable pore diameter, high 
specific area [2], rich in porosity [5]. Many MSs adsorbents 
have been applied into recovery of U(VI) from wastewater, 
including MSs functionalized with phosphonate [6], ami-
doxime [7], and amino groups [8].

As a kind of nano-adsorbent, the MMs are found to be 
difficult to recovery from aqueous solution [9]. With strong 
magnetic responsivity [10], magnetic mesoporous silicas 
(MMSs) have tremendous potential in the fields of U(VI) 
adsorption [10–12], which can easily separation from water 
by an external magnetic field. But, the MMSs matrix applied 
in removal of U(VI) were different, such as magnetic MCM-
41 [2], and magnetic SBA-15 [13].

Herein, the adsorptive performances for U(VI) at MMSs 
were compared. Firstly, magnetic MCM-41, MCM-48 and 
SBA-15 were synthesized using a hydrothermal method. The 
structure and physicochemical properties of three kinds of 
MMSs were characterized by small angle XRD, VSM, ζ 
potential analyzer, contact angle measurer, and XPS, etc. 
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The adsorption mechanism was clarified by using the rel-
evant adsorption models, FT-IR and, XPS.

Experimental

Reagents and instruments

Ferric chloride hexahydrate (AR), chloroacetic acid (AR), 
sodium fluoride (AR), and anhydrous sodium acetate (AR) 
were obtained from Shanghai Macklin Biochemical Tech-
nology Co., Ltd. P123 (MW 5800) was acquired from Sigma 
Aldrich (Shanghai) Trading Co., Ltd. Cetyltrimethylammo-
nium bromide (CTAB, AR), Arsenazo III (AR), and TEOS 
(AR) were sourced from Shanghai Aladdin Biochemical 
Technology Co., Ltd.

The equipment used in the study included centrifuge 
(TG12-WS, Shanghai Spectral, China), XRD instrument (D8 
ADVANCE, Bruke, Germany), FT-IR spectrometer (Nico-
let iS5, Thermo Fisher, USA), FEI-TEM (Tecnai F20, FEI, 
USA), XPS (K-alpha, Thermo Fisher, USA), Vibrating sam-
ple magnetometer (VSM) (7404 type, Lakeshore, China), 
Particle potential titration analyzer (Stabino, PMX, Ger-
many), and an automatic gas adsorption system (ASAP2020, 
Micromeritics, USA).

Preparation of magnetic mesoporous silica

Preparation of Fe3O4@ SiO2 (MNPS)

The Fe3O4@SiO2 composite was synthesized using a sol–gel 
method. 0.30 g of Fe3O4 was dispersed in a 70.0 mL etha-
nol–water solution (Vethanol/Vwater = 6/1). After ultrasonic 
treatment for 10 min, 2.0 mL of TEOS and 1.0 mL of ammo-
nia solution were introduced. The solution was mechani-
cally stirred at 25 °C for 10 h. Then, wash it with water and 

ethanol for three times, separate the product with external 
magnetic field, and dry it at 60 °C.

Preparation of MMSs

The preparation route for the MMSs is illustrated in Fig. 1. 
Initially, a mixture comprising 1.50 g of MNPS, 50.0 mL of 
H2O, and 5.0 mL of NH3·H2O was subjected to oscillation 
using an ultrasonic cleaner for 30 min. After adding 10 mL 
of TEOS, 0.90 g of NaOH, and 0.19 g of NaF, the result-
ing mixture was then mechanically blended at 25 °C for 
2 h. Subsequently, 3.00 g of CTAB was introduced, and the 
stirring process was continued for an additional 2 h. After 
thorough mixing, the resulting solution was transferred to 
a reaction kettle and aged at 100 °C for 48 h. The obtained 
product was subjected to washing and dried at 60 °C for 
12 h. Finally, the product underwent calcination at 300 °C 
for 3 h to yield the ultimate product MMCM-41. The prepa-
ration of MMCM-48 followed the same procedure, with the 
only difference being the use of 7.0 g of CTAB.

In a separate process, 4.00 g of P123 and 0.05 g of NH4F 
were dissolved in 138.0 mL H2O and 1.2 mL concentrated 
hydrochloric acid within a three-neck flask. The solution 
underwent ultrasonication for 10 min after the addition of 
0.60 g of Fe3O4@SiO2. Afterthat, 9.0 mL of TEOS was 
introduced into the flask, and the solution was stirred at 40 
°C and then at 100 °C for 24 h each. The resulting filter resi-
due was obtained after washing with H2O and subsequent 
dehydration at 60 °C for 24 h. The final product, MSBA-15, 
was achieved through calcination at 550 °C for 6 h.

U(VI) adsorption experiment

The adsorption properties of the MMSs for U(VI) were 
investigated using a batch experiment. In a conventional 
adsorption procedure, 50 mL of U(VI) solution was intro-
duced into a 150 mL conical flask and adjusted to a fixed 

Fig. 1   Schematic synthesis diagram of magnetic mesoporous silicas
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pH value with NaOH and HNO3 solutions. The conical flask 
with 50 mL solution and 10.0 mg of adsorbent was shaken 
for a certain time. Then, the U(VI) concentration of superna-
tant was determined by an Arsenazo III spectrophotometry. 
Finally, the amount of U(VI) adsorbed [14, 15] (q, mg·g−1) 
and the distribution coefficient [16] (Kd, mg·mL−1) were cal-
culated by the Eq. S1 and S2, respectively.

Selective experiment

Weighed amounts of Zn(NO3)2·6H2O, Co(NO3)2·6H2O, 
Sr(NO3)2, Pb(NO3)2, Ni(NO3)2·6H2O, Ce(NO3)3·6H2O, 
Gd(NO3)3·6H2O, and La(NO3)3·6H2O were ultrasonically 
dissolved in a beaker. And, the mixture with 10 mL of 
5 g·L−1 U(VI) solution was diluted to 1 L volume by deion-
ized water. The concentration of these ions in the prepared 
solution was 50 mg·L−1. After shaking for 240 min, 10 mL 
of supernatant was taken and added with 2.5 mL of HNO3 
solution (2 mol·L−1). Finally, the residual concentrations of 
the aforementioned ions were measured using an ICP-AES 
(ICAP-6300, Thermo Fisher, USA).

Results and discussion

Characterization

The micro morphology and ordered structure of the MMSs 
were examined using TEM and small angle XRD, respec-
tively. The TEM images of MSBA-15 is shown in Fig. 2a 
and b. Fe3O4 is covered with an ordered SiO2 layer, whose 
pore wall is approximately 5.13 nm. The small-angle XRD 
patterns of three types of MMSs are presented in Fig. 2c. 
Concerning MSBA-15, the peaks at 0.9°, 1.7° and 2.1° 
correspond to the (100), (110), and (200) crystal planes, 
revealing that it has hexagonal structure [17]. The peak of 
MMCM-48 at 2.4° corresponds to the (100) crystal plane, 
and the characteristic peak of MMCM-41 and MMCM-48 
at 2.1° corresponds to the (200) crystal plane, has a good 
mesoporous structure [18]. The small-angle XRD results 
indicate that the structure of MMSs is both mesoporous and 
ordered.

The surface functional groups of MMSs were analyzed 
using FT-IR, and the findings are illustrated in Fig. 2d. In 
the infrared spectra of MMSs, there are typical character-
istic peaks of mesoporous silica. The bands at 1041 and 
804 cm−1are Si–O–Si stretching vibration peaks [19, 20].
The stretching and bending vibration of the hydroxyl group 
connected to the silica atom appears at 1647 and 3750 cm−1 

Fig. 2   TEM images of MSBA-
15 (a) × 8 × 105, (b) × 1.6 × 10.6, 
(c) small-angle XRD patterns 
of MSBA-15, MMCM-41 and 
MMCM-48, (d) FT-IR spectra 
of MSBA-15, MMCM-41 and 
MMCM-48
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[21, 22].The weak absorption peak at about 593 cm−1 can 
be attributed to the vibration of Fe–O bond [23]. The FT-IR 
results indicate the successful synthesis of three distinct 
MMSs.

The adsorption–desorption plots were obtained under a 
N2 atmosphere. MSBA-15, MMCM-41, and MMCM-48 
were degassed at 373.15 K for more than 15 h before the 
determination. The specific surface of the sample (SBET, 
m2·g−1) is calculated from the BET equation [24] at a rela-
tive pressure (P/P0) between 0.05 and 0.25. Pore distribution 
is calculated by BJH model [25]. In Fig. 3a, the N2 adsorp-
tion–desorption isotherms of MMSs at 77 K. It can be seen 
from the Fig. that their adsorption isotherms all show the 
characteristics of type IV curves, indicating that they all con-
form to the characteristics of mesopores [26]. MSBA-15's 
type hysteresis ring is a typical H2 type [27], suggesting that 
it has a narrow mesoporous structure. The N2 desorption 
adsorption curves of MMCM-41 and MMCM-48 are H4 
type hysteresis loops, showing micro-mesoporous structure. 
Figure 3b illustrates the BJH pore size distribution of MMSs. 
The pore size distribution of MMSs is relatively narrow. The 
most probable pore diameters of MSBA-15, MMCM-41, and 

MMCM-48 is 8.36, 3.79, and 2.75 nm, respectively. The 
pore structure data are itemized in Table 1. The SBET and 
average pore diameter values of MSBA-15, MMCM-41 and 
MMCM-48 was 675.50, 605.38 and 638.70 m2·g−1; 6.69 nm, 
3.60 nm and 3.56 nm, respectively.

Magnetic properties of MMSs are measured by VSM 
(Fig. 3c). The magnetic symmetrical hysteresis curves of 
MSBA-15, MMCM-41 and MMCM-48 all show an S-shape. 
And, the saturation magnetization is 6.29, 13.66 and 16.17 
emu·g−1, respectively. Upon the removal of the template 
from the as-synthesized MSBA-15 at high temperatures, 
there is a consequential partial oxidation of ferric oxide. 
It's noteworthy that MSBA-15 can swiftly aggregate using 
a magnet, as depicted in the inset of Fig. 2c. This property 
proves beneficial for the recovery of U(VI) through magnetic 
means.

The ζ potential at different pH values is illustrated 
in Fig.  3d. The surface potential of the three materials 
declined with the increasing pH values. Specifically, the 
surface potential of MSBA-15, MMCM-41, and MMCM-
48 decreases from -1.32, 1.53, and 19.83 mV to −48.59, 
−38.49, and −31.45 mV, respectively, when the pH value is 

Fig. 3   MSBA-15, MMCM-41 and MMCM-48, (a) N2 adsorption and desorption curves, (b) BJH pore size distribution, (c) VSM plots, (d) ζ 
potential
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within the range of 2.0–8.0. The pH values of the zero poten-
tial points (pHIZE) of MMCM-41 and MMCM-48 is 2.6 and 
5.6, respectively. When the pH value of the external system 
exceeds the pHIZE of the material, the surface potential of the 
material becomes negative. This negative surface potential 
contribute to the adsorption of U(VI) through electrostatic 
attraction.

The hydrophilicity of materials was explored through 
contact angle. Contact angle of MMSs after dropping liq-
uid for 5 s is illustrated in Fig. 4. The contact angles of 
MSBA-15, MMCM-41, and MMCM-48 was 22.5°, 24.5°, 
and 31.5°, indicating that MSBA-15 has best hydrophilicity 
[28]. Excellent hydrophilicity of MSBA-15 facilitates the 
contact with aqueous solution and improves the separation 
ability of U(VI) [29].

The XPS was employed to characterize the element 
composition and chemical form of the prepared MSBA-15 
material. The corresponding spectra are shown in Fig. 5. 
The peaks of Fe, O, C and Si appear in the full spectrum, 
indicating Fe3O4 and mesoporous silica combined together 
closely. The spectrum peak of Fe 2p shows that Fe 2p1/2 and 
2P3/2 is located at 708.9 and 714.1 eV, respectively [30]. It 
signposted that Fe3O4 exists in MSBA-15, showing a good 
match with the results of TEM and FT-IR. The C 1 s peak 
separation that the synthesized magnetic mesoporous silica 
material contains two peaks of C–C and C–Si, locating at 
284.1 and 282.6 eV, respectively. It noted that the synthe-
sized MSBA-15 also contained a small amount of template 

that has not been removed completely. Figure 5d is the 
spectrum of Si 2p, with Si–OH at 102.1 eV and Si–C at 
101.4 eV [31]. In the O 1 s spectrum, the peak at 531.3 and 
530.5 eV corresponds to Si–OH and O–H. In summary, the 
XPS analysis corroborates the presence of Fe3O4 in MSBA-
15. The characterization indicates a substantial presence of 
silica hydroxide groups on the material's surface.

pH value

The impact of pH value on the adsorption of U(VI) by 
MSBA-15, MMCM-41 and MMCM-48 was studied in the 
range of pH 2.0–7.0 (C0 = 50 mg·L−1, m = 10 mg, V = 50 mL, 
T = 298.15 K, t = 240 min). The results are displayed in 
Fig.  6. Under acidic conditions, U(VI) predominantly 
exists in the form of UO2

2+. And, the competition of H+ 
with U(VI) for the active sites on the MMSs resulted in 
lower adsorption [32]. With the increasing of pH values, 
the ζ potential of MMSs decreased according to the Fig. 3d. 
Consequently, the values of q increased accordingly. At a 
pH value of 6.0, the adsorption performance of the three 
types of MMSs for U(VI) reached its peak, with adsorption 
capacities of 158.18, 126.74, and 125.38 mg·g−1. The best 
adsorption ability of MSBA-15 may be due to highest pore 
volume, biggest pore diameter (Table 1) as well as smallest 
contact angle (Fig. 4). When pH was over 6.0, the anions of 
UO2CO3(OH)3

3− and UO2(CO3)3
4− were major components 

[33]. Thus, the electrostatic repulsion weakened the removal 

Table 1   Pore structure 
parameters of MSBA-15, 
MMCM-41 and MMCM-48

a Specific surface area calculated by BET method
b Total pore volume
c BJH desorption volume
d Average aperture, DA = 4Vt/SBET
e BJH desorption average pore size
f The most probable aperture

Adsorbents Sa
BET (m2·g−1) Vt

b (cm3·g−1) Vmeso
c (cm3·g−1) DA

d (nm) DBJH
e (nm) Dm

f (nm)

MSBA-15 675.50 1.13 1.13 6.69 8.02 8.36
MMCM-41 605.38 0.54 0.62 3.60 3.27 3.79
MMCM-48 638.70 0.57 0.66 3.56 3.14 2.75

Fig. 4   Contact angle of MSBA-15, MMCM-41 and MMCM-48
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capacity for U(VI). As a result, during the subsequent batch 
experiments, the solution's pH was adjusted to 6.0.

Adsorption kinetics

The effect of contact time on U(VI) adsorption by MMSs 
(C0 = 50 mg·L−1, m = 10 mg, V = 50 mL, T = 298.15 K, 

pH = 6.0) was explored. In Fig. 7a, U(VI) rapidly enriched 
on the surface of MMSs in the initial 90 min. Notably, 
MSBA-15, MMCM-41, and MMCM-48 achieved adsorp-
tion equilibrium at 120, 120, and 240 min, respectively.

Quasi-first order [34, 35], quasi-second order [34] and 
intra-particle diffusion model [36, 37] were employed to 
analyze the experimental data and the process of adsorption 

Fig. 5   XPS spectra of MSBA-15: (a) survey, (b) C 1 s, (c) Fe 2p, (d) Si 2p, (e) O 1 s
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of U(VI) by MMSs. The formulas of them are shown in 
form of S3, S4, and S5. The sorption kinetics of U(VI) by 
MSBA-15, MMCM-41, and MMCM-48 are depicted in 
Fig. 7a. The fitting parameters are detailed in Table 2. The 
correlation coefficient (R2) of the quasi-second order kinetic 
model for three kinds of MMSs is closer to 1.0. Further-
more, the theoretical adsorption capacity (176.23, 154.86, 
and 144.33 mg·g−1) is closer to the experimental value 
(172.40, 152.86, and 140.85 mg·g−1). Consequently, the 
U(VI) adsorption processes of on MMSs align more closely 
with the quasi-second-order equation, suggesting that chemi-
cal action predominantly governs the adsorption process.

The intra-particle diffusion model [38] of MMSs for 
U(VI) sorption by MMSs is illustrated in Fig. 7b. The fit-
ting results can be found in Table 3. The internal diffusion 
rate constants (kid) for the three kinds of MMSs consistently 
follow the order kid,1 > kid,2 > kid,3, indicating that the adsorp-
tion process occurs in three distinct steps.

Fig. 6   Effect of pH on the adsorption of U(VI) by MSBA-15, 
MMCM-41, and MMCM-48 (C0 = 50 mg·L−1, m = 10 mg, V = 50 mL, 
T = 298.15 K, t = 240 min)

Fig. 7   Fitted curves of (a) quasi-primary and quasi-secondary kinetic models for MSBA-15, MMCM-41 and MMCM-48 adsorbed U(VI), (b) 
fitted curves of internal diffusion model (C0 = 50 mg·L.−1, m = 10 mg, V = 50 mL, T = 298.15 K, pH = 6.0)

Table 2   Kinetic parameters of 
U(VI) adsorption by MSBA-15, 
MMCM-41 and MMCM-48

Adsorbents qe,exp (mg·g−1) Quasi-first-order model Quasi-second-order model

qe,cal (mg·g−1) k1 (min−1) R2 qe,cal (mg·g−1) k2 (g·mg−1·min−1) R2

MSBA-15 172.40 169.49 0.12 0.99 176.23 1.19 × 10–3 0.99
MMCM-41 152.86 147.59 0.10 0.99 154.86 1.11 × 10–3 0.99
MMCM-48 140.85 134.67 0.08 0.97 143.33 0.82 × 10–3 0.99

Table 3   Internal diffusion 
model parameters for MSBA-
15, MMCM-41 and MMCM-48 
adsorbed U(VI)

Adsorbents Kid,1 C1 Kid,2 C2 Kid,2 C2

MSBA-15 30.52 0.28 2.77 142.25 0.24 167.68
MMCM-41 25.77 -0.87 2.77 117.94 0.80 138.08
MMCM-48 21.84 -0.39 4.87 83.49 0.26 135.86
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During the initial phase of rapid adsorption, U(VI) in the 
solution comes into contact with the surface of MMSs and 
swiftly diffuses towards the material surface. Subsequently, 
in the slower adsorption process, U(VI) penetrates the inner 
surface and binds to active sites within. Upon reaching 
adsorption equilibrium, the diffusion rate approaches 0.

Adsorption isotherm 

Figure 8 illustrates the impact of varying equilibrium con-
centrations of U(VI) (Ce, mg·L−1) on the adsorption effi-
ciency of MMS for U(VI). In the lower concentration range, 
the adsorption capacity of U(VI) shows a rapid increase. 
Conversely, at higher concentrations, MSBA-15 demon-
strates a gradual attainment of adsorption satiation, reach-
ing a capacity of 319.55 mg·g−1. The saturated adsorption 
capacities for MMCM-41 and MMCM-48 are 217.88 and 
190.54 mg·g−1, respectively.

To further analyze the adsorption processes, Langmuir 
[39, 40], Freundlich [41], and Sips [42, 43] isotherm mod-
els were used. The formula is presented as Eqs. S6, S7, 
and S8. The fitting results including the values of the R2 
and relevant parameters are revealed in Fig. 8 and Table 4. 
As shown from Table 7, MSBA-15 exhibit a greater con-
sistency with the Sips adsorption isotherm model with a 
higher R2values (0.99) than Freundlich (R2 = 0.87) and 
Langmuir models (R2 = 0.98). Furthermore, the satu-
rated adsorption capacity (341.94 mg·g−1) obtained by 
fitting the Sips adsorption isotherm model of MSBA-15 
is near to the actual value (319.55 mg·g−1). However, 
the saturated adsorption capacities of Langmuir adsorp-
tion isotherm models for MMCM-41 and MMCM-48 

(250.60 mg·g−1, 232.88 mg·g−1) are closer to the actual 
values (217.88 mg·g−1, 190.54 mg·g−1), indicating a sin-
gle molecular layer adsorption dominated by a chemical 
process.

To investigate the impact of the initial U(VI) concentra-
tion on MSBA-15, MMCM-41, and MMCM-48, the Dubin-
Radushkevich (D-R) [44], and the Temkin [45] adsorption 
isotherm models were employed to compute the binding 
energy (E, kJ·mol−1) and the constant (B, J·mol−1). The cal-
culation formula for the D-R adsorption isotherm model is 
represented by Eqs. S9, S10, and S11.

The D-R and Temkin adsorption isotherm models are 
illustrated in Fig. 9a and b, respectively. The relevant param-
eters are displayed in Table 4. The values of D-R adsorp-
tion isotherm models’ R2 (0.98, 0.97, 0.96) of MSBA-15, 
MMCM-41, and MMCM-48 are closer to 1. The results 
are higher than the Temkin adsorption isotherm models 
(0.90, 0.96, 0.93), presenting that the enrichment of U(VI) 
by MMSs is more consistent with the D-R adsorption iso-
therm model. Furthermore, the binding energies of the three 
kinds of MMSs (11.18, 11.78, 11.95 kJ·mol−1) are all over 
8.0 kJ·mol−1. And again, it indicated that adsorption is domi-
nated by chemical reaction [46].

The adsorption capacity of MSBA-15 for U(VI) was com-
pared with that of other adsorbents, and the relevant results 
are presented in Table 5. Observing the table, it becomes 
apparent that of MSBA-15 shows a greater saturated adsorp-
tion capacity for U(VI) than that of the studied functional-
ized Fe3O4, SBA/SA, MCM-41, and MCM-48, etc.

Fig. 8   Langmuir, Freundlich and Sips models for MSBA-15, 
MMCM-41 and MMCM-48 adsorption U(VI) (m = 10  mg, 
V = 50 mL, T = 298.15 K, pH = 6.0, t = 240 min)

Table 4   Adsorption isotherm model parameters for U(VI) adsorption 
by MSBA-15, MMCM-41 and MMCM-48

Model Parameter Adsorbents

MSBA-15 MMCM-41 MMCM-48

Langmuir qe (mg·g−1) 362.80 250.60 232.88
KL 0.09 0.05 0.05
R2 0.99 0.98 0.96

Freundlich KF 90.28 49.03 41.31
1/n 0.28 0.31 0.33
R2 0.87 0.92 0.93

Sips qs (mg·g−1) 341.94 256.72 259.95
Ks 0.05 0.06 0.07
c 0.27 0.06 0.20
R2 0.99 0.98 0.97

D-R qd (mol·g−1) 1.49 × 10–3 1.08 × 10–3 0.92 × 10–3

β −3.97 × 10–3 −3.61 × 10–3 −3.52 × 10–3

E (kJ·mol−1) 11.18 11.78 11.95
R2 0.98 0.97 0.96

Temkin B (J·mol−1) 71.68 46.72 41.86
KT 0.70 0.87 0.91
R2 0.90 0.96 0.93
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Fig. 9   MSBA-15, MMCM-41 and MMCM-48 adsorption U(VI) isothermal models: (a) D-R model; (b) Temkin model

Table 5   Comparison of the 
adsorption performance of 
different mesoporous material 
adsorbents on U(VI) at 
298.15 K

Adsorbents Adsorption capacity 
(mg.g−1)

Experimental 
Conditions

Refs

Phosphoramide functionalized Fe3O4 95.2 pH = 6.0 Singhal  et al. [47]
Quercetin modified Fe3O4@SiO2 12.3 pH = 3.7 Sadeghi et al. [48]
Functionalized Fe3O4@SiO2 139.1 pH = 5.5 Zheng et al. [9]
Functionalize SBA-15(SBA/SA) 54.1 pH = 4.5 Dolatyari et al. [49]
Functionalize SBA-15 (SBA/EnSA) 105.3 pH = 4.5
Phnosphonic functional group-based 

mesoporous silica
207.6 pH = 8.0 Sarafraz et al. [50]

MCM-41 95.0 pH = 6.0 Vidya  et al. [51]
MCM-48 125.0 pH = 6.0
MSBA-15 341.9 pH = 6.0 This work

Fig. 10   (a) Effect of temperature on the adsorption of U(VI) by MSBA-15, MMCM-41 and MMCM-48, (b) thermodynamic curves 
(C0 = 50 mg·L.−1, m = 10 mg, V = 50 mL, t = 240 min, pH = 6.0)
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Adsorption thermodynamics

The effect of temperature on the adsorption of U(VI) by 
MMSs is depicted in Fig. 10a. The equilibrium adsorp-
tion capacity of U(VI) increases with rising temperature, 

suggesting that adsorption of U(VI) is an endothermic 
process.

To further explore the influence of temperature, the cor-
responding thermodynamic functions [52] of ΔH, ΔS, and 
ΔG are calculated by using formulas S13 and S14. Ther-
modynamic fitting plots are presented in Fig. 10b. Accord-
ing to the results presented in Table 6, ΔH > 0 and ΔG < 0 
indicate that the adsorption processes are endothermic and 
spontaneous.

Adsorption selectivity

The adsorption selectivity of MMSs for U(VI) was studied 
in the solution with coexisting ions. In Fig. 11, the adsorp-
tion capacity of MSBA-15, MMCM-41 and MMCM-48 
for U(VI) in the presence of eight ions is 49.03, 44.82 and 
52.48 mg·g−1, respectively, accounting for 50.81, 42.89 and 
44.47% of the total adsorption capacity. Among them, U(VI) 
accounts for the largest proportion of MSBA-15 adsorption, 
thanks to the excellent mesoporous structure and abundant 
Si–OH of MSBA-15.

To further theoretically evaluate the adsorption selectivity 
of MMSs for U(VI), the selectivity coefficient (S) [53] is cal-
culated. In Table 7, comparing with the other eight ions, the 
three MMSs have higher partition coefficients for U(VI), and 
the selectivity coefficient S is greater than 1, indicating that 
they can selectively adsorb U(VI) in an aqueous solution.

Table 6   Thermodynamic 
parameters of adsorbed U(VI) 
for MSBA-15, MMCM-41 and 
MMCM-48

Adsorbents ΔH (kJ·mol−1) ΔS (J·K−1·mol−1) ΔG (kJ·mol−1)

288.15 K 298.15 K 308.15 K 318.15 K 328.15 K

MSBA-15 20.60 144.33 −20.99 −22.43 −23.87 −25.32 −26.76
MMCM-41 13.67 177.21 −37.39 −39.16 −40.94 −42.71 −44.48
MMCM-48 13.13 114.55 −19.88 −21.02 −22.17 −23.31 −24.46

Fig. 11   Selectivity of MSBA-15, MMCM-41 and MMCM-48 for 
different ions (pH = 6.0, C0 = 50  mg·L.−1, m = 10  mg, V = 50  mL, 
T = 298.15 K, t = 240 min)

Table 7   Distribution ratios 
and selectivity coefficients of 
MSBA-15、MMCM-41and 
MMCM-48

Ions Kd (mL·g−1) SU(VI)/M(x)

MSBA-15 MMCM-41 MMCM-48 MSBA-15 MMCM-41 MMCM-48

Gd 10.06 10.06 30.30 121.16 106.16 43.33
Ce 60.48 40.16 122.45 20.15 26.59 10.72
Co 71.43 123.71 92.21 17.06 8.63 14.24
Ni 81.14 143.74 133.20 15.02 7.43 9.86
La 81.14 122.25 70.85 15.02 9.51 18.53
Zn 122.95 133.47 122.95 9.91 8.00 10.68
Pb 165.29 285.41 482.46 7.37 3.74 2.72
Sr 411.26 387.93 341.88 2.96 2.75 3.84
U 1218.91 1067.96 1313.13 — — —
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Repetitive experiment

HCl solutions (0–0.50 mol·L−1) are chosen as the desorp-
tion solution. Then the reusability experiments of MSBA-
15 were carried out (Fig. 12a). The elution rate (D, %) is 
determined by the formula S16 [54]. The U(VI) adsorbed on 
MSBA-15 can be eluted with 0.30 mol·L−1HCl with the best 
elution rate of 99.4%. Thus, 0.30 mol·L−1 HCl solution was 
selected as the eluent for MSBA-15 in subsequent repeated 
experiments.

Adsorption–desorption-regeneration cycles were repeated 
for 5 times, as shown in Fig. 12b. After repeating the experi-
ment for 4 times, the adsorption capacity of MSBA-15 for 
U(VI) decreased to 80.7% of the initial value. It may be 
related to the destruction of the adsorption active site on 
MSBA-15. The above results show that MSBA-15 can be 
reused in recovery of U(VI) from an aqueous solution.

Adsorption mechanism

The potential mechanism of U(VI) adsorption on MSBA-15 
was assessed through FT-IR and XPS analyses. In the FT-IR 
spectrum following the adsorption of U(VI) (Fig. 13a), an 
asymmetric vibration absorption peak of UO2

2+ emerged at 
911 cm−1. Furthermore, the stretching and bending vibration 
peaks (3750 and 1647 cm−1) of the hydroxyl group were 
intensified.

The XPS spectra of MSBA-15 before and after U(VI) 
uptake are shown in Fig. 13b. Apart from the Fe 2p, O 1 s, C 
1 s and Si 2p peaks, the U 4f peak (Fig. 13c) also manifested 
in the spectrum after adsorption. It indicated that U(VI) was 
successfully adsorbed by MSBA-15. Additionally, in the 

Si 2p spectrum (Fig. 13d), the Si–OH at 102.1 eV shifted 
to 102.5 eV after adsorption, indicating that there was an 
interaction between the Si–OH groups and U(VI). In the 
spectrum of O 1 s (Fig. 13 (e)), the Si–OH peak shifted to 
531.3 eV, and the O–H peak at 530.5 eV did not change sig-
nificantly. In addition, the spectral diagram at C 1 s (Fig. 13f, 
the C–C peak at 284.1 eV exhibited no change, whereas the 
C-Si peak at 282.6 eV has shifted. These findings indicate 
that U(VI) coordinates with the silica hydroxide group on 
the surface of MSBA-15.

Conclusion

Magnetic mesoporous silicas, MMCM-41, MMCM-
48, and MSBA-15, were successfully synthesized. The 
ordered-mesoporous structure of MSBA-15 was identi-
fied by TEM, small angle XRD and N2 adsorption–desorp-
tion curves. The BET specific surface areas of MSBA-15, 
MMCM-41 and MMCM-48 is 675.50, 605.38 and 638.70 
m2·g−1, respectively. The optimal adsorption pH values of 
MMSs were all 6.0, and reached adsorption equilibrium 
within 240 min. MSBA-15 has a higher saturated adsorp-
tion capacity (341.94 mg·g−1) and superior selectivity for 
U(VI) than MMCM-41 and MMCM-48. The adsorption 
capacity of MSBA-15 for U(VI) decreased to 80.7% of the 
initial value after 4 recycles. The adsorption of U(VI) on 
MSBA-15 is mainly the coordination of Si–O–H group 
with U(VI). In conclusion, MSBA-15 has outstanding per-
formance for U(VI) and is expected to be used in treatment 
and recovery of U(VI) from radioactive waste water.

Fig. 12   (a) Elution effect of different hydrochloric acid concentrations on MSBA-15, (b) reproducibility of MSBA-15
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