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Abstract
In this paper, three individual models and one generalized radial basis function neural network (RBFNN) model were devel-
oped for the prediction of the activity concentrations of primordial radionuclides, namely, 232Th, 238U and 40K. To achieve 
this, gamma spectrometry measurements of 126 different geological materials were used in the development of the RBFNN 
models. The results indicated that individual and generalized RBFNN models are quite efficient in predicting the activity 
concentrations of 232Th, 238U and 40K of geological materials.
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Introduction

Human population have continuously been exposed to natu-
ral radiation, which is partially because of the activity con-
centration of primordial radionuclides, namely, 232Th series, 
238U (226Ra) series and 40K [1]. These primordial radionu-
clides exist in the earth’s crust, building materials, air, water, 
foods and in the human body itself [1]. These exposures may 
change with the local geology of each region in the world. 
The knowledge of the distribution of primordial radionu-
clides plays a significant role for people seeking to avoid 
long-term exposure. The activity concentration of primor-
dial radionuclides is determined by gamma-ray spectrometry 
methods using low resolution NaI(Tl) and high resolution 
HPGe or equivalent detectors [2]. NaI(Tl) detectors in spite 
of their low resolution are the most common and widely 
used detectors for making qualitative and quantitative analy-
sis of natural and artificial radionuclides in various samples 
[3, 4]. There have been many radiological surveys to deter-
mine the background radionuclide levels in soil samples and 
their radiological hazards [5–13].

In mathematical modelling, a special type of artificial 
neural network (ANN), namely, radial basis function neural 
network (RBFNN) uses radial basis functions as activation 
function [14]. RBFNN is specifically used for prediction and 
classification purposes [15]. RBFNN typically has three lay-
ers with the first one being input layer, the second one being 
hidden layer with a non-linear radial basis function as activa-
tion function and the last one being linear output layer [16, 
17]. Similar to neural networks and fuzzy inference systems, 
RBFNN with a simple structure, including one hidden layer, 
can approximate any function [18]. Thus, RBFNN are called 
as universal approximators [19]. The design and training 
stages of RBFNN are much faster and easier than multi-
layer perceptron (MLP) networks (i.e., traditional ANNs). 
From the point of generalization, RBFNN are capable of 
responding perfectly for patterns which are not used for 
training [18]. RBFNN have strong tolerance to input noise 
which enhances the stability of the designed systems [18]. 
Thus, it is reasonable to consider RBFNN as a competitive 
method of nonlinear controller design [18]. Because of their 
universal approximation, more compact topology, and faster 
learning speed than MLP networks, RBFNN have attracted 
much attention and they have been widely applied in many 
science and engineering fields [20].

With this in mind, RBFNN models were developed for 
predicting the activity concentrations of primordial radio-
nuclides 232Th, 238U and 40K. To achieve this, gamma spec-
trometry measurements of 126 different geological materi-
als were made using a NaI(Tl) detector [21]. The RBFNN 
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models’ results were compared with the results of gamma 
spectrometry measurements for evaluating the performance 
of RBFNN models. In addition, the RBFNN models’ per-
formance was also checked by computing four different per-
formance parameters.

Radial basis function neural networks

RBFNNs, developed by Broomhead and Lowe [22], were 
inspired by the impulse response behaviors seen in biologi-
cal nerve cells and entered the ANN’s history by solving the 
filtering problem [22]. It is feasible to envision the training 
of RBFNN models as a curve fitting approach in multidi-
mensional space [23]. Thus, the training performance of the 
RBFNN model is finding the best surface for the data in the 
output vector space and hence it turns into an interpolation 
problem. In RBFNN models, similar to the architecture of 
ANN, there are three layers: input layer, hidden layer and 
output layer (Fig. 1). The input layer is made up of source 
nodes that connect the network to its environment. How-
ever, unlike classical ANN structures, radial based activa-
tion functions are used in the transition from input layer to 
hidden layer and a nonlinear cluster analysis is used. The 
structure between the hidden layer and the output layer is 
similar to that of other ANN types, with the main training 
taking place here.

In RBFNN models, the output (y) produced by the net-
work is calculated with the help of Eq. 1.
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where x ∈ Rnx1 is network’s input vector; ∅k(.) ∈ R+ is the 
radial based activation function; ck ∈ Rnx1 are the radial-
based centers selected from a subset of the input vector 
space; ‖.‖2 is the Euclidean norm, a measure of how far the 
vector is from the center; wik are output layer’s weights; N is 
cells’ number in the hidden layer [24, 25].

Important elements in RBFNN models are centers of 
cells, the output layer’s weights and the activation function’s 
structure used. On RBFNN models, many types of functions 
can be used as activation functions, examples of which are 
Linear, Cubic, Gaussian, Multi-quadratic, Inverse Multi-
quadratic functions. The Gauss function is preferred in this 
study because it is factorizable. Mathematical structure of 
the Gauss function is shown in Eq. (2).

where x is the input vector; ck is the centers; and � is the 
standard deviation and also is called the spread param-
eter that affects the performance of the RBFNN model 
significantly.

Training of the RBFNN models is performed by two 
actions: finding cell centers and optimizing the weights in 
the output layer [26]. In the literature, different methods 
are used to find cell centers ( ck ) and output weights ( wik ). 
The most commonly used methods to find cell centers are 
K-means and Kohonen clustering methods. The methods 
used for finding the output weights are Least Mean Squares 
(LMS) and Moore–Penrose Pseudo–Pseudo-inverse methods 
[26]. The spread parameter is usually fixed for all cells. In 
the literature, approximate equivalences exist for the deter-
mination of spread parameter in RBFNN models. However, 
this parameter can also be determined by trial and error [23].

Experimental measurements

Gamma spectrometry measurements of 126 different geolog-
ical materials were performed at the Nuclear Science Insti-
tute, Ege University, Izmir, Turkey. A Canberra 76 × 76 mm, 
high sensitivity NaI(Tl) detector connected to a Nucleus 
PCA-8000 multichannel analyzer and shielded with 75 mm 
thick lead bricks to reduce the background counting rate 
was used. In this study, the calibration uranium and tho-
rium standards in radioactive equilibrium were purchased 
from International Atomic Energy Agency (IAEA). These 
standards were then prepared with the same geometry as 
the geological samples. Similarly, the potassium standard 
was prepared from pure KCl, purchased from Merck. The 
activity concentrations of 232Th, 238U and 40K standards were 
2442 ± 3% Bq  kg−1, 1458 ± 3% Bq  kg−1 and 16,210 ± 3% 
Bq  kg−1, respectively.

(2)∅k(x) = exp
�
−‖x − ck‖2

2∕2�2
�
,

Fig. 1  The structure of RBFNN [15]
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The experimental procedure of gamma ray spectroscopy 
using a NaI(Tl) detector for the activity concentrations of 
232Th, 238U and 40K is well described elsewhere [5, 27, 28]. 
Thus, it will be briefly presented here. The activity concentra-
tions of primordial radionuclides 232Th, 238U and 40K were 
based on the solution of the following three linear equations 
involving sensitivity factors (K1, K2 and K3) and stripping 
ratios (α, β and γ) as gamma ray spectrometer calibration 
parameters.

where C(232Th), C(238U) and C(40K) are count rates in tho-
rium, uranium, and potassium channels or energies (the 
1760 keV peak of 214Bi, the 2610 keV peak of 208Tl and the 
1460 keV peak of radioactive potassium), respectively; the 
term e shows series equilibrium conditions being accepted; 
aC(232Th) and bC(232Th) are count rates and contribution 
from thorium in the uranium and the potassium windows; 
gC(238U) is the count rate and the contribution from uranium 
in the potassium window. Without compensation for these 
count rates, uranium and potassium concentrations cannot 
be obtained spectrometrically.

The stripping ratios (α, β and γ), and sensitivity factors 
(K1, K2 and K3) are influenced by several parameters, such 
as, counting geometry, detector volume and also the widths 
of the selected energy windows, etc. [5, 27, 28]. Therefore, 
stripping ratios and sensitivity factors should be determined 
for each gamma spectrometric system. The activity concen-
trations of 232Th, 238U and 40K standards were utilized for 
determining the stripping ratios and sensitivity factors of the 
gamma spectrometric system used in this study. The meas-
urement time for both activity and background measurement 
were taken as 10,000 s. The background spectra were used for 
suppressing the contribution of the natural background for the 
related radionuclides. Accordingly, factors of K1, K2 and K3 
were determined as 8.025 ×  10−4 counts per 10,000 s per Bq 
 kg−1 of 232Th, 9.43 ×  10−4 counts per 10,000 s per Bq  kg−1 of 
238U, and 2.97 ×  10−4 counts per 10,000 s per Bq  kg−1 of 40K, 
respectively. The ratios α, β and γ were found as 0.745, 0.853 
and 1.29, respectively.
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Radial basis function neural network models

Activity concentrations of 232Th, 238U and 40K of 126 geo-
logical materials of different origin including rock, soil, 
granite, marble, and fertilizer samples were systematically 
obtained with one sigma error and determined in relation 
to dry weight. The descriptive statistics of the activity con-
centrations of these primordial radionuclides are given in 
Table 1.

In this paper, three individual radial basis ANN mod-
els denoted as RBFNN-1, RBFNN-2 and RBFNN-3 were 
developed by using the results of the gamma spectrometry 
measurements of 126 geological materials for the prediction 
of the activity concentration of 232Th, 238U and 40K, respec-

tively. In the RBFNN-1 model developed for the prediction 
of the activity concentration of 232Th, the input parameter 
is selected as the count rate in thorium channels denoted as 
C(232Th) and the output parameter is selected as the activity 
concentration of 232Th. In the RBFNN-2 model developed 
for the prediction of the activity concentration of 238U, the 
input parameter is chosen as the count rate in uranium chan-
nels denoted as C(238U), and the output parameter is chosen 
as the activity concentration of 238U. In the RBFNN-3 model 
developed for the prediction of the activity concentration of 
40K, the input parameter is taken as the count rate in potas-
sium channels denoted as C(40K) and the output parameter 
is taken as the activity concentration of 40K. The input and 
output data used in each individual and generalized RBFNN 
models were scaled to lie between − 0.9 and 0.9 by using 
Eq. (6). In Eq. (6), xnorm is the normalized value, x is the 
actual value, and xmax and xmin are the maximum and mini-
mum values.

The data were then separated into two subsets: a train-
ing set and an independent test set. The training set was 

(6)xnorm = 1.8 ∗

(
x − xmin

xmax − xmin

)
− 0.9.

Table 1  The descriptive statistics of the activity concentrations of 
232Th, 238U and 40K of 126 geological materials

Activity Concentrations (Bq  kg−1)
232Th 238U 40K

No. of samples 126 126 126
Minimum 0.00 0.00 0.00
Maximum 181.58 480.74 11,700.45
Mean 44.54 49.40 1032.66
Standard deviation 35.85 68.83 1589.82
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used to develop each RBFNN model. The test set was used 
to assess the performance of each RBFNN model devel-
oped. In total (126 data sets), 101 data sets were used for 
training and 25 data sets were used for testing.

The neural network toolbox of MATLAB7.0 was uti-
lized both for training and testing stages in each RBFNN 
model. While developing RBFNN models, the Gauss func-
tion, which is the most commonly used activation func-
tion [29], was preferred as the activation function for indi-
vidual RBFNN models. The spread parameter that affects 
the performance of the RBFNN models significantly was 
determined as 3 by trial and error.

The performance of the overall RBFNN models can be 
evaluated by several criteria. In this paper, mean absolute 
error (MAE), root mean square error (RMSE) and variance 
account for (VAF) represented by Eqs. (7), (8) and (9), 
respectively, were also computed to check the performance 
of the developed RBFNN models.

where the measured and the predicted values are denoted 
by y and ŷ, respectively, and N is sample number. If values 
of parameters MAE and RMSE are closer to zero and the 
value of VAF is close to hundred, the model is considered 
as acceptable at the 95% confidence level.

To compare the goodness of fit of each RBFNN model, 
some representative hypotheses tests were conducted for 
the model construction process. Firstly, prior to perform-
ing a t-Student test, a Fisher’s F-test was performed to 
test if the variances of two populations are equal [30]. 
After performing F-tests, p-values were obtained for each 
RBFNN model. If the p-values obtained are greater than 
0.05, then the null hypothesis cannot be rejected [31]. In 
other words, there is no difference in variance of height 
measures between the two populations. Also, if the p-val-
ues > 0.05, a t-Student test can be performed for each 
RBFNN model by assuming the variances of two popula-
tions being equal. If the p-values < 0.05, a t-Student test 
can be performed for each RBFNN model by assuming the 
variances of two populations being unequal. A t-Student 
test was performed to test the null hypothesis that there 
is no difference between the means of two populations. 
After performing t-Student tests, p-values are obtained for 
each RBFNN model. If the p-values are above 0.05, the 
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mean of the predicted data is very close to the mean of 
experimental data.

Results and discussion

The predicted activity concentration values of 232Th, 238U 
and 40K using RBFNN-1, RBFNN-2, and RBFNN-3 models 
were compared with the determined activity concentration 
values of 232Th, 238U and 40K from gamma spectrometry 
measurements for training and testing samples in Figs. 2, 
3 and 4, respectively. Figures 2, 3 and 4 show that the pre-
dicted activity concentration values from each individual 
RBFNN model are found to be quite close to the deter-
mined activity concentration values for training and testing 
samples.

By taking into account this precise performance of each 
individual RBFNN model (Figs. 2, 3, 4), a generalized 
RBFNN model was developed for the prediction of activ-
ity concentration values of 232Th, 238U and 40K in 126 geo-
logical materials. While developing the generalized RBFNN 
model, count rates in thorium, uranium, and potassium 
channels were selected as input parameters, and the activity 
concentration values of 232Th, 238U and 40K were chosen as 
output parameters. The plots of the comparison of the pre-
dicted activity concentration values of 232Th, 238U and 40K 
using the generalized model RBFNN with the determined 
activity concentration values of 232Th, 238U and 40K from 
gamma spectrometry measurements are given in Figs. 5, 6 
and 7, respectively, for training and testing sets. It can be 
noticed from Figs. 5, 6 and 7 that the generalized model 
RBFNN yields activity concentration values, which are very 
close to the determined activity concentration values from 
gamma spectrometry measurements.

The MAE, RMSE and VAF values represented by Eqs. 
(7), (8) and (9), respectively, were calculated to evaluate 
the performance of each individual and generalized RBFNN 
models developed in this study, which is given in Table 2 
for each individual model and in Table 3 for the generalized 
model. It can be noticed from the computed performance 
parameters in Tables 2 and 3, all individual and general-
ized RBFNN models exhibit precise performance, which 
shows their usefulness and efficiency for determining activ-
ity concentration values of 232Th, 238U and 40K in geological 
materials.

After performing Fisher’s F-tests for individual RBFNN 
models, p-values were found as 0.498, 0.488 and 0.499 for 
the RBFNN-1, RBFNN-2 and RBFNN-3 models, respec-
tively. From the generalized RBFNN model, p-values were 
found as 0.486, 0.492 and 0.499 for the prediction of activ-
ity concentration values of 232Th, 238U and 40K, respec-
tively. These p-values greater than 0.05 indicated that the 
null hypothesis cannot be rejected and so the variance of 
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determined and predicted activity concentration values are 
equal. Thus, a t-Student test was then performed for each 
individual RBFNN model and for the generalized model by 
assuming the variances of determined and predicted activity 
concentration values being equal. After performing t-Student 
tests, p-values were found as 0.969, 0.982 and 0.994 for 
the RBFNN-1, RBFNN-2 and RBFNN-3 models, respec-
tively. From the generalized RBFNN model, p-values were 
found as 0.977, 0.984 and 0.994 for the prediction of activity 

concentration values of 232Th, 238U and 40K, respectively. 
These p-values are above 0.05, which indicated the mean 
of the predicted data is very close to the mean of experi-
mental data. By considering p-values, it is suggested that 
individual and generalized RBFNN models are used for 
determining the activity concentrations of primordial radio-
nuclides, namely, 232Th, 238U and 40K of geological materials 
if count rates in thorium, uranium, and potassium channels 
are known.

Fig. 2  Comparison of determined activity concentration of 232Th with the predicted activity concentration of 232Th from RBFNN-1 model a for 
training set and b for testing set

Fig. 3  Comparison of determined activity concentration of 238U with the predicted activity concentration of 238U from RBFNN-2 model a for 
training set and b for testing set
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Conclusions

In this study, three individual RBFNN models, namely, 
RBFNN-1, RBFNN-2 and RBFNN-3, were developed for 
the prediction of the activity concentrations of 232Th, 238U 
and 40K, respectively. For this purpose, gamma spectrom-
etry measurements of 126 different geological materials 
were used. The results obtained using each individual 
RBFNN model were compared with those determined 

from the gamma spectrometry measurements. It is found 
that the values predicted from each RBFNN model match 
accurately with the experimental values. By considering 
the precise performance of each individual RBFNN model, 
a generalized RBFNN model was developed for predict-
ing the activity concentrations of three radionuclides. 
The values predicted from the generalized RBFNN model 
are found to be very close to the experimental values. 
The study demonstrates that individual and generalized 

Fig. 4  Comparison of determined activity concentration of 40K with the predicted activity concentration of 40K from RBFNN-3 model a for 
training set and b for testing set

Fig. 5  Comparison of determined activity concentration of 232Th with the predicted activity concentration of 232Th from the generalized RBFNN 
model a for training set and b for testing set
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Fig. 6  Comparison of determined activity concentration of 238U with the predicted activity concentration of 238U from the generalized RBFNN 
model a for training set and b for testing set

Fig. 7  Comparison of determined activity concentration of 40K with the predicted activity concentration of 40K from the generalized RBFNN 
model a for training set and b for testing set

Table 2  Performance indices 
(R2, MAE, RMSE and VAF) 
of individual RBFNN models 
developed

Model Data R2 MAE (Bq  kg−1) RMSE (Bq  kg−1) VAF (%)

RBFNN-1 Training set 0.998 1.34 1.75 99.78
Testing set 0.995 1.85 2.16 95.51

RBFNN-2 Training set 0.999 0.59 0.92 99.99
Testing set 0.999 0.51 0.72 99.94

RBFNN-3 Training set 1.000 3.46 6.30 99.99
Testing set 0.999 12.64 21.58 99.91
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RBFNN models are quite efficient in predicting the activ-
ity concentrations of 232Th, 238U and 40K of geological 
materials. Similar RBFNN models could be employed for 
different types of geological materials to predict the activ-
ity concentrations of 232Th, 238U and 40K.
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