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Abstract
The study assesses environmental background radiation from radon, thoron, and thoron decay products across distinct geo-
logical settings in the Garhwal Himalaya region by using RADUET, CR-39 plastic track detectors, and deposition-based 
thoron (220Rn)progeny detectors. The measurements were conducted indoors throughout the winter, summer, and rainfall 
seasons during the year 2013. The annual inhalation doses from 220Rn progenies ranged between 0.83 and 2.99 mSv  y−1, aver-
aging 1.94 mSv  y−1. The annual effective dose (AED), reflecting biological radiation impact, varied from 0.58 to 2.78 mSv 
 y−1, with an average of 1.75 mSv  y−1.
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Introduction

In the context of the Himalayan tectonic settings, the undu-
lating geological conditions play a pivotal role in influencing 
ambient background radiation. This radiation can encom-
pass varying concentrations of radon, ranging from modest 
to severe levels. This is particularly concerning due to the 
potential release of significant decay products, which can 
pose harm to human health upon inhalation.

Radon (222Rn) and thoron (220Rn) are generated through 
the alpha decay of radium (226Ra) in the uranium (238U) 
decay series and radium (224Ra) in the thorium (232Th) 
decay series, respectively [1]. The distinct half-lives of 222Rn 
(3.8 days) and 220Rn (55.6 s) contribute to the differential 
distribution of residential sources. Specifically, 222Rn pri-
marily originates from the foundations and walls of rooms, 
while 220Rn predominantly emerges from walls [2]. As both 

radon types are emitted from the ground and walls, their 
decay products are released into the atmosphere. Upon inha-
lation, the decay products of 222Rn and 220Rn are deposited 
within the bronchial tree's airways, thus exposing the lungs 
[2, 3]. The entry of 222Rn into indoor air occurs through min-
ute cracks, fissures, and poorly sealed wall joints, thereby 
becoming accessible for inhalation and ingestion by individ-
uals [4–7]. The difference in temperature between outdoor 
and indoor spaces generates a pressure gradient, facilitating 
the entry of 222Rn into indoor air [6, 8]. Once inhaled, the 
densely ionizing alpha particles of.222Rn interact with lung 
tissues, causing DNA damage that is associated with the 
development of lung cancer [1, 9, 10]

Remarkably, radon (222Rn) stands as the primary contrib-
utor to public radiation exposure, accounting for more than 
half of the total radiation humans are exposed [2]. Elevated 
quantities of 222Rn and its progenies within indoor spaces 
can pose substantial health risks. The alpha particles emitted 
by inhaled 222Rn, particularly two of its progenies, polonium 
(214Po and 218Po), hold significant destructive potential for 
lung tissue and have been linked to the occurrence of lung 
cancer in humans [11]. The WHO [12]  scaled222Rn as the 
second leading reason of lung cancer, among smokers, and 
as the leading cause among all non-smokers. Both 222Rn and 
220Rn, along with their decay products, are widely acknowl-
edged contributors to human natural background radiation 
exposure, accounting for more than 50% of the total. Addi-
tionally, the inhalation doses of 222Rn and 220Rn within 
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indoor air are predominantly influenced by the concentra-
tions of their decay products [3, 13, 14]. Indoor background 
radiation exposure and concentrations are impacted by fac-
tors such as 222Rn exhalation rates, ventilation conditions, 
and building materials [15–19].The results of the present 
study can aid in understanding the health concerns con-
nected to radon and thorium exposure in related geological 
settings. The concentration data and related dose estima-
tions can help in identifying potential dangers to health and 
formulating effective mitigation plans.

In past studies [10, 20–23], the contribution of 220Rn inha-
lation and its decay products was often overlooked due to its 
short half-life. Notably, an investigation of gamma dose rates 
across forty-six locations in the Uttarakhand Himalayas, 
India, under various geological stresses, revealed moderate 
variations in dose rates [24]. Nevertheless, the higher dos-
age conversion ratio associated with 220Rn decay products 
underscores its significance, particularly in scenarios charac-
terized by elevated 220Rn levels, such as homes constructed 
using materials rich in thorium. This current study aims to 
assess the environmental background radiation exposure 
resulting from the decay products of both 222Rn and 220Rn, 
within different dwelling materials in the geological settings 
of the Garhwal Himalayas.

Methodology

The experimental site is in the Central Himalayan region 
situated along the Himalayan Frontal Thrust (HFT) and the 
Main Boundary Thrust (MBT) regions, the most tectonically 
active regions. The geophysical and tectonic consequences 
are linked with the emission of soil gas. This experimental 
site is focused on frequent monitoring and in-depth investi-
gation in accordance with the health concerns of residents.

In the present study in the tectonically active zone in the 
Garhwal Himalaya, different types of houses made up of 
different building materials were used. Therefore, the cur-
rent study aimed to estimate the radiation doses received 
by the inhabitants due to 222Rn, 220Rn, and their progenies. 
The RADUET CR-39 films are used to record the presence 
of alpha particles in different dwellings of the experimen-
tal site. The detectors were placed in the bedrooms and the 
living rooms of the study regions at the 2 m height from 
the surface [25]. After the exposure of 3-months, these 
CR-39 films underwent a chemical etching process in a 
6.25 normality NaOH solution at a temperature of 90 °C 
for a duration of 6 h. Following the etching process, the 
CR-39 films were subjected to analysis within an automated 
track-counting system. This analysis aimed to determine the 
density of alpha particle tracks. Subsequently, the 222Rn con-
centrations were derived using different factors such as the 
density of background tracks, the duration of exposure, and 

specific calibration factors. These calibration factors were 
established through exposure to  both222Rn and 220Rn uti-
lizing specialized chambers located at the National Insti-
tute of Radiological Sciences, Japan. To ensure the quality 
and reliability of the detectors, inter-comparison was con-
ducted. The minimum detection limit (MDL) used in the 
present study were 3 and 14 Bq  m−3 for radon and thoron 
(if concentrations were supposed to be 40 and 100 Bq  m−3) 
respectively and the MDL values depend on the obtained 
concentrations [26, 27].

The following formulae were used to calculate the indoor 
222Rn and 220Rn concentrations [28, 29]:

where  kRn and  kTn stand for calibration factor for the 
222Rn (0.0172 ± 0.002 tracks.cm−2/Bq.m−3d) and 220Rn 
(0.010 ± 0.001 tracks.cm−2/Bq.m−3d) respectively.  CT and 
 CR stand for the 220Rn and 222Rn concentrations (in Bq  m−3), 
and  TRn,  TRn + Tn stand for the densities of the tracks in the 
“222Rn” and “222Rn + 220Rn” chambers, respectively.

The indoor progeny concentration of the radon and thoron 
progeny can be calculated by the below equation [30, 31]:

where EERC and EETC stand for the equilibrium equiv-
alent due to the concentration of the radon and thoron 
(Bq  m−3).  TDTPS and  TDRPS stand for the densities of the 
tracks,  STn and  SRn stand for sensitivity factors for DTPS 
(0.09  trackscm−2d−1/EERC (Bq  m−3)) for DRPS (0.94 
 trackscm−2d−1/EETC  (Bqm−3)) respectively. The average 
value of the thoron progeny concentration for the same 
month was also derived from their exposure time and mate-
rial categories of dwellings. The 220Rn progeny  (Bqm−3) 
concentration under different environmental settings was 
explored in the present study.

Equilibrium factors for thoron (220Rn)

The radon (222Rn) and thoron (220Rn) equilibrium factors can 
be calculated by the below equation [32–35]:

where  FTn and  FRn stand for the equilibrium factors of 
thoron and radon. EERC, EETC,  CR, and  CT are in Bq  m−3 
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as discussed above in Eqs. 3, 4, 1, and 2 respectively. In the 
present study, only the thoron equilibrium factor  (FTn) was 
calculated due to not getting radon progenies concentrations.

Annual inhalation dose (D) and annual effective 
dose (AED) calculation

The annual inhalation dose (D) and annual effective dose 
(AED) of radon, thoron, and their progeny were estimated 
by the following equations [10, 21, 36, 37]:

where  CR and  CT are the annual indoor radon and thoron 
concentrations, respectively with an annual indoor occu-
pancy factor of 0.8. (AED)Rn and (AED)Tn are the annual 
effective dose due to the concentrations of radon and thoron 
(mSv  y−1) respectively. FRn and FTn are the equilibrium fac-
tors explained in Eqs. 5 and 6 respectively [20, 38, 39].

(7)D =
[(

0.17 + 9 × FRn
)

CR +
(

0.11 + 40 × FTn
)

CT
]

× 0.8 × 8760 × 10−6

(8)(AED)Rn =
[(

0.17 + 9 × F
Rn

)

C
R

]

× 0.8 × 8760 × 10
−6

(9)
(AED)Tn =

[(

0.11 + 40 × F
Tn

)

C
T

]

× 0.8 × 8760 × 10
−6

Results and discussion

The radon and thoron concentration in the present study was 
carried out in the different houses of the different building 
materials. The first three of the samples (serial number 1–3) 
was measured in the houses made up of wood and stone, 
four of the samples from the houses made up of cement 
only (serial number 4, 5, 7, 11), three of the samples from 
the houses made up of wood and mud (serial number 8–10), 
and one sample from the house made up of wood and 
cement (serial number 6). Radon concentrations in all three 
season was found to be higher than other samples in the 
houses that are made up of cement only and mixed up with 
cement. The thoron concentrations were found to be higher 
than other samples in the houses made up of mixed wood. 
(wood+ stone in January to March and July to September, 
and wood + mud in April to June).The obtained concentra-
tions are comparable to the other tectonically active zones 
[40–44]. Table 1 demonstrated the average value of 222Rn 
and 220Rn concentration (Bq  m−3) in different seasons during 
the sampling period with different exposure times. Annual 
average 222Rn and 220Rn concentrations have been estimated 
in different indoor environments and the statistical data of 
the study is presented here.

The season-wise values of the equilibrium factors for 
thoron with its annual average values are presented in 
Table 2.

Table 1  The average value of 222Rn and 220Rn concentration (Bq  m−3) in different months of the year with their exposure time

BDL = Below Detection level, NA = Data Not Available, Min = Minimum, Max = Maximum, AM = Arithematic Mean, SD = Standard Deviation

Serial Num-
ber

January to March (Exposure 
time 95 Days)

April to June (Exposure time 
101 Days)

July to October (Exposure 
time 92 Days)

Annual 
Average 
222RnCon.(Bq 
 m−3)

Annual Aver-
age 220RnCon. 
(Bq  m−3)222RnCon. 

(Bq  m−3)
220RnCon. 
(Bq  m−3)

222RnCon. 
(Bq  m−3)

220RnCon. 
(Bq  m−3)

222RnCon. 
(Bq  m−3)

220RnCon. 
(Bq  m−3)

1 124 ± 7 680 ± 32 N/A N/A 188 ± 9 594 ± 43 156 637
2 128 ± 8 508 ± 31 168 ± 9 434 ± 36 N/A N/A 148 471
3 116 ± 6 360 ± 24 133 ± 7 405 ± 28 169 ± 9 410 ± 34 139 392
4 122 ± 6 373 ± 26 148 ± 7 418 ± 31 149 ± 12 508 ± 36 140 433
5 120 ± 7 289 ± 29 142 ± 12 380 ± 35 157 ± 8 458 ± 34 140 376
6 144 ± 7 302 ± 26 170 ± 9 295 ± 32 204 ± 11 354 ± 40 173 317
7 170 ± 8 346 ± 31 161 ± 8 218 ± 28 203 ± 10 214 ± 35 178 259
8 134 ± 7 289 ± 25 168 ± 8 311 ± 30 182 ± 10 492 ± 38 161 364
9 137 ± 8 293 ± 32 128 ± 10 303 ± 28 185 ± 10 307 ± 33 150 301
10 190 ± 10 269 ± 33 147 ± 9 530 ± 34 N/A N/A 169 400
11 260 ± 13  − 514 ± 35 

(BDL)
160 ± 17 496 ± 43 219 ± 11 450 ± 51 213 144

Min 116 BDL N/A N/A N/A N/A 139 144
Max 260 680 170 530 219 594 213 637
AM 149.55 337.18 152.50 344.55 165.60 344.27 160.56 372.11
SD 43.08 165.76 48.16 146.86 62.05 198.73 22.09 125.58
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The box plot for the annual average equilibrium factor is 
shown in Fig. 1, in which the maximum of the data points 
lies in between the third quarter of the box. All of the sam-
ples ranged below 0.020 except one sample (0.029). The 
mean value is near about 0.015 while the median is less 
than the mean value. All of the data points were inside the 
kernel density’s core region, hence representing the positive 
skewness. The statistics show that the data sets of the annual 
average equilibrium factor were not distributed widely in the 
study region.

The observed values of annual inhalation (D in mSv 
 y−1) and annual effective doses (AED) are given in 
Table 3. The annual inhalation dose due to radon only, 
thoron, and its progeny ranged from 0.83 to 2.99 mSv 
 y−1(with an arithmetic meanof 1.94 mSv  y−1). The mean 
value of AEDs due to thoron, and its progeny ranges from 
0.58 to 2.78 mSv  y−1 (with an arithmetic mean of 1.75 
 mSvy−1). Both of the calculated values are well below the 

International Commission on Radiological Protection’s 
(ICRP) recommended value of 3 to 10 mSv  y−1[45, 46].

Figure 2 represents the box and whisker plot for the 
annual inhalation dose due to radon only, thoron and its 
decay products (upper part), and the annual effective dose 
due to thoron and its progeny (lower part). In the upper 
part of the graph, approximately 80% of the samples were 
below the 2.5 mSv  y−1 and in the lower part of the graph, 
approximately 75% of the samples were ranging below 
2 mSv  y−1. All of the samples in both the upper and lower 
parts (except one) of the graph were inside the kernel den-
sity’s core area. The median and mean values for both 
parts of the graphs were obtained in the third quartile and 
the median was more than the mean values.

Figure 3 shows the graphical representation (line and 
symbol plot) for the annual inhalation dose due to radon 
only, thoron and its decay product (black colour indication), 
and annual effective dose (red colour indication) due to 

Table 2  The equilibrium factor 
for thoron in all three seasons 
and its annual average value

Serial number Equilibrium factor for thoron  (FTn) Annual 
Average 
 (FTn)

January to March April to June July to October

1 0.008 NA 0.009 0.008
2 0.012 NA NA 0.012
3 0.016 0.012 0.009 0.012
4 0.011 0.017 0.011 0.013
5 0.007 0.012 NA 0.009
6 0.027 0.030 NA 0.029
7 NA NA 0.014 0.014
8 0.016 0.016 0.013 0.015
9 NA 0.016 0.023 0.019
10 0.018 NA NA 0.018
11 NA 0.014 0.009 0.012

Fig. 1  The box and Whisker 
plot for the annual average equi-
librium factor of thoron
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thoron and its decay product. It can be seen from the Figure 
that a similar trend was followed by both the parameters in 
which the maximum value was obtained at approximately 3 
 mSvy−1and the minimum value was obtained between 0.5 
to 1 mSv  y−1.

The correlation coefficient for annual inhalation dose 
caused by radon only, thoron and its decay product (right 
side), and annual effective dose caused bythoron and its 
decay product (left side) within the annual average equilib-
rium factor  (FTn)are shown in Fig. 4. The Pearson’s r value 
between annual effective dose caused byradon only, thoron 
and its decay product and annual average equilibrium 

factor  (FTn) was found 0.65 (p values = 0.027) whereas 
between annual effective dose due to thoron and its decay 
product and annual average equilibrium factor  (FTn) was 
found 0.63 (p values = 0.034). Both of the parameters 
showed a strong correlation with the annual average equi-
librium factor. The p values showed that the correlation 
between the above parameters is significant.

The correlation coefficient ofthe annual inhalation 
dosecaused by radon only, thoron, and its decay prod-
uct (right side), as well as the annual effective dose 
caused bythoron and its decay product, has been ana-
lyzed as shown in Fig. 5. It can be seen from the Figure 

Table 3  Total annual inhalation 
dose due to radon only, 220Rn 
and its progeny,and annual 
effective dose due to 220Rn and 
its progeny (mSv  y−1)

Serial Number Annual inhalation dose due to radon only, 
thoron and its progeny (mSv  y−1)

Annual effective dose due to 
thoron and its progeny (mSv 
 y−1)

1 2.16 1.97
2 2.09 1.91
3 1.82 1.66
4 2.07 1.91
5 1.45 1.29
6 2.99 2.78
7 1.42 1.21
8 1.98 1.78
9 2.04 1.87
10 2.47 2.27
11 0.83 0.58

Fig.2  Box and Whisker plot for annual inhalation dose due to radon only, thoron and its decay product (upper part), and annual effective dose 
(lower part) due to thoron and its decay product
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that a strong positive correlation coefficient (Pearson’s r 
value = 0.99) was obtained between them which means 
that there is a linear relationship between these two 
parameters.

Conclusions

The current study indicates that both (radon and thoron) 
indoor concentrations and equilibrium equivalent radon and 
thoron concentrations change considerably with season. The 

Fig. 3  Line and symbol plot for 
annual inhalation dose caused 
by radon only, thoron and its 
decay product (upper part), and 
annual effective dose (lower 
part) caused by thoron and its 
decay product

Fig. 4  Correlation coefficient for annual inhalation dose (right side) and annual effective dose (left side) within annual average equilibrium fac-
tor  (FTn)
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indoor radon and thoron concentrations observed are higher 
than the World Health Organization (WHO) suggested 
guideline level of 100 Bq  m−3 as a consequence of the inad-
equate ventilation and low humidity, the projected seasonal 
value of the equilibrium factor for thoron and its offspring 
 (FTn) is highest in the winter and lowest in the summer. The 
average yearly radon, thoron, and their offspring inhalation 
exposure is much lower than the UNSCEAR-suggested ref-
erence level. The calculated annual radon effective dosage 
is below the WHO and ICRP reference limits in the specific 
geographical area of the Garhwal Himalaya region, these 
dose assessments offer useful baseline information on radon 
and thoron exposure levels.
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