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Abstract
ZnCl2-modified activated carbon supported nanoscale zero-valent iron material (nZVI/BC600) was synthesized by green 
carbothermal reduction and liquid phase reduction to explore the removal efficiency of U(VI) under different conditions. 
The results showed that under the optimal conditions  (C0 = 10 mg/L, C/Fe = 5:1, pH = 5.5, t = 30 min), the removal rate of 
U(VI) by nZVI/BC600 was 99.68%, which was 9.18% higher than that of  ZnCl2-modified activated carbon and conformed 
to the pseudo-second-order kinetic model. SEM and XPS analysis showed that nZVI was uniformly distributed on activated 
carbon, and U(VI) was reduced to U(IV) or U(V). The removal mechanism of U(VI) by nZVI/BC600 is chemical adsorp-
tion, redox and co-precipitation.
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Introduction

Uranium is an important raw material of natural resources 
for nuclear energy. With the continuous expansion of nuclear 
energy application and development, a large amount of radi-
oactive uranium-containing wastewater is generated during 
uranium mining, nuclear facility use, decommissioning, 
nuclear leakage and other processes [1]. Uranium has radia-
tion and chemical toxicity, but it is notoriously difficult to 
be absorbed by plants or degraded by microorganisms in the 
ecosystem, so it causes great harm to plants and animals [2]. 
For the sake of ecological environment and human health, 
Chinese relevant regulations stipulate that the maximum per-
missible concentration of natural uranium is about 40 µg/L, 
while the average concentration of natural uranium in inland 
rivers is 0.5 μg/L [3]. In general, uranium concentration in 
drinking water is less than 1 μg/L. According to the survey, 

the total uranium concentration in drinking water sources 
from 2010 to 2018 was 0.09~4.50 μg/L [4]. U(VI) mainly 
exists in the form of uranyl ions  (UO2

2+) in solution, and 
often forms anion complexes with  OH−,  CO3

2−,  SO4
2−, 

 PO4
3−, etc. [5]. Uranyl ion has enormous ionic radius and 

is characterized by freely solubility, high toxicity and easy 
to migrate. However, tetravalent U(IV) is insoluble and can 
be easily precipitated as uranium dioxide  (UO2) or can be 
oxidized to U(VI). Therefore, it is widely recognized to be 
one of the most promising approaches to reduce the soluble 
hexavalent U(VI) into insoluble tetravalent U(IV) containing 
minerals [6–8].

In the treatment of U(VI)-bearing wastewater, the eco-
nomical and efficient adsorption methods are widely used. 
Nevertheless, the adsorbent can only enrich U(VI) and 
gather, but cannot reduce its biological toxicity, and it 
would even desorb and re-enter the water to produce pol-
lution. Hence, zero-valent iron and nano-zero-valent iron 
(nZVI) treatment of heavy metal pollution wastewater came 
into existence [9–13]. nZVI has stronger reduction charac-
teristics, larger specific surface area, stronger adsorb abil-
ity and higher removal efficiency than ordinary zero-valent 
iron. Nonetheless, like other nanomaterials [14, 15], they 
are characterized by small particle size, great specific sur-
face area, high reduction activity and huge magnetic force. 
They are easy to accumulate and be oxidized. While causing 
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secondary pollution, their reactivity in water and removal 
efficiency of pollutants are greatly reduced, which poses a 
challenge to the practical application of nZVI. To solve these 
problems, researchers have been looking at a variety of sta-
ble materials [16–33], nZVI is dispersed on activated carbon 
[34–39], zeolite [40, 41], clay minerals [42] and biomolecu-
lar materials [43] to reduce or even prevent agglomeration 
and improve its dispersion and stability [44, 45]. While 
retaining the inherent characteristics of nZVI, it overcomes 
shortcomings and improves the reaction performance [46].

Among all kinds of stable materials, the environmen-
tally friendly and inexpensive activated carbon is the most 
common application. Activated carbon is a form of highly 
aromatic and insoluble solid substance [47], which is pre-
pared by plant, crop waste, activated sludge, etc., under the 
condition of oxygen restriction [48–51]. In the past few dec-
ades, biochar supported nZVI has been shown to be more 
effective than bare nZVI in the treatment of heavy metal 
contamination [52] and organic compounds [53]. A novel 
material that nZVI loaded on biochar with stable starch 
stabilization (nZVI/BC) was synthesized and used for the 
removal of vanadium V(V) [54] and hexavalent chromium 
Cr(VI) [55] in simulated wastewater. Li X et al. [8] studied 
the montmorillonite supported nZVI adsorption materials, 
which was synthesized by sodium borohydride and ferric 
chloride. The results showed that montmorillonite loaded 
nZVI reacted quickly (about 3 min after the start of the reac-
tion), the removal rate of uranium solution with 100 μg/L 
was up to 97.8%, which was much higher than that of mont-
morillonite (48.0%) and nZVI (79.5%) under the optimal 
conditions. Jing et al. [10] showed that illite-loaded nZVI 
can remove 99.9% uranium in groundwater within 2 h, the 
uranium concentration remained at about 27 mg/L after 
7 days of reaction time, and there was no sign of uranium 
release in groundwater. The effect of pH on the removal 
efficiency and the stability of uranium in the material were 
also studied, resulting that the supported material has better 
properties than the single nZVI. Yan et al. [56] used nZVI 
and biochar loaded nZVI as additives to activate persulphate 
to oxidize trichlene in groundwater, and the results showed 
that the activation performance of nZVI supported by bio-
char was significantly higher than that of nZVI.

In the present work, activated carbon was prepared by 
peanut shells and  ZnCl2 was used for modification since 
previous studies proved that  ZnCl2 could improve activated 
carbon’s adsorption performance through catalytic dehydra-
tion, bloating and pore-making effects [57–60]. The com-
posite material marked as nZVI/BC600 was synthesized by 
dispersing nZVI particles onto the surface and pores of the 
prepared activated carbon. After that, batch experiments 
were carried out to investigate the effects of reaction time, 
initial pH, dosage, and coexisting ions on the removal rate of 
U(VI) from aqueous solution. The kinetic model was used to 

analyze the kinetic rule of the adsorption U(VI) of the mate-
rial. Finally, the microscopic morphology, chemical compo-
sition, Chemical valence state and various features of func-
tional groups of the nZVI/BC600 composite material before 
and after removing U(VI) were analyzed, to elucidate the 
possible adsorption mechanisms for the removal of U(VI).

Materials and methods

Materials

All chemicals used in the present study were of analyti-
cal grade. Postassium borohydride  (KBH4), zinc chloride 
 (ZnCl2) and ferrous sulfate heptahydrate  (FeSO4·7H2O) were 
used for making the composite material. Manganese chloride 
 (MnCl2), magnesium chloride  (MgCl2), calcium chloride 
 (CaCl2), sodium sulfate  (Na2SO4) and sodium bicarbonate 
 (NaHCO3) were applied to study the effect of different ions 
on the reaction. Dissolved  U3O8 (of > 99% purity) in concen-
trated hydrochloric acid (HCl), hydrogen peroxide  (H2O2) 
and nitric acid solutions  (HNO3) for preparing the U(VI) 
stock solution. The deionized water was deoxygenated with 
high purity nitrogen (99.999%) for 30 min prior to use for 
the preparation of all solutions.

Experiment methods

Preparation of  ZnCl2‑modified activated carbon loading 
nano‑zero‑valent iron

In the present work, activated carbon was prepared by peanut 
shells. Zinc chloride was used for its modification, since it 
could improve adsorption performance by activated carbon 
through catalytic dehydration, bloating and pore-making 
effects, that was based on the previous literature methods 
[58, 61]. The peanut shells were washed thoroughly with tap 
water followed by deionized water several times to remove 
impurities and oven-dried, subsequently, crushed and ground 
into powders to pass through 20-mesh sieves. Then added an 
appropriate amount of  ZnCl2 solution with a mass concen-
tration of 30% to the particles, stirred in a beaker to make it 
fully mixed, soaked for 14 h and then dried. The sample was 
placed in a tube furnace, heated to 600 °C at a rate of 5 °C/
min, and maintained at high temperature for 30 min under 
nitrogen conditions. Then the tube furnace was closed and 
removed after cooling. Afterward, the prepared activated 
carbon was treated with 1% HCl solution for an hour and the 
effluent was washed with deionized water while stirring until 
the pH reached neutral. Finally, the activated carbon was 
oven-dried, sealed in a brown bottle and labeled as BC600.

ZnCl2-modified activated carbon loading nano-zero-
valent iron was prepared by liquid phase reduction method 
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as reported [62, 63]: 5.0 g  FeSO4·7H2O was dissolved in 
deionized water under the condition of oscillation and added 
with a certain volume of anhydrous ethanol as the dispers-
ing agent (alcohol:water ratio = 4:1). Whereafter BC600 was 
added (C:Fe mass ratio = 5:1) into the mixture followed by 
dropwise addition of 50 mL freshly prepared  NaBH4 solu-
tion (20 g/L), with magnetic stirring (200 r/min) under the 
nitrogen-protected environment. After reaction, the resultant 
suspension was aged for one hour under nitrogen purging, 
and the composite was separated by filtration and washed 
repeatedly with anhydrous ethanol and deionized water. 
Finally, the resultant materials were oven-dried at 80 °C for 
12 h, ground into powders and stored in a desiccator, called 
as nZVI/BC600 composite. Figure 1 showed a schematic 
diagram of the experimental procedure that used to synthe-
size nZVI/BC600, and the reaction chemical equation was 
described as following.

Batch experiments

All batch experiments were carried out in a temperature-
controlled oscillator at 25 °C and 150 r/min conditions using 
100 mL conical flasks. At first, before each set of batch 
experiments, the pH of 50 mL U(VI) solution (10 mg/L) 
was adjusted to 5.5 with HCl solution and/or NaOH solution. 
After which, the U(VI) removal efficiency was investigated 
at different time intervals (2, 5, 10, 15, 20, 25, 30, 60 and 
120 min) in different concentrations (0.05, 0.2, 0.4, 0.6, 0.8 
and 1.0 g/L), containing coexisting ions  (Mg2+,  Mn2+,  Ca2+, 
 SO4

2−,  HCO3
− and  PO4

3−) and initial pH (2, 3, 4.5, 6, 7, 8.5 
and 10). After reaction, solution samples were taken and 
filtered for the analysis of uranium content and pH value, 
and the calculation of U(VI) concentration, removal rate 
and adsorption amount. In order to reduce the experimental 
error, all experiments were carried out in triplicate and the 
average data was recorded. The removal capacity and effi-
ciency of U(VI) adsorbed at each time were calculated using 
the Eqs. (2) and (3), respectively.

(1)2Fe2+ + BH−

4
+ 2H2O = 2Fe + BO−

2
+ 2H2O + 4H+

where P is the removal capacity of U(VI) (%),  C0 is the 
initial concentration of U(VI) (mg/L);  Ce is the concentra-
tion of U(VI) in the solution after reaction (mg/L);  qe is the 
amount of U(VI) adsorbed on the adsorbent per unit mass 
(mg/g); V is the volume of the solution (L); m is the mass 
of the adsorbent (g).

Characterization

The working current and voltage of the X-ray diffractom-
eter (XRD, Bruker D8, Germany Bruker Technology Co., 
Ltd.) were 40 mA and 40 kV, respectively, and the 2θ 
range was 10°~80°. The magnetic properties were charac-
terized by vibrating sample magnetometer (VSM, ADE-
EV7) in the magnetic field range of − 30,000e~30,000e. 
The surface morphology and structure of the samples 
before and after the reaction were observed by high reso-
lution field emission scanning electron microscopy (SEM, 
SUPRATM5, Jieou Luke Trading Co., Ltd.). The surface 
element composition was detected by energy dispersive 
X-ray spectroscopy (EDS) and the surface element dis-
tribution map was obtained. The specific surface area of 
the material was measured by V-Sorb 2800P automatic 
specific surface area and pore size distribution analyzer. 
The chemical structure was identified by Fourier transform 
infrared spectroscopy (FT-IR, Nicolet 460, Semmerfeld 
Technology Co., Ltd.), and the functional groups were 
scanned in the range of 400~4000  cm−1. The chemical 
valence of the elements on the surface of the sample was 
determined by X-ray photoelectron spectroscopy (XPS, 
Escalab 250Xi, Thermo Fisher Scientific Co., Ltd.). The 
C 1 s peak at 284.8 eV was used to correct the binding 
energy.

(2)P = (C0 − Ce)/C0 × 100%

(3)qe = V(C0 − Ce)/m

Fig. 1  The process diagram of synthesis nZVI/BC600 in this experiment
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Results and discussion

High‑efficiency removal of U(VI) from aqueous 
solution

Experimental results on the removal of U(VI) with two types 
of adsorbents

We first compared the U(VI) removal rates of both 
Zn-BC600 and nZVI/Zn-BC600 under the same condition. 
The U(VI) removal rate and adsorption quantity of nZVI/
BC600 had significantly higher (99.68%) than that of BC600 
(90.5%), the removal rate of U(VI) reached 99.68% with 
nZVI/BC600 materials, while reached 90.50% with BC600.

We compared the effect of reaction time on the removal 
rate of U(VI) from the aqueous solution. As shown in 
Fig. 2a, U(VI) was rapidly removed within the first 25 min, 
even the removal capability of U(VI) reached 92.9% within 
2 min, which was due to the large driving force and fast 
adsorption rate in the initial stage of the reaction. As the 
reaction continued, the driving force of adsorption and 
concentration gradient gradually decreased, concentration 
gradient gradually decreased resulting in slower adsorption 
rate through microporous channels [64], and the reaction 
capacity slowed down gradually. The removal rate of U(VI) 
in the solution reached equilibrium at 30 min, with the high-
est removal rate reaching 99.3%.

Solution pH was an important parameter affecting U(VI) 
removal, as it not only determined the U(VI) speciation but 
also the properties of the adsorbent. Batch experiments were 
carried out at different initial pH values to investigate the 
effect of pH on U(VI) removal capacity of nZVI/BC600. As 
shown in Fig. 2b, nZVI/BC600 offered a significant removal 
capacity for U(VI) with the pH ranging from 4.5 to 8.5, indi-
cating that the weak acidic environment was more conducive 
to the removal of U(VI) by nZVI/BC600 [65, 66]. Because 
under acidic conditions, U(VI) in the solution mainly exists 
in the form of uranyl ion  UO2

2+, which was a dissociative 
state, and  UO2

2+ was easy to be adsorbed and reduced to 
 UO2 by nZVI/BC600. However, under alkaline conditions, 
nZVI/BC600 pair U(VI) would react with  OH− in the solu-
tion to form iron hydroxide precipitation, which precipitated 
on the surface of nZVI/BC600, blocking the adsorption/
reaction sites and hindering the electron transfer process, 
therefore, it was not conducive to the removal of U(VI).

Effects of varying nZVI/BC600 dosage (0.05 g/L to 
1.0 g/L) were investigated on the removal rate of U(VI). 
Figure 2c showed that U(VI) removal rate increased from 
82.27% to 99.68% with increasing amount of the dosage, and 

then reached a plateau. The removal rate of U(VI) increased 
significantly with increasing dosage up to 0.5 g/L, the quan-
tity of the dissolved iron was 404.858 mg/L. Partially dis-
solving the iron nanoparticles may become a limitation in 
the prepared adsorbent. When the dosage was less than 
0.5 g/L, the removal rate of U(VI) increased significantly 
by enhancing the dosage of nZVI/BC600, the maximum 
adsorption capacity was 19.94 mg/g, and the concentration 
of U(VI) in the solution was 0.032 mg/L, which met the 
emission standard. When the dosage increased, the active 
sites on the surface of nZVI/BC600 had reached the satura-
tion state, thus, the removal rate of material to U(VI) basi-
cally had begun to flatten out.

As can be seen from Fig. 2d, the removal rate of U(VI) 
reduced as the starting U(VI) concentration increased, the 
adsorption amount of U(VI) increased, and the uranium 
concentration of the solution increased after the reaction. 
The clearance rate of U(VI) was greater than 99% in all 
cases when the initial U(VI) content was less than 10 mg/L. 
When the starting concentration of U(VI) was 100 mg/L, 
the removal rate was 75.13% and the adsorption amount was 
150.27 mg/g. This was mostly due to a relative excess of 
nZVI/BC600 in the solution when the initial U(VI) concen-
tration was low, as well as a larger surface area and a greater 
number of active sites for adsorption reaction, resulting in a 
higher U(VI) removal efficiency. The relative rose in U(VI) 
concentration in solution creates enough active sites on the 
adsorbent's surface to adsorb more uranyl ions, and therefore 
the adsorption quantity increases. When the initial U(VI) 
concentration was larger, the number of active sites for the 
adsorption reaction on nZVI/BC600 was reduced, resulting 
in a slower removal rate.

Here six common ions were chosen to investigate their 
effects on the removal efficiency of U(VI), since the actual 
uranium-bearing wastewater often contains other kinds of 
co-existing ions. As can be seen in Fig. 2e, certain inhibi-
tory effects appeared on the removal of U(VI) by nZVI/
BC600 in the presence of divalent cations  (Mn2+,  Ca2+ and 
 Mg2+), which may be caused by their competitive sorption 
with uranyl ions towards nano zerovalent iron. The effect of 
three ions on the removal of U(VI) from nZVI/BC600 was 
 Ca2+ >  Mg2+ >  Mn2+. We observed that under this experi-
mental condition, regarding the effects of anions  (HCO3

−, 
 SO4

2− and  PO4
3−), removal rate of U(VI) was not affected by 

both  HCO3
− and  SO4

2− in the solution, whereas it decreased 
remarkably in the presence of  PO4

3− as shown in Fig. 2f. In 
addition, negative ion  PO4

3− had a great influence on it, the 
adsorption efficiency of U(VI) decreased sharply. The rea-
son for this phenomenon was that maybe  PO4

3− and  UO2
2+ 

formed a competitive relationship in the solution, thus 
reducing the nZVI/BC600 active adsorption sites, beyond 
that,  PO4

3− may also be complexed with  UO2
2+ to form 

complexes that were stable and difficult to react with nZVI, 

Fig. 2  Effect of reaction time a, initial pH b, dosage c and co-existing 
ions d on the removal of U(VI) by nZVI/BC600. g, h Kinetic model 
parameters for the adsorption of U(VI)

◂
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and uranyl phosphate complexes such as  UO2HPO4(aq), 
 UO2PO4

−,  UO2H2PO4
+ were formed by the complexation 

of  PO4
3− and  UO2

2+, greatly reduced the removal efficiency 
of U(VI).

In order to further study the kinetic behavior of adsorp-
tion of U(VI) on nZVI/BC600, the kinetic curves of adsorp-
tion of U(VI) on nZVI/BC600 were fitted and analyzed by 
pseudo-first-order and pseudo-second-order kinetic models, 
and the linear Eqs. (4) and (5).

where  qt (mg/g) is the adsorption capacity at time t;  qe (mg/g) 
is the adsorption capacity when the adsorption reaches the 
dynamic equilibriuam; and  k1  (min−1) and  k2 (g/(mg·min)) 
are the adsorption rate constants of the pseudo-first-order 
and pseudo-second-order models, respectively. Figure 2g, 
h showed that the pseudo-second-order model gave higher 
correlation coefficient  (R2 = 0.9999) than pseudo-first-order 
model  (R2 = 0.9098), and the  qe calculated from the model 
(19.881 mg/g) was very close to the experimental values 

(4)ln(qe − qt) = lnqe − k1t

(5)
t

qt
=

1

k2q
2
e

+
t

qe
t

(19.86 mg/g), which further indicated that the rate-limiting 
step in the adsorption process of U(VI) removal was chemi-
cal adsorption rather than physical diffusion. This result was 
consistent with that in the particle-grain model proposed by 
Vilardi et al. [67].

Comparison of U(VI) removal rates from previous literatures

Comparison of the uranium removal efficiency of zero-
valent iron materials supported by different biochar in 
Fig.  3. It suggested that nZVI/BC600 was a promising 
environmental material for the remediation of U(VI). When 
ρ(U(VI))initial = 10 mg/L, the adsorption equilibrium time of 
biochar carriers such as Fe-BC(900) [68] and GN-FeNPs/BC 
[69] for U(VI) was less than 97% removal efficiency after 
40 min of reaction for lower uranium concentrations. When 
ρ(U(VI))initial = 10~100 mg/L, the adsorption equilibrium 
time of synthetic biochar carriers such as Fe-CB [70] and 
nZVI/BC FeN/C(1:4-900) [71] for U(VI) was approximately 
120 min after the reaction, and the removal efficiency was 
less than 98% for higher uranium concentrations. Further-
more, The iron-carbon ratios of GN-FeNPs/BC and nZVI/
BC FeN/C(1:4-900) materials were 2:1 and 1:4, respectively, 
and this experiment synthesized the Fe:C ratio of nZVI/
BC600 was 1:5. The U(VI) removal effectiveness of nZVI/
BC600 was much greater (99.68%) within 0.5 h when com-
pared to other synthetic biochar loaded with zero-valent iron 
nanoparticles. Thus, the nZVI/BC600 presented a superior 
potential for environmental application by compared with 
the adsorption capacity of other materials (Table 1).

Removal mechanism of U(VI) and comparison

Based on the above analysis results, the adsorption mecha-
nism of U(VI) by nZVI/BC600 was proposed. Figure 4a 
was the magnetization curve of nZVI/BC600, indicating 
that nZVI/BC600 can be effectively separated from the 
solution at the end of uranyl absorption. Figure 4b was the 
XRD spectrum of nZVI/BC600, and the typical peaks were 
31.72°, 34.36°, 36.24°, 47.48°, 56.52°, 62.84°, 67.84°, 69°, 
corresponding to the  ZnCl2 (PDF#79-0206), respectively. 
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Fig. 3  Comparison of uranium removal efficiency between nZVI/
BC600 and other different biochar-supported zero-valent iron materi-
als

Table 1  Comparison of U(VI) 
removal capacity of nZVI/
BC600 with other zero-valent 
iron-containing biochar

Adsorbents Q max (mg⋅g−1) Removal rate (%) pH T (K) Time (h) References

LDH@nZVI 176.0 90.00 5 298 1 [24]
Fe-PANI-GA 350.47 – 5.5 298 0.3 [25]
CMC-ZVI 20.00 87.00 6 294 2 [26]
CMC–INP 322.58 – 5 298 30 [27]
MWCNTs/ZIF-8 200.77 93.36 5 298 1 [29]
NZVI/CFA 147.6 48.33 6 298 1 [30]
nZVI@SA/CMC-Ca 180.0 93.00 4 298 1 [36]
nZVI/BC600 19.94 99.68 5.5 298 0.5 This study
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The typical peaks were 31.72° and 34.4° corresponding to 
the  Fe3O4 (PDF#74-0748). The characteristic peaks of nZVI 
at 44.92° and 83° were observed from the figure, indicating 
that zero-valent iron exists in nZVI/BC600. It was indicated 
that the prepared adsorbent was modified with zero-valent 
iron nanoparticles.

To demonstrate the mechanism of U(VI) removal by 
nZVI/BC600, SEM and EDS characterization analysis were 
carried out for the materials before and after the reaction. 
The SEM images of BC600 were illustrated in Fig. 5a, b. 
The BC600 has a high porous structure and rough surface, 
which can provide adsorption sites for nZVI loading. It was 
observed that many substances of different sizes and shapes 
were distributed on the surface of activated carbon, which 
may be zinc particles formed on the surface of activated 
carbon during the modification process and it was consist-
ent with the results of others' research [57]. Figure 5c, d 
showed the SEM images of nZVI/BC600 after loading. We 
observed that there were many spherically similar particles 
on the surface of the material, which had small particle sizes 
and were evenly distributed on the surface of activated car-
bon with good dispersion. It was inferred that the load of 
nZVI was distributed uniformly on the surface of BC600, 
suggesting that the carrier of nZVI, BC600 effectively hin-
ders its aggregation and agglomeration [72]. Combined with 
EDS characterization diagram of nZVI/BC600 (Fig. 5g), the 
weight percentage of iron was 17.84%, and the appearance 
of iron further confirmed that nZVI has been successfully 
loaded on BC600. Figure 5e, f showed the SEM images of 
nZVI/BC600 after the reaction. Compared with the image 
of nZVI/BC600 before the reaction, new substances were 
generated on its surface with denser distribution after the 

reaction. In combination with EDS adsorption test, the ele-
ment composition on the surface of nZVI/BC600 was shown 
in Fig. 5g, h. Obviously, there were apparent adsorption 
peaks of U can be observed as expected, indicating that U 
had been successfully adsorbed onto the surface of nZVI/
BC. The weight ratio of iron (8.52%) was slightly lower than 
that before the reaction, indicating that iron participated in 
the reaction and was partially dissolved in the solution. Fig-
ure 5i showed the results of mapping of several elements (C, 
O, U and Fe) on the residual solid phase after the reaction. 
The appearance of U indicates that U or a substance of zero 
valence iron containing U was adsorbed on the surface of 
the material. Furthermore, it can be seen from Fig. 5i that 
the distribution of iron, uranium and oxygen elements on 
the surface of the residual solid after reaction were basi-
cally the same, indicating that some oxide was formed dur-
ing the removal of U(VI) by nZVI/BC600 and uranium was 
adsorbed or reduced on the surface.

Figure 6 showed the FT-IR spectra of activated carbon 
BC600 before nZVI modification and nZVI/BC600 before 
and after U(VI) adsorption. It can be seen from the figure 
that the main characteristic peaked of the material sur-
face before or after the reaction appear in 611~613  cm−1, 
1059  cm−1, 2907~2912  cm−1 and 3389  cm−1. A relatively 
broad peak at 3389  cm−1 of the sample before the adsorption 
test was attributed to stretching vibration of the -OH moiety 
[73]. The corresponding peak at 2907~2912  cm−1 was the 
C–H bond on saturated C, the stretching vibration peak of 
B-O bond in potassium borohydride at 1059  cm−1, and the 
peak of wave number at 611–613  cm−1 corresponded to the 
peak of Fe–O stretching vibration of iron oxide, which fur-
ther indicated that the nZVI was successfully loading on the 

Fig. 4  Magnetization curve a and XRD spectrum b of nZVI/BC600
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Fig. 5  SEM images of BC600 a, b, nZVI/BC600 before the reaction c, d, SEM images of nZVI/BC600 after the reaction e, f, EDS characteriza-
tion diagram of nZVI/BC600 before g and after h the reaction, and Mapping spectra i of C, O, U, Fe after the reaction
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activated carbon. The wave number 1510~1512  cm−1 was 
the C=C stretching vibration peak [74], the wave numbers 
1645~1649  cm−1 and 1732~1736  cm−1 were the C=O cor-
respond to stretching vibration peaks, which retained the 
original functional groups of activated carbon. The absorp-
tion peaks corresponding to –OH, C–O and C=O groups 
shifted to the lower wave number after adsorption, which 
was speculated to be mainly due to the combination with 
U(VI) groups in the adsorption process and related to the 
redox of U(VI).

In order to prove that uranium participates in the reaction 
and explore the change of valence state after reaction, XPS 
was a very standard method to characterize the oxidation 
states of uranium [75]. Figure 7a showed XPS survey spectra 
of the samples before and after the reaction, the peaks of 
carbon, iron, and uranium observed from the overall spec-
trum further indicate that the nZVI/BC600 successfully 
immobilized uranium in the aqueous solution. As shown in 
Fig. 7b, the U 4f high-resolution spectra indicated that the 
main peaks U  4f7/2 (~ 382.1 eV) and U  4f5/2 (~ 392.3 eV) 
could both decompose into two peaks, which indicated there 
were two chemical states of U in the solids. The binding 
energy separation between the primary spin–orbit split peaks 
and their associated satellite peaks were 8.2 eV and 3.7 eV. 
Compared to the results of Ilton’ research [76], the primary 
spin–orbit splitting peaks of U(VI) and U(V) had the cor-
responding satellites, and the binding energy distances 
between them were approximately 4.0 eV and 7.8~8.5 eV. 
The majority of investigations have discovered that during 
the Fe(II)-induced transition of ferrite to needle ferrite, the 
majority of the uranium in solution becomes lodged in the 
needle ferrite structure as U(V), indicating that U(V) was 

an effective retention pathway for U in iron oxides [77–80]. 
U(VI) was likewise reduced to U(V) by Fe(II) in the work 
of Xie’ research [75].

In addition, as shown in Fig. 7c, d, compared to before 
the reaction, the single C1s peak of the sample after reaction 
could be decomposed into three peaks at about 284.78 eV, 
285.82 eV and 288.53 eV, which correspond to C–C and 
C–H, C–O and O–C=O, respectively. Figure 7e, f showed 
high-resolution Fe 2p spectra of the samples before and after 
the reaction, the Fe  2p3/2 peaks of the sample at~711.09 eV 
was narrower and stronger than their Fe  2p1/2 peaks 
at~724.98 eV after the reaction. According to the study, for 
the crystal structure of iron oxyhydroxides, three quarters 
of the Fe(III) cations of the γ-compounds were octahedral 
and one quarter tetrahedral, while all Fe(III) cations of the 
α-compounds were octahedral [81]. As shown, the Fe  2p3/2 
spectra were well fitted by two peaks corresponding to octa-
hedral and tetrahedral Fe(III), which indicate that the Fe 
precipitates were likely to be γ-compounds. Figure 8 showed 
schematic diagram of the proposed mechanisms for the 
reduction and sorption of U(VI) by nZVI/BC600. Accord-
ingly, nZVI/BC600 transforms U(VI) to U(IV) or U(V), 
confirming that the major modes of action were adsorption 
and reductive immobilization.

Conclusions

In this study,  ZnCl2 was used to modify peanut shells acti-
vated carbon, and then nZVI was loaded on it to achieve 
efficient removal of U(VI) from wastewater. Through char-
acterization and a series of adsorption tests, the main conclu-
sions were as follows:

1. The results of batch experiments showed that the dos-
age of nZVI/BC600 was positively correlated with the 
U(VI) removal efficiency to reach an adsorption equi-
librium within 30 min. When the initial pH of the solu-
tion was 4.5~6, the dosage was 0.5 g/L, and the reaction 
time reached 30 min, the removal efficiency of U(VI) by 
nZVI supported by activated carbon was the best, with 
99.68% removal rate. The U(VI) adsorption behavior 
of nZVI/BC600 conformed to the pseudo-secondary 
adsorption model, and mainly consisted of chemical 
adsorption  (R2 = 0.9999).

2. Compared with the removal efficiency of U(VI) by nZVI/
BC600 and BC600. The removal efficiency of U(VI) by 
nZVI/BC600 was improved by 9.18%, with prominent 
advantage, which could meet the discharge standard for 
uranium-containing wastewater (ρ(U(VI)) ≤ 10 mg/L).

3. SEM–EDS and Mapping analyses were utilized in this 
investigation to demonstrate that nZVI was uniformly 
distributed on the surface of BC600 activated carbon, 
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which prevented agglomeration of zero-valent iron. Fur-
thermore, U(VI) was successfully adsorbed on the nZVI/
BC600 surface, resulting in surface complexes. FT-IR 
and XPS investigation suggested that functional groups 
such as -OH, C-O and C = O, zero-valent iron nanoparti-
cles, iron oxyhydroxides, and iron oxides and hydroxides 
were found to perform adsorption and reduction roles 

in the removal of U(VI) by nZVI/BC600 in FT-IR and 
XPS investigations. Therefore, the removal of U(VI) by 
nZVI/BC600 was occurred through U(VI) adsorption 
and its subsequent reduction to U(IV) or U(V).

To sum up, the  ZnCl2 modified activated carbon load-
ing nZVI composite material was economical and efficient, 

Fig. 7  XPS spectra of the samples before and after the reaction of nZVI/BC600 with U(VI)
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easy to operate and pollution-free. The material not only had 
developed pore structure, high specific surface area and high 
surface activity characteristics of activated carbon, but also 
reduced agglomeration and significantly improved the reduc-
tion and adsorption performance of nZVI, due to the swell-
ing and pore forming effect of  ZnCl2 modification. Beyond 
that, on account of the magnetic signature of nZVI, the 
material can be recovered and reused. Therefore, this com-
posite material has great application potential in the treat-
ment of low-concentration uranium-containing wastewater.
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