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Abstract
A study was conducted for the measurement of outdoor gamma dose rate (GDR) using a radiation monitor, based on Geiger-
Muller technique, in Karnal, Kaithal, and Kurukshetra districts of Haryana at 214 locations during post and premonsoon 
season. The γ-dose rate was found to be in the range of 70 ± 4–267 ± 13 nSv/h. The data was statistical analysed and dis-
tribution was interpolated using ArcGIS software. The annual effective dose (AED) due to outdoor γ-radiation in Karnal, 
Kaithal, and Kurukshetra districts was computed to be in the range of 0.086 ± 0.004–0.327 ± 0.016 mSv/y. The value of 
excess lifetime cancer risk (ELCR) was found to be in the range of 0.322 ×  10−3–1.228 ×  10−3.
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Introduction

The environment contains radioactive nuclides and radio-
activity ubiquitously that has existed ever since the world 
was formed [1–3]. Unstable nuclei produce radiation energy 
during the disintegration process, which travels across dif-
ferent materials and space. It may be discovered in the soil, 
rocks, plants, water, air, soil, plants, and even the bodies of 
living things. Daily human exposure to low-level radiation in 
the environment is caused by background radiation. Regard-
less of ethnicity, complexion, or locality, man is continu-
ally exposed to varying levels of background radiation [4]. 
Out of total natural source of exposure (including external 
exposure due to cosmic and terrestrial and internal expo-
sure through inhalation of radon and its progenies and inges-
tion) received by human beings, 37.5% is contributed by 
both cosmogenic and terrestrial gamma radiations [5]. The 

extraterrestrial component is caused by cosmic rays from 
space, whereas the terrestrial component is caused by the 
235U, 238U, and 232Th series of terrestrial radioactive nuclides 
as well as non-series 40K [5]. Moreover, terrestrial radiation 
is significantly impacted by the geological formation and 
geographic features of the location, extraterrestrial radia-
tion is dependent on latitude, altitude, and the solar cycle 
[5]. Since it is amplified by latitude and altitude while an 
airplane is in the air, the cosmic radiation flux is far stronger 
than it is at sea level. As a result, the cosmic ray exposure 
doubles every 1500 m above the earth’s surface [6]. The 
cosmic radiation dose rate is particularly high at aircraft 
altitude, and it should be regulated as a planned exposure 
condition for the flight crew and frequent flyers, according 
to a new European Commission recommendation [7, 8]. The 
average effective dose to flight crew per year, according to 
UNSCEAR (United Nations Scientific Committee on the 
Effects of Atomic Radiation), is 3 mSv/y [5]. The use of 
radioactive materials for medical reasons is a major factor 
in the growth of background radiation, which is produced 
by human activity [9]. Natural resource development and 
exploitation consistently raise background radiation levels 
in different areas, increasing the danger of exposure for the 
general public. The main source of radiation exposure is 
by far natural background radiation [10]. Radon gas is the 
major natural source of background radiation, contributing 
1.2 mSv annually, yet reports claim that it has little effect 
in an outdoor setting [11]. The γ-radiation from terrestrial 
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and cosmic sources (0.9 mSv) makes up the second-highest 
percentage of background radiation after radon [12]. Yet the 
variation in the dose rate of terrestrial γ-radiation is larger 
than that of radiation coming from cosmos, with the for-
mer contributing more to the level of background radiation 
overall [13]. The distribution of radioactive nuclides in the 
geological matrix and their variable concentrations in the 
earth’s crust are to blame for the regional variations in the 
amount of terrestrial radiation. The Decan lava basalt that 
may be found in South Gujarat and Maharashtra, India, has 
a negligible radioactive component. The Gangetic alluvial 
areas, which include areas of West Bengal, Bihar, and Uttar 
Pradesh, granite region of Andhra Pradesh have greater lev-
els of natural radioactivity [14]. As a result, some areas are 
known as high background areas in which people have con-
siderable γ-radiation exposure due to the high concentration 
of naturally occurring radioactive nuclides in the soil. Typi-
cally, the annual effective dose range falls between 1 and 
10 mSv [10]. The average estimated value of the populace’s 
exposure to γ-radiation on Earth is 59.00 nGy/h, whereas the 
γ exposure rate due to radiation from space is 32.00 nGy/h 
at sea level, according to the UNSCEAR [5, 15]. Radiation 
exposure to the human occurs within as well as outside of 
the body [16]. Radiation interactions harm cells, resulting 
in cell death and alterations that have major health conse-
quences (effects that can cause cancer and are hereditary 
in nature, malfunctioning organs and tissues, etc.) [5]. The 
principal cause of radiation’s long-term impacts on the 
body’s organs and tissues is DNA damage to the nucleus. 
The alterations in genes caused by radiation exposure are 
reflected in a variety of illnesses and cancer [5]. When the 
dose to the tissue increases, more cells become susceptible 
to damage, increasing the risk of stochastic consequences. 
As a result, it’s important to monitor the outdoor γ-dose rate 
that individuals are exposed to. In an effort to close this gap, 
the current study assessed the in-situ background γ-dose rate 
in outdoor settings in the Karnal, Kaithal, and Kurukshetra 
districts of Haryana. Public radiation exposure was evalu-
ated by estimating Annual Effective Dose and its potential to 
cause cancer by estimating Excess lifetime cancer risk. Few 
studies are available related to seasonal impacts on radia-
tion level. Seasonal variations on outdoor γ-dose rate were 
studied to see changes in radiation level owing to different 
seasons.

Study area

Karnal

The district is located on the western bank of the Yamuna 
River, which divides Uttar Pradesh from Haryana. It is lied 
in the north latitudes 29°25ʹ05ʺ and 29°59ʹ20ʺ and the east 

longitudes 76°27ʹ40ʺ and 77°13ʹ08ʺ (Fig. 1). Its elevation 
above sea level is around 240 m. The district has one of the 
highest densities of population in the whole state. The area 
features a substantial network of western Yamuna canals and 
is a component of the Indus-Ganges plain (Upper Yamuna 
Basin) [17]. The district’s climate is distinguished by the 
dryness of the air, an extremely hot summer, and a chilly 
winter. Four seasons can be used to categorise the entire 
year. Late November marks the beginning of the cold season, 
which lasts until the middle of March. The hot season fol-
lows it, and it lasts until the end of June, when the southwest 
monsoon starts to move across the area. It rains in the south-
west from July through September. October to December is 
considered the postmonsoon season. The district typically 
receives 582 mm of precipitation per year, which is meas-
ured across 32 rainy days [17]. The southwest monsoon, 
which lasts from July to September each year, is responsible 
for around 82.39% of the annual rainfall. The wettest month 
of the year is August, which has an average of nine rainy 
days and 221.5 mm of precipitation. The region is a part of 
the huge Indo-Gangetic plain and resembles an alluvial plain 
with no obvious topographical characteristics. The terrain 
has a generally southerly slope [17]. The ground descends 
southwestward towards the district’s northwest. There are 
various topographical depressions in the region, with Daha, 
south of Karnal, being the most notable one.

Kaithal

With a total size of 2317 square kilometers, Kaithal is the 
northeastern district of Haryana State. It is situated between 
latitudes 29°31ʹ and 30°12ʹ north and longitudes 76°10ʹ and 
76°42ʹ east (Fig. 1). Kurukshetra, Karnal, and Jind districts 
of Haryana are its neighbours in the northeast, eastern, west-
ern & southernly. The area typically receives 511 mm of 
precipitation per year. The southwest monsoon, which con-
tributes around 85% of the annual rainfall, starts moving in 
the final week of June and ends at the end of September [18]. 
The rainiest months are July and August. After western dis-
turbances and thunderstorms, the remaining 15% of rainfall 
occurs during the non-monsoon season. Physiographically, 
the area is distinguished by different characteristics such as 
upland plain and alluvial bed (flood plain) of rivers Ghaggar 
and Markanda. With a little slope to the southwest, the ter-
rain is nearly flat overall [18]. The Ghaggar and Markanada 
rivers serve as the district’s primary drainage systems. The 
district’s geological formations are unconsolidated alluvial 
deposits from the Quaternary period. Sand, silt, and clay 
along with kankar can be found in the alluvial deposits [18].
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Fig. 1  Map of studied districts and measurement locations
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Kurukshetra

Kurukshetra district is located in the northeastern region 
of the Haryana State and is bordered by the longitudes of 
76°26ʹ27ʺ and 77°07ʹ57ʺ in the east and latitude 29°53ʹ00ʺ 
and 30°15ʹ02ʺ in the north (Fig. 1). Apart from the mon-
soon season, when humid air of oceanic origin makes its 
way into the region, Kurukshetra’s climate is primarily dry 
with extremely hot summers and frigid winters. The district 
typically receives 582 mm of rainfall each year, which is 
dispersed unevenly around the region. The southwest mon-
soon, which contributes to roughly 81% of the annual rain-
fall, begins to enter in around the final week of June and 
ends at the end of September [19]. Rainfall is highest in July 
and August. Rest in the midst of western disturbances and 
thunderstorms, 19% of rainfall is recorded during the non-
monsoon season. Rainfall in the district tends to rise from 
the southwest to the northeast [19]. The region is an almost 
completely flat alluvial plain devoid of any obvious topo-
graphical characteristics. The extensive Indo-Gangetic allu-
vial plains include it. The plain’s typical altitude ranges from 
274 to 241 m above mean sea level. The district is covered 
with Quaternary geological formations, including Recent 
alluvial deposits from the massive Indus alluvial plains [19].

Material and methods

Measurement of γ‑dose rate

Grids of 6 × 6  km2 have been employed to organize the 
whole region for a comprehensive inspection of the γ-dose 
rate. Each grid was tested for outdoor γ-dose rate. The meas-
urement was done by holding the one meter above the earth 
surface and in open area (away from building or plant or 
any other potential influencer) [20]. 5 measurements were 
recorded, and the average dose rate was calculated to get a 
reliable dosage rate. The time difference between subsequent 
reading was 5–6 min. Measurement was taken two times 
(one in postmonsoon (Oct, 2018) and another one in pre-
monsoon (May, 2019) season) at a place on clear day. 214 
locations were sampled in three districts in the postmonsoon 
and premonsoon season individually. Using a GPS MAP 
(Model Garmin eTrex 20, USA) and ArcGIS 10.3 software, 
the places’ coordinates were recorded and placed on the dis-
trict map respectively (Fig. 1). A radiation monitor model 
PM-1405 (Polimaster, Belarus) that measures both terres-
trial and cosmic γ-radiation dose rates in nSv/h was used to 
assess the outdoor γ-radiation exposure. The energy range 
of the monitor for monitoring γ-radiation is 0.05–3.0 MeV, 
and the measurement range is 0.01 μSv/h–100 mSv/h. It has 
a dosage equivalent measuring accuracy of ± (20 + K/H) %, 
where H is the radiation rate in μSv/h and K is the coefficient 

which is 1.0 μSv/h.The five measurements were taken at 
a location with the radiation meter held one meter above 
the ground, and the average dose rate was calculated to get 
a reliable dosage rate [20]. The annual effective dosage 
and excess lifetime cancer risk were both calculated using 
the reported γ-dose rate. ArcGIS software used the IDW 
(Inverse Distance Weighted) approach to interpolate the 
γ-dose rate to understander the pattern of distribution [21].

Annual effective dose (AED)

To assess the impact of γ-rays on people, the annual effective 
dose of γ-radiation from the environment was calculated. 
Equation (1) was used to calculate the AED [5, 22]:

Here, GDR is the outdoor gamma dose rate in nSv/h, 
where T is the outside occupancy time in hours per year, 
which was estimated to be 1753.2 h/y (365.5 d × 24 h × 0.2) 
[23], and CC is the coefficient of conversion, which was used 
to be 0.70 Sv/Gy [5].

The UNSCEAR recommends these values for converting 
the absorbed radiation into the effective dose received by 
adults (the conversion coefficient) and then spending time 
outside (occupancy factor) [5].

Excess lifetime cancer risk (ELCR)

The cancer risk assessment determines the possible carci-
nogenic implications according to the probability of cancer 
incidence in a population during a certain lifespan. In order 
to calculate lifetime excess lifetime cancer risk, the follow-
ing Eq. (2) was employed [5]:

Here, AED is used as annual effective dose, ALD is the 
mean age in India, which as of 2011 was 65.80 years [24], 
and RF is used as the risk factor, which as per the Interna-
tional Commission on Radiation Protection was 0.057  Sv−1 
[25].

Statistical analysis

The data were statistically analyzed by using Microsoft 
Excel and Origin 2019b software. The statistical parameter 
such as mean, median, minimum, maximum, and histogram 
was performed by Microsoft Excel. Statistical test includ-
ing Shapiro–Wilk test for normality testing, Kruskal–Wallis 
test for checking the hypothesis of the difference between 
radiation level of different districts, Mann–Whitney test to 
check the significant impact of seasons on radiation level 
was performed using Origin 2019b [26].

(1)
AED(mSv∕y) = (GDR (nSv∕h) × T (h∕y ) × CC (Sv∕Gy ))

(2)ELCR = (AED (mSv∕y) × ALD(y) × RF(1∕Sv ))
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Result and discussion

The outdoor γ-dose rate in Karnal (n = 76), Kaithal (n = 77), 
and Kurukshetra (n = 61) varied from 91 ± 5–190 ± 10 
nSv/h, 79 ± 4–175 ± 9 nSv/h, to 89 ± 4–137 ± 7 nSv/h in 
postmonsoon while it was 70 ± 4–174 ± 9, 82 ± 4–267 ± 13, 
and 77 ± 4–196 ± 10 in premonsoon season respectively. 
The mean and median values of outdoor γ-dose rate in 
Karnal (n = 76), Kaithal (n = 77), and Kurukshetra (n = 61) 
were estimated 121.63 ± 6.08 nSv/h and 118.00 ± 5.90 
nSv/h, 109.09 ± 5.45 nSv/h and 106.00 ± 5.30 nSv/h, 
114.82 ± 5.75 nSv/h, and 117.00 ± 5.85 nSv/h in post-
monsoon season while 111.37 ± 5.56 and 109 ± 5.45, 
134.48 ± 6.72 and 126 ± 6.30, 104.3 ± 5.22 and 100 ± 5.00 
in premonsoon season respectively. The detailed descrip-
tion of statistical parameters of outdoor γ-dose rate and 
their corresponding AED and ELCR in both seasons is 
shown in Table 1. The mean value of outdoor γ-dose rate 
level in all studied districts for both seasons was higher 
than the mean value of outdoor γ-dose rate reported for 
India i.e., 88 nGy/h (reported average terrestrial outdoor 
radiation for India i.e., 56 nGy/h + average cosmic com-
ponent throughout the world i.e., 32nGy/h = 88 nGy/h), 
and worldwide reported mean value i.e., 91 nGy/h (59 
nGy/h + 32nGy/h = 91 nGy/h) [5, 27, 28]. 8 locations in 
premonsoon of Karnal, 8 locations in postmonsoon, 1 
location in premonsoon of Kaithal, and 13 locations of 
premonsoon of Kurukshetra, γ-dose rate was less than the 
reported mean dose for India i.e., 88 nGy/h. 10 locations 

in premonsoon of Karnal, 11 locations in postmonsoon, 
1 location in premonsoon of Kaithal, and 1 location in 
postmonsoon and 16 locations of premonsoon of Kuruk-
shetra, γ-dose rate was less than the reported mean dose 
for world i.e., 91 nGy/h. The mean value of γ-dose rate 
was maximum in the case of Kaithal and minimum in the 
case of Kurukshetra. The decreasing order of mean values 
for studied districts was Kaithal > Karnal > Kurukshetra. 
However, except at two spots in Kaithal during premon-
soon, all measurement sites were observed to have outdoor 
γ-dose rate within the typical range of 20–190 nSv/h, sug-
gested by UNSCEAR, 2000 as shown in Figs. 2, 3, 4 [5]. 
Except for the case of the premonsoon of Kurukshetra, 
the outdoor γ-dose rate at the majority of locations was 
observed to lie in the range of 101–150 nSv/h (Figs. 2, 
3, 4). The radiation profile of northern parts of India has 
a high radiation. Unconsolidated dunes and river sands, 
which are all byproducts of the disintegration of Hima-
layan rocks and are moved by river systems, are together 
referred to as gangetic alluvium [14]. The geology of the 
investigated all three districts, which is characterized by 
gangetic alluvium of quaternary age (detailed in study 
area) and has been found to contain greater natural radio-
activity, may be accountable for the higher value of out-
door γ-dose rate [13, 14, 29]. Although U and Th together 
make up the majority of natural radiation, potassium is 
the dominant source of ambient radiation in the regions 
[14]. The mean value of outdoor γ-dose rate was higher 
than the median value in all districts except for postmon-
soon season of Kurukshetra indicating the positive skewed 

Table 1  The mean, minimum, 
maximum, and median of 
outdoor GDR, AED, and ELCR

PSM postmonsoon, PRM premonsoon

Districts Parameters Mean Min Max Median

Karnal GDR (PSM)(nSv/h) 121.63 ± 6.08 91 ± 5 190 ± 10 118 ± 5.90
GDR (PRM)(nSv/h) 111.37 ± 5.56 70 ± 4 174 ± 9 109 ± 5.45
AED (PSM)(mSv/y) 0.149 ± 0.007 0.112 ± 0.006 0.233 ± 0.012 0.145 ± 0.007
AED (PRM)(mSv/y) 0.137 ± 0.007 0.086 ± 0.004 0.213 ± 0.011 0.134 ± 0.007
ELCR ×  10−3 (PSM) 0.559 ×  10−3 0.419 ×  10−3 0.874 ×  10−3 0.543 ×  10−3

ELCR ×  10−3 (PRM) 0.512 ×  10−3 0.322 ×  10−3 0.8 ×  10−3 0.501 ×  10−3

Kaithal GDR (PSM)(nSv/h) 109.09 ± 5.45 79 ± 4 175 ± 9 106 ± 5.30
GDR (PRM)(nSv/h) 134.48 ± 6.72 82 ± 4 267 ± 13 126 ± 6.30
AED (PSM)(mSv/y) 0.134 ± 0.007 0.097 ± 0.005 0.215 ± 0.011 0.13 ± 0.007
AED (PRM)(mSv/y) 0.165 ± 0.008 0.101 ± 0.005 0.327 ± 0.016 0.155 ± 0.008
ELCR ×  10−3 (PSM) 0.502 ×  10−3 0.363 ×  10−3 0.805 ×  10−3 0.488 ×  10−3

ELCR ×  10−3 (PRM) 0.619 ×  10−3 0.377 ×  10−3 1.228 ×  10−3 0.58 ×  10−3

Kurukshetra GDR (PSM)(nSv/h) 114.82 ± 5.74 89 ± 4 137 ± 7 117 ± 5.85
GDR (PRM)(nSv/h) 104.3 ± 5.22 77 ± 4 196 ± 10 100 ± 5.00
AED (PSM)(mSv/y) 0.141 ± 0.007 0.109 ± 0.005 0.168 ± 0.008 0.143 ± 0.007
AED (PRM)(mSv/y) 0.128 ± 0.006 0.094 ± 0.005 0.240 ± 0.012 0.123 ± 0.006
ELCR ×  10−3 (PSM) 0.528 ×  10−3 0.409 ×  10−3 0.63 ×  10−3 0.538 ×  10−3

ELCR ×  10−3 (PRM) 0.48 ×  10−3 0.354 ×  10−3 0.902 ×  10−3 0.460 ×  10−3
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nature of data. The outdoor γ-dose rate data was negatively 
skewed for postmonsoon season of Kurukshetra. The data 
distribution was checked using the Shapiro–Wilk test, 
detailed in Table 2.

The normality of outdoor γ-dose rate for postmonsoon 
and premonsoon data of Karnal was tested at a 5% level of 
significance and estimated p-values were 3.16 ×  10−4 and 
8.61 ×  10−5 respectively, hence rejecting the null hypothesis 
and inferred that the sample was not taken out from normally 
distributed population.

The p-value of outdoor γ-dose rate for postmonsoon 
and premonsoon in the case of Kaithal was 0.00461 and 
9.85 ×  10−8 and in the case of Kurukshetra was 0.029 and 
2.38 ×  10−6 respectively, indicating the rejection of the null 
hypothesis. Hence it was inferred that outdoor γ-dose rate 
data for both seasons for Kaithal and Kurukshetra was not 
normally distributed. No district data was observed to fol-
low normal distribution which indicated the inapplicability 
of the parametric test. significance difference between out-
door γ-dose rate for all three districts was tested using the 
Kruskal–Wallis test at a 95% level of confidence. The esti-
mated p-value was 3.93 ×  10−17 which inferred to reject the 
null hypothesis. It means that the samples were significantly 
different from each other and hence did not come from the 
same population.

Interpolation maps for outdoor γ‑dose rate

According to Burrough and McDonnell (1998) and Jasrotia 
and Kumar (2014), GIS-based spatial analysis is proven to 
be a powerful approach and an ideal tool for producing the 
required outcomes for the geographical distribution of vari-
ous environmental factors [30, 31]. Also, it helps with the 
analysis of trends in water, air, and soil quality and other 
kinds of natural radiation. In several studies, the spatial rep-
resentation of the γ-radiation dose rate was mapped using 
remote sensing and GIS techniques to understand the dis-
tribution pattern within different types of geographical set-
ups [32–34]. For the present study, geographic analysis was 
performed using ArcGIS 10.8 software. The samples were 
plotted using GPS-based coordinates, and the distribution 
was made using GIS interpolation techniques. IDW method 

was employed to interpolate the data from point date to con-
tinuous distribution map. The spatial distribution of Outdoor 
γ-dose rate for both seasons in all three districts is shown 
in Figs. 5, 6, 7. In the studied districts, no discernible trend 
was seen.

The outdoor γ-dose rate level in studied districts was 
compared with previous studies conducted in India and 
across the world. Some studies focused on outdoor γ-dose 
rate conducted in India and around the world are given in 
the Table 3. The outdoor γ-dose rate was reported as maxi-
mum in the case of Kaithal and minimum in the case of 
Karnal. The outdoor γ-dose rate in Karnal and Kurukshetra 
was somewhat equal reported γ- dose rate in Bhilai, Chhat-
tisgarh; Durg, Chhattisgarh, India and Panchkula, Haryana, 
India; Enugu urban areas, Enugu state, Nigeria. The γ-dose 
rate in Kaithal was somewhat similar to Balod, Chhattisgarh; 
Anand, Bharuch, Vadodara, and Narmada, Gujarat, India. 
Ranges of γ-dose rate in the studied district were some-
what higher than the γ-dose rate reported along the bank 
of Alaknanda and Gange river, India; Kuwait; Thailand; 
Algiers Province, Algeria but somewhat lesser than γ-dose 
rate reported in Kanniyakumari district Ramanathapuram, 
Virudhunagar, Tirunelveli, and Thoothukudi districts of 
Tamilnadu, India; Dornogobi Province, southeastern Mon-
golia. The details of outdoor γ-dose rate with mean value 
in different states and across the world are given in Table 3.

Seasonal variability in outdoor γ‑dose rate

The seasonal variation in outdoor γ-dose rate was evaluated 
by measuring the γ-dose rate in postmonsoon and premon-
soon seasons. The mean value of outdoor γ-dose rate for the 
postmonsoon season in Karnal and Kurukshetra was higher 
than premonsoon. This might be a result of radionuclides 
like 214Pb and 214Bi that are carried to the ground surface by 
the scavenging action of rain throughout the post-monsoon 
period [45–48]. Precipitation greatly increases the ground 
surface γ-dose rate intensity. Precipitation included radio-
nuclides including 7Be, 212Pb, and 210Pb [47]. Melintescu 
et al. (2018) claim that precipitation has the most impact on 
ambient γ-dose, increasing its levels [49]. But the trend in 
the case of Kaithal was opposite. The mean outdoor γ- dose 

Table 2  Normality test 
parameters of GDR data

Districts DF Standard 
deviation

SE of mean Statistic p-value Decision at level (5%)

Karnal (PSM) 76 19.30 2.21 0.92858 3.61E-04 Reject normality
Karnal (PRM) 76 22.51 2.58 0.91467 8.16E-05 Reject normality
Kaithal (PSM) 77 17.74 2.02 0.95055 0.00461 Reject normality
Kaithal (PRM) 77 29.66 3.38 0.83768 9.85E-08 Reject normality
Kurukshetra (PSM) 61 12.00 1.53 0.95654 0.02984 Reject normality
Kurukshetra (PRM) 61 21.22 2.72 0.84868 2.38E-06 Reject normality
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rate level for premonsoon in Kaithal was higher as compared 
to postmonsoon. Guagliardi et al. (2016) observed a similar 
tendency in which regions with higher radioactivity readings 

in the summer tend to have much lower values in the winter, 
suggesting that soil moisture plays a significant role in influ-
encing field measurements [50]. In fact, at that time, more 

Fig. 5  Interpolation map of outdoor GDR in Karnal district in postmonsoon and premonsoon season

Fig. 6  Interpolation map of outdoor GDR in Kaithal district in postmonsoon and premonsoon season
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frequent rainfall and cooler temperatures encourage a higher 
moisture availability in the soil, which alters the behavior of 
the soil with regard to γ-ray measurement. This may encour-
age the leaching of some elements, including radionuclides, 
but it is more likely to create a physical barrier that pre-
vents the detection of γ-rays. Statistical difference between 
outdoor γ-dose rate for postmonsoon and premonsoon sea-
son was analysed. As data was not normally distributed. 

Therefore, a non-parametric Wilcoxson signed rank test was 
applied to see the significant difference between the seasonal 
measurement of all three districts. The estimated p-value at 
a 5% level of significance for postmonsoon and premonsoon 
of Karnal district was 3.87 ×  10−4, indicating that there was 
a significant difference between outdoor γ-dose rate for post 
and premonsoon seasons in Karnal district. Similarly, the 
estimated p-value for the difference between outdoor γ-dose 

Fig. 7  Interpolation map of 
outdoor GDR in Kurukshetra 
district in postmonsoon and 
premonsoon seasons
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rate for post and premonsoon in Kaithal and Kurukshetra 
was 1.156 ×  10–9 and 1.431 ×  10–4 respectively indicating the 
outdoor γ-dose rate distribution for both seasons in Kaithal 
and Kurukshetra was significantly different at 95% level of 
confidence.

AED and ELCR

The AED values were computed based on the γ-dose rate 
measured. A detailed description of the statistical parameters 
of AED and ELCR for both seasons is given in Table 1. 
The AED value was observed to vary between 0.112 ± 0.0
06–0.233 ± 0.012 mSv/y during postmonsoon and 0.086 ± 
0.004–0.213 ± 0.011 mSv/y during premonsoon of Karnal 
district. The postmonsoon and premonsoon AED in Kaithal 
and Kurukshetra was estimated to range between 0.097 ± 
0.005–0.215 ± 0.011 mSv/y, 0.101 ± 0.005–0.327 ± 0.01
6 mSv/y and 0.109 ± 0.005–0.168 ± 0.008 mSv/y and 0.0
94 ± 0.005–0.240 ± 0.012 mSv/y. The mean value of AED 
(Table 1) in postmonsoon of Karnal, premonsoon of Kaithal 
locations is higher than the worldwide mean value of AED 
of 0.148 mSv/y (0.07 mSv/y + (0.39 mSv/y *0.2)) while in 
rest districts it is lower than world average value [5, 27]. In 
Karnal, 42% Locations in postmonsoon and 21% location 
in premonsoon, the AED value was higher than reported 

average value of AED by UNSCEAR [5]. In case of Kaithal 
26% Locations in postmonsoon and 65% locations in pre-
monsoon, the AED value was higher than reported average 
value of AED. Similarly, in Karnal, 36% Locations in post-
monsoon and 11% location in premonsoon, the AED value 
was higher than reported average value of AED. This con-
firms that background γ- radiation levels in Karnal, Kaithal, 
and Kurukshetra are relatively high, which is a sign of a radi-
ation-contaminated environment. However, the AED value 
is less than the value reported in High background areas of 
India and the world. The calculated AED values fell within 
the 0.3–0.6 mSv/y range reported worldwide [5]. Moreo-
ver, the current levels are below the 1.0 mSv/y suggested 
permissible limits for exposure to the general population 
[5, 25]. The ranges of ELCR during both seasons in all stud-
ied districts are given in Table 1. The mean value of ELCR 
during both seasons in all three districts is higher than the 
worldwide reported mean value of ELCR of 0.29 ×  10−3[51]. 
The mean number of anticipated cancer cases in Karnal, 
Kaithal, and Kurukshetra for post and premonsoon season 
were 55, 51; 50, 61; and 52, 48 per hundred thousand people 
respectively. The highest anticipated cancer cases were in 
Kaithal and the lowest was in Kurukshetra. The probability 
of cancer cases in the three districts is in decreasing order 
as Kaithal > Karnal > Kurukshetra.

Table 3  Range and the mean value of outdoor GDR in some places of India and the world

S. No Ranges of γ-dose rate 
(nSv/h)

Mean GDR
(nSv/h)

Locations References

National studies
1 81.33–144 100.83 Along Alaknanda and Gange river, India [29]
2 108–172 136.8 Bhilai, Chhattisgarh [35]
3 103–201 143.6 Balod, Chhattisgarh [36]
4 117–185 154 Durg, Chhattisgarh, India [37]
5 103–271 146.5 Balod, Chhattisgarh [38]
6 58–3880 276 Kanniyakumari district [39]
7 85–216 135.5 Panipat District, Haryana [13]
8 35–335 89 Ramanathapuram, Virudhunagar, Tirunelveli, and Thoothukudi 

districts of Tamilnadu, India
[40]

9 70–168 97 Panchkula, Haryana, India [10]
10 74–287 149.5 Anand, Gujarat, India [27]
11 40–278 128 Bharuch, Gujarat, India [27]
12 19–287 152.5 Vadodara, Gujarat, India [27]
13 40–210 128 Narmada, Gujarat, India [27]
International studies
1 14–279 nGy/h – Mountainous locations in the western region of Saudi Arabia [41]
2 31–59 46.5 Kuwait [42]
3 45–450 nGy/h – Dornogobi Province, southeastern Mongolia [43]
4 77–180 124.92 Enugu urban areas, Enugu state, Nigeria [4]
5 8–141 41 Thailand [44]
6 14.3–114.3 47.70 Algiers Province, Algeria [23]
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Despite the fact that radiation hormesis is supported by 
a considerable amount of empirical evidence and statisti-
cally significant epidemiological investigations [52]. There 
are reports of several epidemiological studies that show that 
exposure to Low levels of radiation (less than 100 mSv/y) 
has reportedly had a good impact on health [53]. The data-
base of about 700,000 shipyard employees included nearly 
108,000 nuclear workers with exposure of around 20 years 
in the investigation of nuclear shipyard workers, which is 
perhaps the greatest proof that exposure to low levels of 
ionizing radiation is safe. To examine the mortality rates 
owing to various causes, data from three study groups i.e., 
33,352 non-nuclear workers (NNW), 10,462 nuclear workers 
with dose equivalents (DE) under 5 mSv, and 28,542 nuclear 
workers with DEs more than 5 mSv was gathered. According 
to the gathered data, it was observed that nuclear employees 
expire from all causes at a lower rate than non-nuclear work-
ers. Compared to employees who weren’t exposed, exposed 
workers’ overall mortality rate was just 76% [54].

Therefore, an epidemiological survey needs to be done to 
get a clear idea about the actual effect due to the radiation 
in the study region.

Conclusion

The comprehensive measurement of outdoor γ-dose rate at 
214 locations of three districts (Karnal, Kaithal, and Kuruk-
shetra) during postmonsoon and premonsoon seasons was 
employed to estimate seasonal impacts on outdoor γ-dose 
rate and health risks to the exposed population. The mean 
value of outdoor γ-dose rate in all three districts was higher 
than the average reported value of India i.e., 88 nGy/h, 
and the world i.e., 91 nGy/h. This may be attributed to the 
geology of the studied districts which is characterized by 
gangetic alluvium of quaternary age (detailed in study area) 
and has been found to contain greater natural radioactivity, 
may be accountable for the higher value of outdoor γ-dose 
rate in the study area. The outdoor γ-dose rate in all three 
districts during post and premonsoon season were within 
the suggested range of 20–190 nSv/h, given by UNSCEAR, 
2000 except at two locations of Kaithal during pre-monsoon 
season. The mean value of radiation level in postmonsoon 
season was higher than premonsoon in the case of Karnal 
and Kurukshetra but the trend was opposite in the case of 
Kaithal. The normality of γ-radiation data was rejected for 
both seasons in all three districts which were tested by Shap-
iro–Wilk test. Kruskal–Walslis test confirmed the significant 
difference between the radiation level of the three districts. 
The season had significant impacts on outdoor γ-radiation 
levels, tested using the Mann–Whitney test. At various loca-
tions in both season the AED value was higher than reported 
mean value of AED i.e., 0.148 mSv/y throughout the world. 

ELCR in all three districts during each season was higher 
than the worldwide reported mean of ELCR i.e., 0.29 ×  10−3. 
Some studies reported the hormetic effects of low levels of 
radiation. Therefore, a health survey is required to get the 
actual status of people’s health and its correlation with the 
radiation level of the area.
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