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Abstract
To investigate the radiological hazards indices of chemical fertilisers commonly used in agriculture soils of Arasbaran, Iran, 
the activity concentration of 226Ra, 232Th, and 40K in four types of chemical fertilisers were measured by gamma spectrometry 
system. The concentration range for 226Ra, 232Th, and 40K was obtained from 54 ± 2.2 to 1585 ± 29.4, 6 ± 0.1 to 157 ± 9.1, 
and 31 ± 1.5 to 1496 ± 32.8 Bq/kg, respectively. The obtained results showed that the fertiliser's average radiation hazard 
parameters were higher than the reference level. The outcomes give rise to more parameter values over the permissible limit, 
increasing the likelihood of adverse health consequences.

Keywords Concentration · Radiological hazards · Chemical fertiliser · Dose rate · Reference level

Introduction

Natural radiation sources of terrestrial origin can be found in 
varying degrees in all media of the environment, including 
soil [1–3], sediment [4–7], water [8–11], air [12], and even 
the human body [13]. One of the radioactivity causes in soils 
other than those of natural origin is the widespread use of 
phosphate-rich fertilisers for agricultural reasons [14]. There 
is a direct relationship between the 238U series and fertiliser 
phosphorus pentoxide (P2O5) content [15].

Phosphate rock is used as a raw material for fertilisers, 
and it contains radionuclides from the natural 238U (226Ra) 
and 232Th series and 40K. Chemical fertilisers, mostly com-
pound commercially known as NPK (nitrogen (N), phospho-
rus (P), and potassium (K)) and NPKs, are currently used 
to replace nutrients in soils and thus supply substances to 
achieve high agricultural productivity (sulfate-based ferti-
liser). Their formulae differ significantly, and the concen-
trations are selected based on each soil and cultivation [16]. 

Excessive fertiliser usage may lead to increased radionu-
clides in soil and groundwater, which are exposure sources 
for food crops and drinking water. Gamma radiation from 
natural radioactivity accounts for 85% of the total global 
annual average ionising radiation [17]. Higher exposure to 
such radionuclides is hazardous to human health. It may 
result in various health issues, including lung, pancreatic, 
liver, hepatic, bone, and kidney cancer [4].

In general, fertiliser use has grown globally over the last 
decade, with demand for all fertilisers rising from 161 mil-
lion tons in 2008 to more than 200 million tons in 2018, with 
nitrogen fertilisers being the most widely used [18–20]. As 
a result, during the last ten years, chemical fertilisers, par-
ticularly nitrogen, have grown, which has typically been to 
enhance crop production, the most significant of which was 
wheat and corn [21]. As a result of the increased harvesting 
due to the use of artificial fertilisers, environmental expenses 
and soil and ecosystem degradation are incurred.

Recently, research has been carried out and reported on 
natural radiation and radiological hazards from chemical 
fertilisers [22–25]. This study's objectives were to evaluate 
natural radioactivity concentration in chemical fertilisers 
used in the Ahar area, Iran, and to calculate the radiological 
risk due to chemical fertilisers used for agriculture.
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Material and methods

Study area

The area under study covers the fertile regions of district 
Arasbaran. Arasbaran, located at 38.45138° N, 47.0676° E, 
is situated on the northern slopes of the Buzghush mountain. 
The chief river flowing from the west to east of Ahar is Aha-
rchayi. The area is noted for its Moderate mountains. The 
area's topography involves rugged terrains, ranging from 800 
to 1800 m a.s.l. The study area is shown in Fig. 1.

Sample collection and preparation

Four different main types of chemical fertilisers were gath-
ered from farmers and markets. The investigated sample 
types are ammonium nitrate (AN), ammonium sulfate (AS), 
ammonium phosphate (AP), and potassium nitrate (PN). For 
each type of chemical fertiliser, different brands were sam-
pled. Finally, 21 samples were packed in a polyethene con-
tainer and transferred to the laboratory for measuring. The 
collected samples were dried in an oven at around 75 °C) 

for 24 h to eliminate all moisture; the samples were crushed, 
homogenised, and sieved through a 200 μm sieve. Twenty-
one samples were weighed and put in a 0.5 kg Marinelli 
beaker. The beakers were sealed entirely for four weeks to 
achieve secular equilibrium between daughter radionuclide 
222Rn and parent 226Ra, which occurs when the daughters' 
decay rate equals that of the parent. This step is required 
to guarantee that 222Rn gas is restricted inside the volume 
and that the daughters remain in the sample [26]. Table 1 
shows several physical and chemical features of chemical 
fertilizers.

Fig. 1  The geographical loca-
tion of study area (Arasbaran, 
East Azerbaijan)

Table 1  Some physical and chemical characters of chemical fertiliz-
ers

Fertilizer type Chemical 
formula

Colour Density (kg/m3) Melting 
point 
(°C)

AN NH4NO3 White 1725 169.6
AS (NH4)2SO4 Grey 1770 280
AP (NH4)3PO4 Grey 1619 155
PN KNO3 white 2109 334
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Measurement process

A gamma-ray spectrometer with a high-resolution coaxial 
p-type vertical HPGe detector was used to measure the 
radioactivity. The detector has a relative efficiency of 80% 
when compared to the NaI (Tl) (3 × 3) detector and has a 
resolution of 1.8 keV at full-width half-maximum FWHM 
of the 1332.5 keV gamma-ray photopeak from 60Co. The 
system was coupled to a high count-rate Multi-Task 16 k 
MCA card. Commercial software Gamma 2000 from Silena-
Italy was used for data analysis. The gamma-ray spectrom-
eter's energy calibration was performed with point sources. 
The International Atomic Energy Authority supplied refer-
ence materials RGU-1 (U-ore), RGTh-1 (Th-ore), RGK-1 
(K2SO4), and IAEA-375 were used for full energy peak 
(FEP) efficiency calibration of the gamma-ray spectrometer. 
The samples and standard materials geometry were the same 
geometry. Each of these reference materials was counted in 
the same geometry with samples until a good counting sta-
tistic was achieved. The FEP efficiency (εγ) for each gamma-
ray energy of interest was then computed using the following 
equation [1]:

where Cr is the net count rate of the region of interest's 
gamma-ray photopeak, P

�
 is the probability of the gamma-

ray of interest, and A is the radioactivity of the reference 
material in Bq. Each soil sample was placed on the detector's 
top and counted for about 80,000 s. To acquire net counts for 
the sample, background radiations were measured under the 
same circumstances as sample measurements and removed. 
The activity concentrations in the 226Ra and 232Th decay 
series were averaged from gamma-ray photopeaks at various 
energies, assuming secular equilibrium. The activity con-
centration of 226Ra was determined using the gamma-ray 
lines of 351.9 keV from 214Pb and 609.3 keV from 214Bi. 
The activity concentration of 232Th was calculated using 
the gamma-ray photopeaks of 911.2 keV from 228Ac and 
583.2 keV from 208Tl. The gamma-ray lines at 1460.8 keV 
were used to quantify the activity concentration of 40K [27].

Uncertainty calculation

Uncertainty assessment was carried out before activity com-
putation, with the activity concentration uncertainty  (UA) 
computed using the equation [28]:
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where UN is the sample counting uncertainty; UB , back-
ground counting uncertainty; Uε , efficiency uncertainty, UM , 
mass measurements uncertainty and UP

�

G amma line energy 
uncertainty [29].

Radiological risk assessment

Some parameters, such as absorbed dose rate, Ambient dose 
equivalent rate (H*(10)), gamma index, and alpha index, can 
be used to calculate exposure risk.

Absorbed dose rate

The absorbed dose rate (D, nGy/h) of gamma radiations in 
one meter above the ground surface by 226Ra, 232Th, and 
40K radionuclides is calculated using Eq. (3). The absorbed 
dosage rate was calculated using conversion factors based 
on the particular radioactivity levels,  AK,  ARa, and  ATh (Bq/
kg) of 40K, 226Ra, and 232Th, respectively[30].

Ambient dose equivalent rate (H*(10))

H*(10) is a quantifiable quantity providing an effective 
dose assessment that measures the radiation exposure risk 
to human health. The ambient dose equivalent rate of 226Ra, 
232Th, and 40K is calculated 1 m above the ground sur-
face. The computation of the ambient dose equivalent rate 
(H*(10)) is as follows [1, 31]:

where  ARa,  ATh and  AK (Bq/kg) are the activity concentra-
tion of 226Ra, 232Th and 40K, respectively.

Gamma index

This factor calculates the degree of γ-radiation risk in con-
nection with phosphate fertilisers. The hazard gamma index 
(Iγ) in Bq/kg is calculated using the following equation [32]:

To be at the safe level, the value of Iγ must be less 
than one, which is related to an annual effective dose 
of ≤ 1.0 mSv/y [33].

Alpha index

Alpha index (Iα) is a significant hazard evaluation aspect 
used to detect excess alpha radiation from radioactive 

(3)D(nGy∕h) = 0.462ARa + 0.604ATh + 0.0417AK

(4)H∗(10)(nSv∕h) = 0.674ARa + 0.749ATh + 0.0512AK

(5)I
�
(Bq∕kg) =

ARa

150
+

ATh

100
+

AK

1500
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sources. This parameter is evaluated using the following 
formula [34]:

According to reference [35], the radiative material activ-
ity level of 226Ra above 200 Bq/kg is assumed to contribute 
to 222Rn concentration > 200 Bq/m3 of 222Rn exhalation, 
which recommended activity level of 226Ra is 200 Bq/kg, 
which gives Iα = 1 [35].

Results and discussions

Radioactivity concentration

The activity concentrations of 226Ra, 232Th, and 40K of 
different fertiliser types, together with the measurement 
uncertainty (1σ) and average, minimum, and maximum 
values, are presented in Table 2. From the show, results 
can be seen that the values of activity concentrations in 

(6)I
�
(Bq∕kg) =

ARa

200

the studied fertilisers varied from 54 ± 2.2 to 1585 ± 29.4, 
6 ± 0.1 to 157 ± 9.1, and from 31 ± 1.5 to 1496 ± 32.8 Bq/
kg for 226Ra, 232Th and 40K, respectively. The minimum 
and maximum values of 226Ra were obtained in potas-
sium nitrate (PN) and ammonium phosphate (AP) ferti-
lisers. The 232Th minimum and maximum concentration 
values were found in samples of potassium nitrate (PN) 
and ammonium sulfate (AS) fertilisers. While the sam-
ple of potassium nitrate fertiliser (PN) sample showed the 
highest amount, and the ammonium sulfate fertiliser (AS) 
sample showed the lowest amount of 40K concentration. 
The various sources of raw material and chemical pro-
cessing of the raw during fertiliser manufacturing might 
explain the variance in radionuclide concentrations in the 
investigated chemical fertilisers. The 226Ra average con-
centrations in all chemical fertilisers are higher than 232Th 
concentrations. In comparison, the 226Ra average activity 
concentrations in all chemical fertilisers except for AS and 
PN are higher than 40K concentrations. It is because of the 
high potassium present in the NP samples. Figure 2 com-
pares the average concentration values of 226Ra, 232Th, and 
40K in samples of fertilizer as a percentage.

Table 2  The activity 
concentration of 226Ra, 232Th, 
and 40K in different types of 
fertilizers

Fertilizer type Sample code Activity concentration (Bq  kg−1)
226Ra 232Th 40K

Ammonium Nitrate
(AN)

AN-1 218 ± 5.3 108 ± 8.4 132 ± 6.2
AN-2 184 ± 7.3 22 ± 1.8 85 ± 3.7
AN-3 72 ± 5.6 46 ± 3.6 117 ± 5.1
AN-4 397 ± 8.7 97 ± 5.4 209 ± 9.4
AN-5 152 ± 6.8 39 ± 2.0 57 ± 2.5

Min- Max (Average) 72–397 (204.6) 22–108 (62.4) 57–209 (120.0)
Ammonium Sulfate
(AS)

AS-1 118 ± 3.7 58 ± 3.7 126 ± 4.6
AS-2 187 ± 4.2 80 ± 4.5 84 ± 3.2
AS-3 93 ± 2.2 157 ± 9.1 501 ± 14.4
AS-4 219 ± 9.1 95 ± 5.2 217 ± 10.8
AS-15 198 ± 8.1 24 ± 1.6 31 ± 1.5
AS-6 212 ± 8.5 91 ± 5.1 162 ± 5.7

Min- Max (Average) 93–219 (171.1) 24–157 (84.1) 31–501 (186.8)
Ammonium Phosphate (AP) AP-1 1585 ± 29.4 128 ± 6.0 183 ± 9.4

AP-2 855 ± 12.4 133 ± 6.2 46 ± 2.1
AP-3 1017 ± 14.7 71 ± 3.7 112 ± 5.2
AP-4 363 ± 7.1 11 ± 0.3 907 ± 33.8
AP-5 481 ± 9.6 27 ± 1.8 210 ± 14.6

Min- Max (Average) 363–1585 (860.2) 27–133 (74.0) 46–907 (291.6)
Potassium Nitrate(PN) PN-1 347 ± 8.5 6 ± 0.1 1496 ± 32.8

PN-2 286 ± 6.3 108 ± 5.1 1368 ± 25.0
PN-3 174 ± 4.2 52 ± 3.1 502 ± 14.7
PN-4 54 ± 2.2 84 ± 3.8 390 ± 27.2
PN-5 120 ± 3.9 17 ± 0.5 1407 ± 29.6

Min- Max (Average) 54–347 (196.2) 6–108 (53.4) 390–1496 (1032.5)
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Radiation hazard indices

Table  3 shows the gamma index(Iγ), alpha index(Iα), 
absorbed dose rate (D), and ambient dose equivalent rate 
(H*(10)) values for all samples under investigation. As 

shown in Table 3, Ammonium Nitrate (AN), Ammonium 
Sulfate (AS), Ammonium Phosphate (AP), and Potassium 
Nitrate (PN) gamma index values ranged from 1.0–8.3 Bq/
kg, 1.5–2.6  Bq/kg, 3.1–12  Bq/kg and 1.5–3.9  Bq/kg, 
respectively. The gamma index (Iγ) average of 2.1 Bq/kg 
for Ammonium Nitrate (AN) and Ammonium Sulfate (AS) 
was obtained. Whilst, gamma index (Iγ) average of 6.5 Bq/
kg for Ammonium Phosphate (AP) and 2.5 Bq/kg for Potas-
sium Nitrate (PN) were calculated. It is found that Iγ for all 
fertilisers is less than six except for fertilisers ammonium 
phosphate type. This value indicates that almost of sample is 
safe to use following the requirements of the European Com-
mission (EC) [36] (2 > Iγ > 6). The calculated average Iα 
values for the four group samples under investigation were 
0.9 to 4.3 Bq/kg. The recommended limit is more than the 
unit (< 1) for Iα that is according to 200 Bq  kg−1 of 226Ra 
[35]. The alpha index (Iα) in the sample Ammonium Sulfate 
was less than the given limit. In contrast, ammonium nitrate 
(AN) and potassium nitrate (PN) were equal to the limit 
range. Also, the alpha index value in ammonium phosphate 
(AP) was more than four times. These observed values are 
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Fig. 2  Percentage comparison between average concentration values 
of 226Ra, 232Th and 40K in fertilisers samples

Table 3  The gamma index(Iγ), alpha index(Iα), absorbed dose rate (D), and ambient dose equivalent rate (H*(10)) with maximum-minimum 
and average values in fertiliser samples

Sample type Sample code Hazard indices

Iγ (Bq/g) Iα (Bq/kg) D (nGy/h) H*(10) (nSv/h)

Ammonium Nitrate (AN) AN-1 2.6 1.1 171.5 234.6
AN-2 1.5 0.9 101.8 144.8
AN-3 1.0 0.4 65.9 89.0
AN-4 3.8 2.0 250.7 350.9
AN-5 1.4 0.8 96.2 134.6
Max–Min (Avg.) 3.8–1.0 (2.1) 2.0–0.4 (1.0) 250.7–65.9(137.2) 234.6–89.0–(190.8)

Ammonium Sulfate (AS) AS-1 1.5 0.6 94.8 129.4
AS-2 2.1 0.9 138.2 190.3
AS-3 2.5 0.5 158.7 205.9
AS-4 2.6 1.1 167.6 229.9
AS-15 1.6 1.0 107.3 153.0
AS-6 2.4 1.1 159.7 219.3
Max–Min (Avg.) 2.6–1.5(2.1) 1.1–0.5(0.9) 167.6–94.8(137.7) 229.9–129.4(188.0)

Ammonium Phosphate (AP) AP-1 12.0 7.9 817.2 1173.5
AP-2 7.1 4.3 477.3 678.2
AP-3 7.6 5.1 517.4 744.4
AP-4 3.1 1.8 212.2 299.3
AP-5 3.6 2.4 247.3 355.2
Max–Min (Avg.) 12.0–3.1(6.7) 7.9–1.8(3.4) 817.2–212.2(454.3) 1173.5–299.3(650.1)

Potassium Nitrate (PN) PN-1 3.4 1.7 226.3 315.0
PN-2 3.9 1.4 254.4 343.7
PN-3 2.0 0.9 132.7 181.9
PN-4 1.5 0.3 91.9 119.3
PN-5 1.9 0.6 124.4 165.7
Max–Min (Avg.) 3.9–1.5(2.5) 1.7–0.3(1.0) 254.4–91.9(166.0) 343.7–119.3(225.1)
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more than unity and show that the ammonium phosphate 
fertilisers are not safe from environmental radiation haz-
ards and need more investigation. Figure 3 shows the studied 
samples' alpha index's maximum, minimum, and average 
values.

As shown in Table 3, the value of absorbed dose rate 
(D) in Ammonium Nitrate, Ammonium Sulfate, Ammo-
nium Phosphate and Potassium Nitrate samples ranged from 
65.9–250.7 nGy/h, 94.8–167.6 nGy/h, 212.2–817.2 nGy/h 
and 91.9–254.4 nGy/h, respectively. The maximum and 
minimum absorbed dose rate (D) was found in Ammonium 
Phosphate (AP) and Ammonium Nitrate (AN). The average 
value of absorbed dose rate (D) in all studied fertilisers is 
higher than the international limit of 59 nGy/h [13].

As illustrated in Table 3, the values of ambient dose 
equivalent rate (H*(10)) vary between 89.0–234.6 nGy/h, 
for AN, 129.4- 229.9 nGy/h for AS, 299.3–1173.5 nGy/h for 
AP, and 343.7–119.3 nGy/h for PN. While the maximum and 
minimum values of H*(10) were in ammonium phosphate 
and Ammonium Sulfate fertiliser samples, respectively. 

The H*(10) average values in all fertilisers were higher 
than the average ambient dose equivalent rate value in soil 
samples(119.16 nGy/h) reported by the author [1]. Figure 4 
shows the maximum and minimum with the main ambi-
ent dose equivalent rate (H*(10)) in four types of studied 
fertilisers.

Table 3. The gamma index(Iγ), alpha index(Iα), absorbed 
dose rate (D), and ambient dose equivalent rate (H*(10)) 
with maximum-minimum and average values in fertiliser 
samples.

Conclusion

Low-level gamma spectrometry was used to determine the 
activity concentrations of natural radionuclides 226Ra, 232Th, 
and 40K in 21 samples from 4 types of fertiliser in the Aras-
baran area, Iran. The obtained results have shown that the 
radiation hazard parameter Iγ for all fertiliser type samples) 
is higher than the reference level (> 1), except for the AN-3 
sample, which is equal to the limit value. Also, the radiation 
hazard parameter Iα average value for all fertiliser samples 
is higher than the reference level > 1, except for the ammo-
nium sulfate (AS) samples. In all investigated samples, the 
average values of absorbed dose rate (D) due to the fertiliser 
samples are higher than the reference level of 59 nGy/h [13] 
and ranged from 137.2 to 454.3 nGy/h.

The computed average ambient dose equivalent rate 
(H*(10)) values for each group fertiliser were found to be 
1.6 to 5.5-fold in typical soil samples (Fig. 4). The use of 
fertilisers has a significant impact on radionuclide con-
centrations in agriculture soils, especially phosphorus and 
potassium-containing fertilisers being one of the causes of 
the high activity of 226Ra and 40K in the soil. Using these 
fertilisers causes a buildup of radioactivity in soils, which 
can be detrimental to the health of farmers, employees, and 
product consumers.

Fig. 3  The maximum and minimum and main values of the alpha 
index (Iα) in the fertilisers samples

Fig. 4  The range and main 
value of ambient dose equiva-
lent rate (H*(10)) in the fertilis-
ers samples and comparison 
of H*(10) value in previous 
studied soil samples
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