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Abstract
Accurate discrimination of neutron and gamma signals is essential for precise neutron detection. However, traditional 
discrimination methods face challenges under less-than-ideal conditions, such as varying signal-to-noise ratios, varying 
sampling rates, and pulse pile-up, leading to decreased accuracy. In this study, a simpler machine learning-based method 
was proposed for discriminating thermal neutron/gamma pulse shapes. The method was tested on data from a CLYC detector 
using a 241Am-Be neutron source. A comparison was made with three traditional methods and three other machine learning-
based methods. The proposed method exhibited excellent anti-noise capabilities, particularly at low signal-to-noise ratios. 
Even with a standard deviation of noise reaching 0.05, the proposed method achieved an accuracy of 90%, surpassing the 
performance of the six discrimination methods evaluated.

Keywords Neutron detection · Pulse shape discrimination · Cs2LiYCl6:Ce · Charge comparison method · Machine learning

Introduction

Neutron detection technology plays a crucial role in various 
fields, including fusion monitoring and accelerator physics 
research [1]. Accurately identifying neutrons from gamma 
rays is an important prerequisite for monitoring the ion 
temperature and angular distribution of neutrons [2]. The 
natural abundance of 6Li in  Cs2LiYCl6: Ce (CLYC) crys-
tals is approximately 7%, and its reaction cross section with 

thermal neutrons is large (940 barns), making it an excel-
lent material for thermal neutron and gamma discrimination. 
Many detectors have different response shapes of the neu-
tron and gamma signals. Pulse shape discrimination (PSD) 
refers to the process of discriminating neutron and gamma 
signals according to differences in the shape of the pulses. 
PSD offers advantages over pulse height discrimination in 
regard to discriminating different types of signals with simi-
lar amplitudes.

Before PSD, digital sampling is now more commonly 
used than analog circuits [3], where detector signals are digi-
tally sampled offline or online using a high-speed ADC. PSD 
methods are then used to discriminate neutrons and gamma 
rays. Traditional PSD methods can be divided into time 
domain and frequency domain approaches. Time domain 
methods, including charge comparison methods (CCM) [4], 
rise time methods [5], pulse gradient analyses (PGA) [6], 
pulse duration analyses (PDA) and others, are simple and 
easy to implement. Frequency domain methods, such as 
wavelet transform (WT) [7], fractal spectrum method [8], 
and frequency gradient analysis (FGA) [9], demonstrate bet-
ter discrimination performance but involve complex Fourier 
or wavelet transforms for signal processing. Moreover, the 
use of machine learning-based methods in neutron-gamma 
discrimination has been studied in recent years [10–20]. 
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These methods exhibit higher discrimination accuracy com-
pared with traditional methods. However, existing machine 
learning structures are too complex and time-consuming. A 
BPNN is likely to fall into local optimality.

The accuracy of most traditional PSD methods may 
decrease at low signal to noise ratios [21]. Additionally, it 
has been demonstrated in research that different sampling 
rates will affect the discrimination performance, which can 
be critical factors when building imaging arrays with multi-
ple channels or portable instrumentation [22, 23]. Further-
more, serious pulse pile-up poses a remarkable challenge 
to PSD in intense neutron fields [24]. Therefore, studying 
the performance of these methods under different conditions 
is necessary for improving the reliability and efficiency of 
detection equipment.

The purpose of this study is to propose a simpler machine 
learning-based discrimination method. By selecting the ref-
erence waveform and the difference factor, the computa-
tional complexity is reduced by avoiding the participation 
of a single waveform in multiple calculations. The weights 
for feature sampling points are determined by genetic algo-
rithms to avoid the emergence of local optima during param-
eter convergence. The training set is jointly determined by 
three methods to improve its quality. Thus, investigate its 
performance in comparison with three traditional discrimi-
nation methods (CCM, PGA, PDA) and three machine 

learning-based methods (BPNN, SVM, KNN) under three 
different scenarios: varying signal-to-noise ratios, varying 
sampling rates, and different record lengths.

Principles of the proposed algorithm

Flow of the algorithm

The proposed algorithm follows a specific flow, as illus-
trated in Fig. 1. The horizontal coordinates are equally 
spaced because of equal sampling intervals. The key dif-
ference between neutron and gamma pulse shapes lies in 
the vertical coordinates, representing the pulse height. The 
algorithm leverages these vertical coordinate differences to 
analyze pulse waveform features.

Initially, the input data are divided into train set, valida-
tion set and test set at a ratio of 6:2:2. The algorithm can be 
divided into three parts, as shown in Fig. 1. The unweighted 
discrimination function is obtained through a training pro-
cess, represented by the blue box. The weighted discrimi-
nation function is generated, as shown by the red box. The 
weighted discriminant function is used for testing purposes, 
depicted by the yellow box. The blue and red boxes illustrate 
the training process. Obtain a weighted discriminating func-
tion at the end of the training process, and input data from 

Fig. 1  Flow of the algorithm
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the test set into this function. Detailed explanations of the 
three parts are provided below.

Part I. Obtaining an unweighted discrimination 
function

A 2D Cartesian coordinate system is established on the two-
dimensional plane, where the abscissa represents time, and 
the ordinate represents waveform amplitude. This coordinate 
system mathematically enables the representation of sam-
pling points on the waveform.

We use N to denote the number of sampling points in the 
pulse waveform. Assuming that the train set consists of p 
gamma waveforms and q neutron waveforms. For any two 
positive integers s ∈ [p] and i ∈ [N] , we define the coordi-
nate vector of the i-th sampling point of the s-th gamma 
waveform as (xi, asi ) . Similarly, for any two positive integers 
t ∈ [q] and i ∈ [N] , the coordinate vector of the i-th sampling 
point of the t-th neutron waveform is defined as (xi, bti) . We 
establish the gamma waveform feature matrix A and neutron 
waveform feature matrix B using the vertical coordinates of 
p gamma waveforms sampling points and q neutron wave-
forms sampling points, respectively. The waveform features 
can be described by row vector in the matrices. Therefore, 
we have

We take the average of each column element in matrix A 
to obtain a vector a . Similarly, we take the average of each 
column element in matrix B to obtain a vector b . We define 
a =

(
a1, a2,… , aN

)
 , b =

(
b1, b2,… , bN

)
 , in which

a and b are called reference feature vectors for gamma and 
neutron, respectively.

We subtract the corresponding components of a and 
b to form a vector with absolute values, denoted as c . 
c = (c1, c2,… , cN) , where

(2.1)A =

⎛⎜⎜⎜⎝

a1
1
a1
2
… a1

N

a2
1
a2
2
… a2

N

⋮ ⋮ ⋮
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N
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,

(2.2)B =
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N
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N

⎞⎟⎟⎟⎠
.

(2.3)ai =

∑p

s=1
as
i

p
, i = 1, 2,… ,N,

(2.4)bi =

∑q

t=1
bt
i

q
, i = 1, 2,… ,N.

By Eq. (2.5), we compare the sizes of all elements in c.
We may assume that

where i1, i2,… , iN  is a rearrangement of 1, 2,… ,N  . 
( i = 1, 2,… ,N is the arrangement of the original sampling 
points.) We maintain the position of elements in descending 
order to obtain vector c′ , then

We define y = (y1, y2,… , yN) , which is the feature vector 
formed by vertical coordinates of sampling points of any 
waveform in the validation set.

We define the parameter “difference factor” as � , 
1 ≤ � ≤ N.We take the first � components from c′ to form 
a new vector c�(�) , representing the differences between 
pulse feature heights, c�(�) = (ci1 , ci2 ,… , ci� ) . We filter 
for elements with the same subscript as c�(�) in a , b and y , 
respectively (other points of the waveform will no longer be 
considered). Then we define a�(�) , b�(�) and y�(�) using the 
filtered elements defined in the same way as c�(�) . We define

We compare the distance between y�(�) and a�(�) , as well 
as the distance between y�(�) and b�(�) , respectively. We 
introduce norms and define the “unweighted discrimination 
function” as f (�) . We have

By (2.10), we compare the function value with “1” to 
judge the waveform category. If the function value is less 
than 1, then it is judged as a gamma waveform. If the func-
tion value is more than 1, it is a neutron waveform.

We define the discrimination accuracy related to � as 
P(�) , � = 1, 2,… ,N  , which is the ratio of the number of 
waveforms that are correctly predicted and the number of 
the total waveforms in the validation set.

When � = 1 , we obtain

We bring all waveform data in the validation set into f (1) 
and compare the function value with 1 to obtain predicted 

(2.5)ci = |ai − bi|, i = 1, 2,… ,N.

(2.6)ci1 ≥ ci2 ≥ ⋯ ≥ ciN ,

(2.7)c� = (ci1 , ci2 ,… , ciN ).

(2.8)a�(�) = (ai1 , ai2 ,… , ai�), b�(�) = (bi1 , bi2 ,… , bi�);

(2.9)y�(�) = (yi1 , yi2 ,… , yi� ).

(2.10)

f (�) =
‖a�(�) − y�(�)‖1
‖b�(�) − y�(�)‖1 =

���ai1 − yi1
��� +

���ai2 − yi2
��� +⋯ +

���ai� − yi�
���

���bi1 − yi1
��� +

���bi2 − yi2
��� +⋯ +

���bi� − yi�
���
.

(2.11)f (�) = f (1) =
‖a�(1) − y�(1)‖1
‖b�(1) − y�(1)‖1 =

���ai1 − yi1
���

���bi1 − yi1
���
.
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categories of all waveforms. An accuracy P(1) is obtained by 
comparing the number of waveforms that are correctly pre-
dicted with the number of total waveforms.

Similarly, when � = 2:

We bring all waveform data in the validation set into f (1) 
and compare the function value with 1 to obtain predicted 
categories of all waveforms. An accuracy P(2) is obtained by 
comparing the number of waveforms that are correctly pre-
dicted with the number of total waveforms.

By analogy, for any value of � , � = 1, 2,… ,N , we bring all 
waveform data from the validation set into the corresponding 
function f (�) , � = 1, 2,… ,N , we obtain predicted categories 
of all waveforms. We compare the number of waveforms that 
are correctly predicted with the number of total waveforms 
to obtain the accuracy P(�) , � = 1, 2,… ,N . We compare the 
value of P(1),P(2),… ,P(N) . Assuming that when � = k , the 
accuracy P(k) is the highest. The unweighted discrimination 
function is:

Part II. Generating weighted discrimination function

We set the weight vector w = (w1,w2,… ,wk) , in which each 
element wi ≥ 0 i = 1, 2,… , k . We define the weight matrix 
as W = diag{w1,w2,… ,wk} . We modify the unweighted dis-
crimination function f (k) in (2.13) to a weighted discrimina-
tion function f .

Same as before, we compare the function value with “1” to 
judge the waveform category.

The strategy of the genetic algorithm is adopted when con-
structing coefficient vectors by constructing the gene matrix. 
For any two positive integers i ∈ [k] and j ∈ [r] , We define the 
i-th gene of the j-th array as gji . We define the gene matrix as

(2.12)

f (�) = f (2) =
‖a�(2) − y�(2)‖1
‖b�(2) − y�(2)‖1 =

���ai1 − yi1
��� +

���ai2 − yi2
���

���bi1 − yi1
��� +

���bi2 − yi2
���
.

(2.13)

f (�) = f (k) =
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(2.14)
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where r is the number of individuals, k is the dimension 
of individuals, G is the initial population and the row vector 
gj(j = 1, 2,… , r) is the j-th array.

For any j ∈ [r] , we take gj as the coefficient vector of the 
discrimination function, and judge the fitness of gj through 
its corresponding accuracy by applying (2.14) to all wave-
form data in the validation set. Thus, we obtain the corre-
sponding accuracy of gj . Since this hold for any j ∈ [r] , we 
can obtain the accuracy of all arrays in the first generation.

As shown in Fig. 2, we select the appropriate row com-
ponents based on fitness ranking. Crossover and mutation 
are used to iteratively optimize the elements in the selected 
components. The optimal coefficient vector w of the algo-
rithm is the final row component with the highest fitness.

Part III. Testing for neutron‑gamma discrimination

In the testing process, the weighted discrimination function 
obtained during the training process is used. For any wave-
form in the test set, its discrimination vector z�(k) can be 
easily obtained by corresponding arrangement according to 
the same sequence of sampling points through its ordinate 
and Eq. (2.6). z�(k) = (zi1 , zi2 ,… , zik ) . Thus

We compare the function value with “1” to judge the 
waveform category. If the function value is less than 1, then 
it is judged as a gamma waveform. If the function value is 
more than 1, it is a neutron waveform.

If the value is equal to 1, its waveform category is difficult 
to be determined to a certain extent. Despite the fact that the 
large sample size and the precision of sampling point values 
make this possibility extremely unlikely, improvements are 
still proposed when the function value equals 1.

When f = 1 , namely, f = ‖(a�(k)−z�(k))W‖
1

‖(b�(k)−z�(k))W‖1 = 1, , we modify 
a and b again for a specific waveform, and select the coordi-
nate components of the deleted n − k sampling points that 
have a significant impact and also include them in the range 
to obtain a′′ , b′′ . For any waveform z , it is natural to retain 
the same number of component elements as a′′ , b′′ to get z′′ , 
then we bring them into f  , then f = ‖a��(k)−z��(k)‖

1

‖b��(k)−z��(k)‖1  , or you can 

(2.15)Gr×k = (g1, g2,… , gr)
T =

⎛⎜⎜⎜⎝

g11 g12 ⋯ g1k
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gr1 gr2 ⋯ grk
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,

(2.16)
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|
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.
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also and regenerate appropriate weight matrix W ′ , then 
f =

‖(a��(k)−z��(k))W �‖
1

‖(b��(k)−z��(k))W �‖1  . By analogy, we can always adjust the 
discrimination function formula for waveforms with an f  
value of 1 to help obtain the desired.

Experimental methods

Acquisition and division of data sets

As shown in Fig.  3, this study utilized a  Cs2LiYCl6: 
Ce(CLYC) scintillation crystal(~ 30 mm(Φ)*60 mm(h)) 
with 95% enrichment of 6Li. The crystal was coupled with 

a Hamamatsu R6231-100 PMT and AMETEK ORTEC 556 
high-voltage power supply. Pulse signals were acquired by 
a RIGOL DS1104Z oscilloscope with 12-bit resolution and 
stored by LabVIEW upper computer program under the 
condition of a 241Am-Be neutron source with an activity 
of 1.09 ×  1010 Bq(2023.6). The shield moderated neutrons. 
The sampling rate was 1G Sa/s with a storage depth of 2.4 k 
pts. The high voltage was set to 1000 V and the imped-
ance was 50 Ω. To balance the numbers of neutrons and 
gamma rays, two lead plates were placed in front of the 
CLYC probe to collect as many neutron signals as possible. 
A total of 130,000 neutron and gamma pulse waveforms 
were acquired.

Fig. 2  Weighting diagram using the genetic algorithm

Fig. 3  Experimental equipment. a 241Am-Be neutron source. b Lead plate. c CLYC detector. d Upper computer. e Oscilloscope. f High voltage 
power supply
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The pulse signals were pretreated as follows to reduce the 
error caused by noise and amplitude difference. (1) Smooth-
ing filtering; (2) Signal normalization.

As shown in Fig. 4, most thermal neutrons and gamma 
rays can be clearly discriminated using the CCM, but certain 
waveforms remain unclear as to their categories. Therefore, 
to improve the quality of train set, the pulse categories were 
determined using three commonly used traditional meth-
ods (CCM, PGA, PDA). A pulse was classified as a neu-
tron only if all three methods simultaneously identified it 
as such. Similarly, a pulse was deemed a gamma ray only 
if all three methods simultaneously classified it as gamma. 
Otherwise, the pulse was discarded. After continuous test-
ing, the optimal positions of the total and tail gates for CCM 
were determined to be 800 ns and 300 ns, respectively. The 
optimal gradient for PGA was selected from the peak to 
the 250th sampling point after the peak. PDA refers to the 
period of time between the 50% amplitude of the rising and 
falling edges. For the proposed method, approximately 180 
is the optimal value of k in this study.

A total of 40,000 neutron waveforms and 40,000 gamma 
waveforms were obtained for further processing. In accord-
ance with the ratio of 6:2:2, the 80,000 selected neutron and 
gamma pulse waveforms were randomly divided into a train 
set, validation set, and test set. All data sets contained an 
equal number of neutron and gamma waveforms.

Evaluation metrics

In this study, the following evaluation metrics were used: 
accuracy, neutron discrimination error ration ( DERn ), 
gamma discrimination error ration ( DER� ) and total dis-
crimination error ration ( DERtotal ). The formulas for these 
metrics are as follows:

where Nn is the number of total neutron waveforms, N� is 
the number of total gamma waveforms, Nn−method is the num-
ber of neutron waveforms correctly classified by the cor-
responding method, and N�−method is the number of gamma 
waveforms correctly classified by the corresponding method.

Experimental results and discussion

We tested the robustness of the proposed method under three 
different scenarios that may occur in practical neutron detec-
tion: varying signal-to-noise ratios, varying sampling rates 
and different record lengths. The train set data were consist-
ent across all machine learning-based methods.

The method failure point was defined as the point where 
the discrimination accuracy dropped to 50%. This indicates 
that the method had completely lost its neutron-gamma dis-
criminating capability when its accuracy was less than or 
equal to the value.

(3.1)

DERn =
||||
Nn − Nn−method

Nn

|||| × 100%

DER� =
|||||
N� − N�−method

N�

|||||
× 100%,

(3.2)DERtotal = DERn + DER� ,

(3.3)Accuracy =
Nn−method + N�−method

Nn + N�

× 100%,

Fig. 4  Qtail/Qtotal −  Qtotal in 
CLYC using the CCM
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Performance of discrimination at varying 
signal‑to‑noise ratios

Practical neutron detection often encounters interference 
from noise. Typically, shot noise and Johnson noise, which 
are Gaussian white noises, have the most impact on PSD.

As shown in Fig. 5, Gaussian white noise with stand-
ard deviations of 0.01, 0.02, 0.03, 0.04, 0.05 and absolute 
noise with amplitude between − 0.002 and 0.002 V were 
added to the 16,000 pulse waveform data in the test set using 
LabVIEW to investigate the discrimination performance of 
various PSD methods at varying signal-to-noise ratios [25, 
26]. To study the performance of the methods using differ-
ent train sets, the anti-noise scenario was divided into two 
categories. In one case, the train set had no added noise, 
whereas in the other case, the train set had added noise to 
simulate varying signal-to-noise ratios. The added noise had 
standard deviations of 0.01, 0.02, 0.03, 0.04, and 0.05 with 
equal proportions added to the train set.

Train set without added noise

As shown in Fig. 6, the discrimination accuracy of each 
algorithm decreased gradually as the standard deviation of 
noise increased. Simultaneously, DERtotal , DERn , and DER� 
all increased. When the standard deviation of noise reached 
0.02, the accuracy of the PDA began to diminish rapidly 
and its DER reached 100%. This indicated that the PDA 
became completely ineffective as the heavy noise caused 
multiple 50% amplitude points to be detected along the ris-
ing or falling edge of each pulse. When the noise standard 

deviation was between 0.02 and 0.05, the proposed algo-
rithm demonstrated the highest accuracy and the lowest 
DERtotal , performing similarly to KNN and SVM. Despite 
being a machine learning-based discrimination method, 
the BPNN method's performance was unsatisfactory. This 
could be attributed to the gradient descent algorithm used 
to optimize its model parameters, leading to the possibility 
of getting trapped in local optima and failing to achieve the 
best parameters for optimal discrimination results. When the 
standard deviation of noise reached 0.05, the accuracy of 
KNN, BPNN and SVM was only 67.8%, 50.3% and 75.1%, 
respectively. However, the proposed method maintained an 
accuracy as high as 90%, with DERtotal only 17.7%, which 
was the lowest among the seven methods. One remarkable 
reason for the strong anti-noise capability of the proposed 
method may be the setting of the difference factor, which 
makes waveform features easily distinguishable. Moreover, 
data storage, input data bandwidth and redundancy can be 
reduced by eliminating features that are difficult to distin-
guish, which is advantageous for improving discrimination 
in low dimensions. Other machine learning-based methods 
require processing all sampling points, which would poten-
tially increase the dead time of real-time discrimination 
systems. In cases where neutron and gamma waveforms 
differ by a small amount, other methods may result in mis-
judgment. A low signal-to-noise ratio can cause surges in 
amplitude at points where the original amplitude should be 
small. The CCM exhibited superior anti-noise ability among 
the three traditional discrimination methods. This can be 
attributed to the fact that CCM operates by integration, 
which reduces the effect of random noise after integration. 

Fig. 5  Neutron and gamma waveforms with added noise. a Standard deviation of noise = 0. b Standard deviation of noise = 0.01. c Standard 
deviation of noise = 0.02. d Standard deviation of noise = 0.03. e Standard deviation of noise = 0.04. f Standard deviation of noise = 0.05
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In contrast, the PGA relies on the calculation of the falling 
edge gradient and is susceptible to noise.

Train set with added noise

As shown in Fig. 7, the accuracy of BPNN, KNN, SVN, and 
the proposed method was higher than 95% even when the 
standard deviation of noise reached 0.05, which improved 
greatly when the train set was replaced, and their descending 
rate decreased. The CCM, PGA, and PDA do not depend on 
the train set, so their discrimination effects did not exhibit 
noticeable enhancement. When the standard deviation of 
noise reached 0.05, the accuracy of CCM was 78.9%, and 
its DERtotal was as high as 38.2%. Under the same condi-
tions, the accuracy of the proposed method remained 
high at 95.7%, which was not much different from other 
machine learning-based methods. The DERtotal of the pro-
posed method was slightly higher than that of other machine 
learning-based methods. The higher DERtotal was primar-
ily due to DER� because the gamma waveforms were more 
affected by noise, causing the falling edge to resemble the 
neutron waveform. Although the SVM demonstrated optimal 
discrimination performance by utilizing a Gaussian kernel as 
its kernel function, it also led to more intricate input features 
and lengthened discrimination time.

Performance of discrimination at varying sampling 
rates

Different sampling rates will affect the discrimination per-
formance. Current digitizer sampling rates for online neu-
tron-gamma discrimination (e.g. XilinxKintex-7 XC7K325T 
PXIe-DAQ) are mainly 10, 20, 40, and 250 M.

Thus, LabVIEW resampling VI was used to downsample 
the 16,000 pulse waveforms in the data set to 100, 50, 20, 10 
and 5 M sampling rates to investigate the discrimination per-
formance of various PSD methods at varying sampling rates.

As shown in Fig. 8, the accuracy of each discrimination 
method remained above 98%, and DERtotal , DERn and DER� 
remained below 3% when the sampling rate exceeded 20 M. 
However, the accuracy of CCM, PGA, and PDA began to 
decline rapidly, and DERtotal increased rapidly when the sam-
pling rate was reduced to 10 M. Since the sampling rate was 
too low, the waveform lacked the required number of feature 
points, making it unsuitable for discrimination with tradi-
tional methods. The proposed method, along with BPNN, 
KNN, and SVM, maintained an accuracy of over 99% under 
the same conditions. When the sampling rate reached 5 M, 
the DERtotal of the machine learning-based methods gradu-
ally increased, with KNN exhibiting the highest accuracy. 
In contrast, all traditional discrimination methods became 

Fig. 6  Discrimination performance at varying signal-to-noise ratios 
when the train set has no added noise. a Accuracy of seven discrimi-
nation methods. b Total DER of seven discrimination methods. c 

Neutron DER of seven discrimination methods. d Gamma DER of 
seven discrimination methods
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ineffective. The proposed method showed poor performance 
only at a sampling rate of 5 M, whereas the typical ADC 
sampling rate for pulse waveform acquisition is 10 M or 
higher. KNN was the method with the highest accuracy. 
However, it relies on the selection of K values, which can 
be time consuming through K-fold cross-validation.

Performance of discrimination at different record 
lengths

The neutron flux measurement is directly related to the 
determination of neutron–nucleus interaction cross sec-
tions and the angular distribution of neutrons. Various neu-
tron detectors and dosimeters require calibration based on 
absolute measurements of neutron flux during production 
and development. Currently, pulse pile-up events are usu-
ally discarded. However, if a discrimination algorithm can 
effectively distinguish neutrons from gamma rays at different 
record lengths, then improving the efficiency of detection is 
possible [27, 28].

In scenarios where accumulated pulses occur, for the pro-
posed method, the first step is to determine the location of 
the pile-up generation. The ratio of the pulse length from 

the beginning to the location when the buildup occurs is 
calculated relative to the waveform length. The pulse type is 
determined by processing this specific part of the waveform 
using the trained model.

The waveform record length in the data set was reduced 
using LabVIEW to 1/2 (1200 ns), 1/6(400 ns), 1/8(300 ns), 
1/10(240 ns), and 1/20(120 ns) of the original length to 
investigate the discrimination performance of various PSD 
methods at different record lengths.

As shown in Fig. 9, the PDA method became com-
pletely ineffective when the waveform record length was 
reduced to 1/2. This method relied on the full waveform 
record length for discrimination, and it was unable to 
distinguish neutrons from gamma rays as soon as pulse 
pile-up occurred at the rising or falling edge of the pulse. 
The accuracy of the PGA began to decline, and DERn 
and DERtotal began to increase when the waveform record 
length was reduced to 1/6. This is because of the reduced 
number of preserved tail waveform features. Similarly, 
the accuracy of BPNN began to decline when the wave-
form record length was reduced to 1/8. At a waveform 
record length of 1/20 (where pulse pile-up was severe 

Fig. 7  Discrimination performance at varying signal-to-noise ratios 
when the train set has added noise. a Accuracy of seven discrimina-
tion methods. b Total DER of seven discrimination methods. c Neu-

tron DER of seven discrimination methods. d Gamma DER of seven 
discrimination methods
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and occurred near the peak position), CCM, PGA, and 
PDA failed to discriminate effectively. In contrast, KNN, 
SVM, and the proposed method were still able to achieve 
a discrimination accuracy of over 98% based on the dif-
ferences between the rising edges of neutron and gamma 
ray waveforms.

Traditional discrimination methods require the adjust-
ment of discrimination parameters and often fail to ade-
quately consider waveform segments that exhibit remark-
able differences between neutrons and gamma rays [29]. 
In addition, PGA and PDA use only two feature points 
from the pulse waveform as discrimination parameters, 
which makes them vulnerable to noise interference, and 
any decrease in the number of feature points used (vary-
ing sampling rates and different record lengths) would 
lead to an increase in the discrimination error rate for 
both. In comparison, machine learning-based methods are 
relatively robust. The proposed method performed com-
parably to other machine learning-based methods.

Conclusion

This study proposes a simpler machine learning-based 
method for thermal neutron/gamma PSD for CLYC scin-
tillators and conducts experiments to test its performance. 
A comparison is made among three traditional methods 
(CCM, PGA, PDA) and three machine learning-based 
methods (BPNN, SVM, KNN), demonstrating that the 
proposed method has excellent anti-noise capabilities for 
discriminating signals at varying signal-to-noise ratios. 
When the standard deviation of noise reached 0.05, the 
proposed method achieved a discrimination accuracy of 
90% on a train set without noise, which was 11.8% higher 
than the traditional discrimination method with the high-
est accuracy (CCM) and 19.84% higher than the machine 
learning method with the highest accuracy (SVM). Addi-
tionally, it had the lowest discrimination error rate for neu-
trons. When a train set with white noise waveforms added 
with different standard deviations in equal proportion was 
used, the accuracy of the proposed method reached as high 

Fig. 8  Discrimination performance at varying sampling rates. a Accuracy of seven discrimination methods. b Total DER of seven discrimination 
methods. c Neutron DER of seven discrimination methods. d Gamma DER of seven discrimination methods
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as 95.7%. The proposed method performed comparably to 
other machine learning-based methods when the sampling 
rate was reduced to 100, 50, 20, and 10 M, and the wave-
form record length was only 1/2, 1/6, 1/8, 1/10, and 1/20. 
Even when the sampling rate was as low as 10 M and the 
record length was only 1/20 of the complete waveform, 
the proposed method still achieved accuracies of 99% and 
98%, respectively, demonstrating its excellent robustness.

In practical applications, algorithms with strong anti-
noise capabilities can reduce the negative impact of elec-
tromagnetic fields and other adverse factors on waveforms. 
Despite a low signal-to-noise ratio, accurate neutron count-
ing for acquiring precise neutron-related data can still be 
achieved. As part of future work, the proposed algorithm 
will be implemented on an FPGA to enable real-time 
discrimination.
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