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Abstract
In this study, 21 sediment samples were collected from twenty-one locations along the North Chennai to Pondicherry coastal 
area, India to estimate the activity concentration of 238U, 232Th, and 40K using a NaI(Tl) γ-ray detector. The average activity 
concentrations for 238U, 232Th, and 40K are 50, 32, and 543 Bq  kg−1, and the mean value of radiological parameters like dose 
rate (124 nGy  h−1), excess lifetime cancer risk (0.53 ×10–3  mSvy−1), and annual gonadal dose equivalent (457 μSv  y−1) are 
exceeds the world permissible limit. Pearson correlation analysis was performed on the radiological variables to understand 
the relation between them.
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Introduction

In an environment, human beings are harmed by radiation 
from three types of isotopes: radioactive isotopes (naturally 
occurring isotopes of the earth's crust), cosmogenic iso-
topes, and manmade isotopes [1, 2]. Particularly, in natu-
ral radioisotopes, the uranium series originates from 238U, 
the thorium series originates from 232Th, and the actinium 
series originates from 235U. There is most important sin-
gly occurring radionuclide is 40K because it is a gamma-ray 
emitter in addition to beta decays and therefore contributes 
significantly to gamma radiation exposure [3]. Exposure 
of ionizing radiation to humans is due to the presence of 
a significant amount of natural radionuclides 238U, 232Th, 
and 40K and their progenies in the environmental matrix 
such as soil, sediment, rock, water, etc. The concentration 
of these radionuclides is enhanced along the coastal area 
due to natural activities such as the leaching from parent 
rocks through both erosion and dissolution and anthropo-
genic activities such as nuclear accidents, nuclear weapons, 

mining, fertilizers derived from phosphate rock, drilling, 
transportation, and burning of fossil fuels [4, 5]. Such an 
enhanced activity concentration (monazite-bearing sands) 
was identified along the east coastal zones of India namely 
Orissa, Tamil Nadu, and Kerala.

In the coastal area, sediments are inorganic silicon-rich 
coarse materials that are derived from weathering of par-
ent rocks. They may have deposited to their place after 
transport by winds, rivers, and glaciers due to the actions 
of waves and currents [6]. Also, mineral tracers are depos-
ited and distributed throughout the beach during rainfall 
and tsunamis. This causes the accumulation of radioac-
tive minerals and hence natural radioactivity increases 
in the area [7]. The coastal area has attracted all types of 
people across the world. With high accessibility, people 
settle on the coasts to live as well as leisure, recreational 
activities, and tourism [8]. Assessment of natural radio-
activity is the most important work towards the health 
concern because it could cause some health issues such 
as bone, liver, lung, and breast cancers, anemia, and cata-
racts [9, 10]. Especially, cancer tissues are introduced into 
the human body by exposure to gamma radiation from 
238U, 232Th, and 40K. For these reasons, there is a need to 
measure and monitor the natural radioactivity along the 
coastal area. Recently, many potential researchers have 
carried out extensive work on the natural radioactivity 
level on beaches across the world [11–23], while the data 
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about the natural radioactivity of beach sand along the 
North Chennai to Pondicherry coastal area, India is not 
available. A few regions of India's western coast are also 
high in natural radioactivity, while the country's southeast 
coast is known as one of the locations with the highest 
natural background radiation levels around the world. 
Despite the abundance of studies conducted around the 
world, there is a scarcity of radionuclide research on the 
North Chennai to Pondicherry coastal area. Therefore, the 
current investigation focused on radioactivity in coastal 
sediments because it might have a very large background 
level due to geology of the location. Hence, the main 
objectives of the present work are (i) to determine the 
activity concentration of radionuclides (238U, 232Th, and 
40K) in the North Chennai to Pondicherry coastal sedi-
ments by NaI(Tl) gamma-ray spectrometry, (ii) to assess 
the radiological risks in coastal sediments by calculating 
the radium equivalent activity  (Raeq), gamma dose rate 
 (DR), annual effective dose equivalent (AEDE), external 
hazard index  (Hex), excess lifetime cancer risk (ELCR), 
annual gonadal dose equivalent (AGDE), (iii) to assess 
the relationship between the radioactive variables using 
Pearson correlation analysis.

Study area

The sprawling study area of ⁓160 km in length was sur-
veyed along the North Chennai to Pondicherry coastal area 
for sample collection. The sampling points along the study 
area are shown in Fig. 1. The cumulative study area spread 
from Kalanji (13°19ʹ8.94ʺN; 80°20 ʹ 33.7554ʺE) Thiru-
vallur district of Tamil Nadu to Kalapet (12°0ʹ53.496ʺN; 
79°51ʹ41.1474ʺE) near Pondicherry university at Pondi-
cherry. This area covers mainly 4 coastal districts of Tamil 
Nadu such as Tiruvallur, Chennai, Chengalpattu, and Vil-
lupuram. During the last few decades, the study area is fully 
dominated by tourism, transportation, seaports, urbani-
zation, industry, and aquaculture activities. It also covers 
some famous beaches like Mahabalipuram Beach (A his-
torical place), Edward Elliot's Beach, and Marina Beach 
(2nd longest urban beach in the world) which is visited by 
many tourists [24, 25] from across the world, and also has 
an active atomic power station. The Palar River runs into 
the Bay of Bengal at Vayalur, approximately 70 km south 
of Chennai (near the Indira Gandhi Centre for Atomic 
Research–IGCAR, Kalpakkam) [26]. Thus, the study area 
pays more attention to measuring the level of radiation expo-
sure due to the presence of natural radionuclides.

Fig. 1  A map of the North Chennai to Pondicherry, India (Study area) showing the sampling points
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Experimental methods

Sample collection and preparation

The 21 sediment samples were collected from twenty-
one locations along the North Chennai to Pondicherry 
coastal area, India (from the period March–July 2022). 
The sampling pathway covers an interval of 5–10 km for 
urban coasts and 10–15 km for non-urban coasts. The geo-
graphical coordinates of each location were noted using 
a hand-held Garmin global positioning system and given 
in Table 1. Each location was 0–20 m away from the high 
tide and (Fig. 1), about 2 kg of sediment samples were 
collected at 40 cm depth from the surface level using a 
stainless-steel T-rod mud auger [27]. The collected sam-
ples were placed in polythene covers and properly labelled 
and transported to the laboratory.

Other unwanted substances like stones, shells, pebbles, 
and macro impurities present in sediment samples were 
completely removed. In order to obtain a constant weight, 
samples were allowed to dry under direct sunlight, and also 
each sample was oven-dried at 110 °C for 2 h to remove 
the moisture content. Before radionuclides measurements, 
samples are mashed, dehydrated, and sieved, then samples 
were tightly stuffed with a radon-impermeable 250-cc vol-
ume of trap-shaped polyethylene containers with uniform 
size (dia: 60 mm; height: 120 mm) and hermetically sealed 

for 2 fortnights to reach secular equilibrium between 238U, 
and 232Th series and their respective progenies [28, 29]. 
It was assumed 222Rn, and 220R could not escape from the 
containers.

γ‑ray spectrometry

The gamma-ray spectrometry equipment at the sophisticated 
“Radiation physics laboratory” in the Department of Phys-
ics, Sri Sivasubramaniya Nadar College of Engineering, 
Chennai, India, was used for this research. A gamma-ray 
spectroscopy system consists of a Sodium Iodide Thallium 
(NaI-Tl) scintillation detector with a 98% effectiveness in 
counting which is paired with a 1024-channel computer-
ized multi-channel analyzer (MCA). A (NUCLEONIX, 
GR611M) detector with Anuspect (version 1.0) software 
was employed for these measurements, with a resolution for 
the energy of FWHM is 3.398 keV at 1332 keV of gamma 
line for 60Co. The detector and pre-amplifier were placed 
inside a lead shield containing an inner concentric cylin-
der of Cu foils (0.3 mm) to absorb X-rays generated in the 
lead [28]. This entire structure was contained under a 15 cm 
squared lead shield to minimize ambient noise in the system. 
For efficiency calibration, the approved Standard Interna-
tional Atomic Energy Agency (IAEA) sources of reference-
grade materials such as RG-U (4940 ± 30 Bq  kg−1), RG-Th 
(3250 ± 90 Bq  kg−1), and RG-K (14,000 ± 400 Bq  kg−1) were 
used [30–32]. The energy calibration was accomplished by 

Table 1  Geographical 
co-ordinates of the sampling 
locations along the study area

Sl. No Sampling locations Sample ID Latitude Longitude

1 Kalanji Beach S1 13°19ʹ8.94ʺN 80°20ʹ33.76ʺE
2 Thazhankuppam Beach S2 13°13ʹ24.08ʺN 80°19 ʹ 42.01ʺE
3 Thiruvottiyur Beach S3 13°10ʹ9.70ʺN 80°18ʹ40.86ʺE
4 Kasimedu Beach S4 13°7ʹ22.37ʺN 80°18ʹ1.40ʺE
5 Marina Beach S5 13°3ʹ17.71ʺN 80°17ʹ5.28ʺE
6 Besant Nagar Beach S6 12°59ʹ52.84ʺN 80°16ʹ21.18ʺE
7 Pattinapakkam Beach S7 13°1ʹ28.56ʺN 80°16ʹ44.58ʺE
8 Neelankarai Beach S8 12°56ʹ5.61ʺN 80°15ʹ42.16ʺE
9 Injambakkam Beach S9 12°55ʹ7.68ʺN 80°15ʹ21.53ʺE
10 Panaiyur Beach S10 12°53ʹ31.27ʺN 80°15ʹ12.85ʺE
11 Kanathur Beach S11 12°51ʹ28.15ʺN 80°14ʹ57.95ʺE
12 Semmanchery Kuppam Beach S12 12°46ʹ35.90ʺN 80°15ʹ11.88ʺE
13 Nibav Beach S13 12°43ʹ0.88ʺN 80°13ʹ54.95ʺE
14 Mahabalipuram Beach S14 12°36ʹ0.33ʺN 80°11ʹ53.63ʺE
15 Sadras Beach S15 12°31ʹ2.09ʺN 80°9ʹ55.62ʺE
16 Koovathur Beach S16 12°25ʹ7.71ʺN 80°7ʹ54.66ʺE
17 Paramankeni Beach S17 12°21ʹ50.11ʺN 80°4ʹ47.53ʺE
18 Marie Beach S18 12°18ʹ1.9794ʺN 80°1ʹ57.58ʺE
19 Thirtavari Beach S19 12°11ʹ0.21ʺN 79°58ʹ18.70ʺE
20 Anumanthai Kuppam Beach S20 12°7ʹ15.28ʺN 79°55ʹ17.11ʺE
21 Kalapet Beach S21 12°0ʹ53.50ʺN 79°51ʹ41.15ʺE
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inserting known-energy gamma sources, 137Cs (662 keV) 
and 60Co (1173–1332 keV), into the detector.

Considering that 238U, and 232Th, as well as their decay 
products, are in secular equilibrium, the concentration of 
238U, and 232Th were calculated from their progeny photo-
peak of 1764 keV for 214Bi and 2614 keV for 208Tl were used 
for determining the activity concentrations of 238U and 232Th 
respectively, and the gamma-ray transition of 1460 keV was 
used to determine 40K concentrations. A similar geometry 
was maintained for counting and standard sample analysis 
and the counting time for all the samples was 10,000 s.

Pearson correlation analysis

Correlation analysis was performed as a bivariate statistic 
to identify the mutual linkages and strength of association 
between two variables using the linear Pearson correlation 
coefficient (r). It is a number between -1 and 1 that meas-
ures the strength and direction of the relationship between 
two variables. The statistical software IBM-SPSS version 20 
was used to perform Pearson’s correlation analysis among 
radioactive variables [22] and the ORIGIN PRO (v2022) 
was used for graphing analysis.

Results and discussion

Distribution of activity concentration of 238U, 232Th, 
and 40K in sediments

The specific activity of 238U, 232Th, and 40K for the collected 
sediment samples is determined using the following formula 
[33],

where A is the activity concentration of radionuclide (238U, 
232Th, and 40K) which is typically expressed in Becquerel per 
kilogram (Bq/kg), NCPS represents the total gross counts 
of corresponding photo peak from the spectrum subtracted 
from background counts and divided by counting time i.e., 
10,000 s. W represents the total mass of each sample in 
(kg). η denotes the photo peak's efficiency as determined 
via efficiency calibration. In the present work, the activity 
concentration of 238U, 232Th, and 40K was measured for sedi-
ment samples using NaI(Tl) detector and given in Table 2 
with their respective uncertainties (± 2σ). As can be seen 
from Table 2, except for four (S6, S7, S11, and S16), all 
other sediment samples show a high concentration of 238U 
in the study area. This may be due to uranium mobility [34]. 
Therefore, uranium migrates sequentially in the study area. 
On the other hand, the concentration of 232Th, and 40K seem 

(1)A =
NCPS

W × �

to be homogeneously distributed all sampling points. The 
high activity concentration of 238U and 232Th (87 ± 3 Bq  kg−1 
and 129 ± 3 Bq  kg−1) was found at Thazhankuppam Beach 
(S2), while 40K activity (692 ± 10 Bq  kg−1) was also high 
at Thiruvottiyur Beach (S3). These high activity concentra-
tions are mainly due to their geochemical origin and they 
could be related to geological conditions or other factors 
such as rainfall, temperature, and human activities in the 
studied location [35]. At the same time, the existence of 
black sands (Fig. 2) found in these locations, which are rich 
in a phosphate mineral that is predominantly reddish-brown 
in colour and includes rare-earth elements (Ce, La, Nd, Th) 
 PO4, which contains a considerable level of 232Th [36]. The 
enrichment arises because monazite's specific gravity per-
mits it to concentrate along beaches where lighter elements 
are washed away [37]. Figure 3 shows the distribution of 
activity concentration for 238U, 232Th, and 40K in the sedi-
ment samples.  

It is clear that the activity concentration of 238U, 232Th, 
and 40K increased from Kalanji Beach (S1) to Thazhank-
uppam Beach (S2) in the study area. However, the 238U, 
232Th, and 40K concentrations ranged from 22 ± 2 to 
87 ± 3 Bq  kg−1 with an average value of 50 Bq  kg−1, BDL 
to 129 ± 3 Bq  kg−1 with an average value of 32 Bq  kg−1, 
368 ± 10 to 692 ± 10 Bq   kg−1 with an average value of 
543 Bq  kg−1 respectively. The mean activity concentrations 
of 238U, 232Th, and 40K in the sediment samples are higher 
than the world average value [38]. This could be due to 
weathering of parent rock materials or anthropogenic activi-
ties like fishermen, tourists, and effluents from industries. 
Moreover, the contamination due to these activities may 
hold radioactive materials which are significantly deposited 
in the sediment samples.

In addition, the mean activity concentration of the radio-
nuclides is compared with previous studies [6, 20, 39–51] 
with other coastal areas across the world and given in 
Table 3. From this comparison table, in the present study, the 
mean concentration of 238U is significantly lower than the 
Penang from Malaysia [46], Preta beach of Brazil [47], while 
the mean 232Th concentration is higher than Patras Coast of 
Greece [41], Red Sea from Saudi Arabia [44] and Sudan 
[45], Xiamen Island from China [6]. Similarly, the activity 
concentration of 40K is lower than the Southern Coast from 
Albania [39], Tyrrhenian Sea of Italy [43], and Penang from 
Malaysia [46]. Hence, the distribution of 238U and 40K is 
homogeneous and 232Th is inhomogeneous along the coastal 
area of North Chennai to Pondicherry, India.

Evaluation of radiological parameters

The standard radiological parameters are essential to 
assess the potential ecological risk and also human health 
risks, once the radiation is absorbed by living organisms 
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Table 2  Complete activity concentrations and radiological parameters associated with radionuclides 238U, 232Th, and 40K

BDL Below detectable limit

Sample ID Activity concentrations 
(Bq  kg−1)

Radium 
equivalent 
activity (Bq 
 kg−1)

γ absorbed 
dose rate (nGy 
 h−1)

Annual out-
door effective 
dose equivalent 
(mSv)

External haz-
ard index

Excess life-
time cancer 
risks ×  10–3 
 mSvy−1

Annual gonadal 
dose equivalent 
(μSv  y−1)238U 232Th 40K

S1 58 ± 3 125 ± 3 546 ± 11 279 ± 15 235 ± 7 0.29 ± 0.008 0.75 ± 0.02 1.01 ± 0.03 873 ± 25
S2 87 ± 3 129 ± 3 623 ± 10 319 ± 15 272 ± 6 0.33 ± 0.008 0.86 ± 0.02 1.17 ± 0.03 1002 ± 24
S3 59 ± 2 29 ± 2 692 ± 10 154 ± 14 142 ± 6 0.17 ± 0.007 0.42 ± 0.02 0.61 ± 0.02 522 ± 21
S4 47 ± 2 55 ± 3 492 ± 10 163 ± 14 143 ± 6 0.18 ± 0.007 0.44 ± 0.02 0.61 ± 0.03 529 ± 22
S5 42 ± 2 BDL 571 ± 10 86 ± 13 85 ± 5 0.10 ± 0.007 0.23 ± 0.02 0.36 ± 0.02 308 ± 20
S6 22 ± 2 21 ± 3 457 ± 10 87 ± 14 80 ± 6 0.10 ± 0.007 0.23 ± 0.02 0.34 ± 0.03 297 ± 21
S7 24 ± 2 15 ± 3 539 ± 10 87 ± 14 82 ± 6 0.10 ± 0.007 0.24 ± 0.02 0.35 ± 0.03 308 ± 21
S8 53 ± 2 27 ± 3 500 ± 10 130 ± 14 119 ± 6 0.15 ± 0.007 0.35 ± 0.02 0.51 ± 0.02 434 ± 21
S9 37 ± 2 12 ± 2 668 ± 10 106 ± 13 102 ± 6 0.12 ± 0.007 0.29 ± 0.02 0.44 ± 0.02 376 ± 20
S10 64 ± 2 10 ± 3 681 ± 10 131 ± 14 125 ± 6 0.15 ± 0.007 0.35 ± 0.02 0.54 ± 0.03 453 ± 22
S11 22 ± 2 16 ± 2 630 ± 10 93 ± 13 88 ± 6 0.11 ± 0.007 0.25 ± 0.02 0.38 ± 0.02 332 ± 20
S12 48 ± 2 42 ± 3 480 ± 10 144 ± 14 128 ± 6 0.16 ± 0.007 0.39 ± 0.02 0.55 ± 0.03 472 ± 21
S13 67 ± 3 35 ± 3 557 ± 11 161 ± 15 146 ± 6 0.18 ± 0.008 0.43 ± 0.02 0.62 ± 0.03 530 ± 23
S14 36 ± 2 BDL 517 ± 10 76 ± 13 75 ± 6 0.09 ± 0.007 0.21 ± 0.02 0.32 ± 0.02 274 ± 21
S15 65 ± 2 69 ± 3 495 ± 10 202 ± 14 176 ± 6 0.22 ± 0.007 0.54 ± 0.02 0.75 ± 0.03 644 ± 22
S16 23 ± 2 BDL 577 ± 10 68 ± 14 68 ± 6 0.08 ± 0.007 0.18 ± 0.02 0.29 ± 0.02 254 ± 21
S17 58 ± 2 14 ± 3 443 ± 10 113 ± 14 105 ± 6 0.13 ± 0.007 0.30 ± 0.02 0.45 ± 0.03 378 ± 22
S18 58 ± 2 10 ± 2 585 ± 10 117 ± 13 111 ± 6 0.14 ± 0.007 0.32 ± 0.02 0.48 ± 0.02 404 ± 20
S19 75 ± 3 15 ± 3 475 ± 10 132 ± 14 123 ± 6 0.15 ± 0.008 0.36 ± 0.02 0.53 ± 0.03 442 ± 22
S20 46 ± 2 22 ± 3 499 ± 10 117 ± 14 107 ± 6 0.13 ± 0.007 0.32 ± 0.02 0.46 ± 0.03 393 ± 22
S21 52 ± 3 21 ± 3 368 ± 10 111 ± 14 101 ± 6 0.12 ± 0.007 0.30 ± 0.02 0.43 ± 0.03 366 ± 22
Mean value 50 32 543 137 124 0.15 0.37 0.53 457
World rec-

ommended 
value

35 30 400 370 59 1 1 0.29 ×10–3 300

BDL values 8 8 30 –  –  –  –  –  –

Fig. 2  The existence of black sands in each location along the study area
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or people. The significant radiological parameters such 
as  Raeq,  DR, AEDE,  Hex, ELCR, and AGDE are calcu-
lated in the sediments samples, and obtained results are 
compared with the international recommended value given 
by UNSCEAR [38] and ICRP [52]. For all calculations 
carried out in this section, we have used the symbols: 
 AU,  ATh, and  AK to represent the activity concentrations 
of 238U, 232Th, and 40K radionuclides respectively.

Radium equivalent activity (Bq  kg−1)

In order to express the activity levels of 238U, 232Th, and 
40K by a single quantity that takes into consideration the 
radiation risks associated with them, a common radiologi-
cal index has been developed based on the presumption 
10 Bq  kg−1 of 226Ra, 7 Bq  kg−1 of 232Th, and 130 Bq  kg−1 
of 40K produce the same gamma dose rates [53–56]. The 
elevated concentrations of radium isotopes in sediments 

Fig. 3  Box plot showing the distribution of activity concentrations for 238U, 232Th, and 40K in the sediment samples

Table 3  Comparison of activity 
concentrations of the present 
study with similar studies in the 
world

* 226Ra

Country Location Activity concentrations (Bq  kg−1) References
238U 232Th 40K

Albania Southern Coast 27 40 550 [39]
Egypt Red Sea 24.6 31.4 428 [40]
Ghana Greater Accra 34 30 320 [20]
Greece Patras coast 21.8 24.5 497 [41]
Iran Caspian Sea 61 49 537 [42]
Italy Tyrrhenian Sea 28.2 91.7 603.7 [43]
Saudi Arabia Red Sea 35.46 0.92 34.34 [44]
Sudan Red Sea 29.6 6.02 158.4 [45]
Malaysia Penang 184 165 835 [46]
Brazil Preta beach 239 121 110 [47]
China Xiamen Island 14.6* 10.9 396.4 [6]
Turkey Black sea coast 4.41–14.04 2.62–16.55 11.60–513.32 [48]
Thailand Upper gulf 44 59 463 [49]
Spain Northeast Coast 5–19 5–44 136–1087 [50]
Sri Lanka West Coast BDL-1243 14–6257 BDL-644 [51]
India North Chennai—

Pondicherry
50 32 543 Present study
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can enhance the high radium equivalent activity  (Raeq), 
which causes harmful effects on marine organisms and 
human health if they are exposed to gamma radiation over 
an extended period of time. Also, it can be used to assess 
whether the radium activity in the sediment is within a safe 
level or not, as determined by regulatory standards. The 
 Raeq activity is mathematically defined as follows [54],

The  Raeq values are calculated and given in Table 2. 
The radium equivalent activity  (Raeq) in the sediment sam-
ples ranges from 68 ± 14 to 319 ± 15 Bq  kg−1 with a mean 
value of 137 Bq  kg−1 in sediment samples. As seen from 
Table 2, the highest  Raeq was 319 Bq  kg−1 observed at only 
one location S2 (Thazhankuppam Beach) where sediments 
are contaminated due to harbour activities. However, the 
obtained average value seems to be less than the recom-
mended maximum value of 370 Bq  kg−1 [28, 57]. There-
fore, regular monitoring of radium equivalent activity is 
essential in these coastal sediments, which can help to 
ensure the safety of the people who are living in the study 
area.

γ‑absorbed dose rate  (DR)

In order to provide a characteristics of external gamma 
radiation, it is necessary to calculate the absorbed dose rate 
for sediments above the ground surface in the study area. 
The conversion coefficients for calculating outdoor absorbed 
gamma dose rate  (DR) in the air per unit activity concentra-
tion in Bq  kg−1 (dry weight) are 0.92  nGyh−1 for 238U, 1.1 
 nGyh−1 for 232Th, and 0.0807  nGyh−1 for 40K. The absorbed 
gamma dose rate was calculated for all locations using Eq. 3 
given by UNSCEAR as follows [38, 52].

The calculated values of the absorbed dose rate for sedi-
ments are given in Table 2. From obtained results of Table 2, 
the lowest dose rate was 68 ± 6  nGyh−1 for the sediments 
of Koovathur Beach represented by sample S16, while the 
highest dose rate was 272 ± 6  nGyh−1 for the sediments of 
Thazhankuppam Beach represented by sample S2. The mean 
value was 124  nGyh−1 which is greater than the global aver-
age value of 59  nGyh−1 [38]. In addition to that, all studied 
locations possess a higher value of gamma dose rate and it 
may be due to the significant amount of uranium and tho-
rium in the samples. These high levels of gamma absorbed 
dose rate in sediment can pose a significant health risk to 
the environment and human population living near or work-
ing with the sediments. Figure 4. Shows the variation of 
absorbed dose rate in the samples.

(2)Raeq = AU + 1.43ATh + 0.077AK

(3)DR = 0.92AU + 1.1ATh + 0.0807AK

Annual effective dose equivalent (AEDE)

An outdoor annual effective dose equivalent was calcu-
lated for sediment samples by using the conversion factor 
of 0.7 Sv  Gy−1 and outdoor occupancy factor (20%) to 
convert the total absorbed gamma dose rate in the air to the 
human effective dose equivalent [58]. The annual effective 
dose equivalent in the unit of (mSv) was calculated by the 
following equation:

The mean computed annual effective dose equivalent 
value is 0.15 mSv for collected samples, which is greater 
than the world average value of 0.07 mSv [38]. From 
obtained results, it is clearly indicated that the AEDE of 
all sampling locations has less than the recommended limit 
of 1 mSv of radiation exposure to the population [52]. 
Hence the emission of gamma radiation and exposure to 
the human population in the study area are insignificant 
due to the presence of 238U, 232Th, and 40K.

External hazard index  (Hex)

The external hazard index was proposed by Krieger [59] 
to ensure the harmful effects on marine biota and human 
populations due to natural radionuclides in the sediment 
samples. Therefore, the risk of gamma radiation from the 
environment and health effects from the activity concen-
tration of radionuclides present in the sediment sample 
was assessed using the external hazard index which is cal-
culated using the following equation [60, 61],

(4)
AEDEout(mSv) = DR

(

nGyh−1
)

× 8760 h × 0.2 × 0.7 SvGy−1 × 10−6

Fig. 4  Variation of the gamma absorbed dose rate in the study area
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According to the UNSCEAR report [38], the  Hex value 
of all the sampling points must be less than unity for safe 
from radiation exposure of humans. The calculated external 
hazard index for these sediment samples is given in Table 2. 
It is noticed that  Hex value of sample S1(Kalanji Beach) 
is 0.75 ± 0.02 and sample S2 (Thazhankuppam Beach) is 
0.86 ± 0.02. These two locations show the nearest to the 
recommended limit of unity due to significant activity con-
centration of 238U and 232Th in these samples. However, the 
lowest value 0.18 of  Hex was noted at the sampling location 
of Koovathur Beach (S16), while the highest value 0.86 was 
observed at the sampling location of Thazhankuppam Beach 
(S2), with a mean value of 0.37. This mean value is less than 
the recommended limit of 1. Hence, the sediments in the 
study area may do not harm to biota, fishermen, tourists and 
people who are living in this region.

Excess lifetime cancer risk (ELCR)

Humans have a risk of getting cancer due to long-term expo-
sure of even low doses of ionizing radiation from natural 
radionuclides in the sediment samples. The risk of cancer 
increases as the dose of radiation increases [62]. Accord-
ing to the National Cancer Institute report [63], 33% of the 
population will get some type of cancer during any stage of 
their lifetime. Hence, the additional risk parameter ELCR 
was calculated using Eq. 6 [64],

In this equation, LE stands for average life expectancy 
(70 years), and RF stands for risk factors such as deadly 
cancer risk (per sievert). In the case of stochastic effects, 
the International Commission on Radiological Protection 
(ICRP) recommends RF level is 0.05 to the public [52]. As 
seen from Table 2, the ELCR value of S1(1.01 ×10−3 ± 0.03 
 mSvy−1) and S2 (1.17 ×10−3 ± 0.03  mSvy−1) are nearly 4 
times greater than the world average value of 0.29 ×10−3 
 mSvy−1 due to presence of a high concentration of 238U, and 
232Th in the sediment samples. It is observed that a similar 
world average value is found in only one sample S16 and the 
other samples show nearly two times greater than the world 
average value. This may be due to the deposition of heavy 
minerals-rich black sands in the study area (Fig. 2).

Though, this study reveals that the minimum value was 
found in sample S16 (Koovathur Beach) and the maximum 
value was found in S2 (Thazhankuppam Beach) with a mean 
value of 0.53 ×10−3  mSvy−1 as shown in Table 2. This mean 
value is greater than the world average value but less than the 
high background radiation area (HBRA) of Kerala reported 

(5)

Hex =
AU

370
(

Bq kg−1
)
+

ATh

259
(

Bq kg−1
)
+

AK

4810
(

Bq kg−1
)

(6)ELCRoutdoor = AEDEoutdoor × LE × RF

by Ramasamy et al. [8] and more or less equal to Kirklareli 
region, Turkey reported by Taskin et al. [65]. Therefore, 
continuous assessment of cancer risk is necessary for the 
study area to protect the human population from gamma-ray 
exposure due to natural radioactivity.

Annual gonadal dose equivalent (AGDE)

A high (AGDE) concentration in the gonads causes negative 
health problems, so it is appropriate to measure the annual 
gonadal dose (AGDE) concentration in 238U, 232Th, and 40K. 
UNSCEAR [38] considers the thyroid, lungs, female breast, 
gonads, active bone marrow, and bone surface cells to be the 
organs of interest. Hence, the annual gonadal dose equiva-
lent (AGDE, µSv  y−1) was calculated due to activity concen-
tration of 238U, 232Th, and 40K using the following equation,

It is particularly noted that the AGDE value of S14 and 
S16 is less than the world average value of 300 μSv  y−1 due 
to the absence of 232Th in these samples. This is clearly indi-
cating that there is not much black sand deposition in these 
two locations. On the other hand, a high value of AGDE is 
found in samples S1 and S2 due to the significant concen-
tration of uranium and thorium. However, the AGDE value 
for all other samples shows slightly greater than the world 
average value [62]. These elevated levels of AGDE are also 
known to affect the bone marrow that produces red blood 
cells. This may lead to cancer of the blood called leukaemia, 
which is often fatal. Therefore, it is necessary to study the 
various biological effects of ionizing radiation due to natural 
radionuclides in the sediment samples.

Pearson’s correlation coefficient analysis

The activity concentration of radionuclides can be affected 
by a number of factors such as the geological composition of 
the sediments, the composition of minerals, and the chemi-
cal behaviour of radionuclides. Pearson correlation coeffi-
cient matrix between radionuclides (238U, 232Th, 40K) and 
radiological parameters  (Raeq,  DR, AEDE,  Hex, ELCR, and 
AGDE) in sediments was measured and given in Table 4. 
In this study, the terms strong, moderate, and weak correla-
tion coefficients refer to > 0.70, 0.70–0.50, and 0.50–0.36 
respectively were identified at p < 0.05 for samples (n = 21).

The obtained results show a moderate correlation 
between 232Th and 238U in the samples with an ‘r’-value 
of 0.527 (Fig. 5). This indicates that the 232Th decay series 
and the 238U decay series have a significant link and co-
occur in sediment samples. 40K has a very weak correlation 
between 238U and 232Th (r = 0.039 and r = 0.027) respec-
tively. Hence it indicates that 40K occurs in different decay 

(7)AGDE
(

�Sv y−1
)

= 3.09AU + 4.18ATh + 0.314AK
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series in nature. As seen from Table 4, all the radiological 
parameters strongly correlate with 238U and 232Th whereas a 
weak correlation with 40K. This clearly suggested that natu-
ral radioactivity in the beach sediments is due to presence 
of uranium and thorium. The contribution of 40K is insig-
nificant in the samples.

Conclusion

Determination of activity concentration of 238U, 232Th, 40K 
and the associated radiation hazards were carried out for 
sediment samples collected from North Chennai to Pondi-
cherry coastal area, India using gamma-ray spectrometry. 
From obtained results, the main observation is high activity 
concentration and significant radiological hazards are found 
in samples S1 (Kalanji Beach) and S2 (Thazhankuppam 
Beach) due to the deposition of black sands. Also, the mean 

activity of 238U, 232Th, and 40K is greater than the world 
average value. This may be attributed to tourists, fishermen, 
harbour, and industrial activities. The significant correla-
tion of all the radiological parameters with 238U, and 232Th 
implies that, exposure of radiation is due to only uranium 
and thorium. The contribution of 40K is insignificant in the 
study area. Also, radium equivalent activity, annual effec-
tive dose equivalent, and external hazard index are less than 
the world-recommended limit for all the studied samples. 
Hence, the study area doesn’t possess any radiological haz-
ards to human populations.
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