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Abstract
In this study, a dynamic nuclide identification algorithm based on fuzzy probability factor superposition (FPFS) was pro-
posed for γ spectrum analysis, and the algorithm was tested with spectra from single and multiline radionuclides of the five 
nuclides 241Am, 133Ba, 137Cs, 60Co, and 152Eu. The test results showed when the number of probability factors superposed 
exceeded 15, the nuclide identification accuracy rate was over 98%. In contrast to the traditional fuzzy logic nuclide iden-
tification algorithm and multiple linear regression fitting algorithm, the FPFS algorithm had a higher recognition rate and 
more advantages especially when there were lower counts and mixed nuclides.

Keywords  Qualitative analysis · Fuzzy logic · Membership function · Feature extraction · Low count energy spectrum · 
CZT detector

Introduction

In many application scenarios such as vehicle-mounted 
radiation detection or drone-borne detection, the activity of 
the radioactive source is very small or the detection distance 
is generally larger. Thus, the count rate of the γ spectrum 
detected by the detector is low and the characteristic peak 
is weak [1]. In particular, CdZnTe (CZT) detectors, which 
are currently widely used in portable detection systems, are 
small in size and have a lower count rate than larger scintilla-
tor detectors. For example, the count rate of the CZT detec-
tor used in this experiment (the volume is 10 × 10 × 5 mm3) 
is only ~ 15cps under the background [2, 3]. In these applica-
tion scenarios, the statistical fluctuations of the γspectrum 
are very large, and the characteristic peaks are unstable. The 
recognition efficiency of traditional nuclide identification 
algorithms based on characteristic peaks is very contingent 
and cannot achieve the expected results [4, 5]. Therefore, 
the rapid detection and qualitative analysis of gamma energy 
spectrum under low count conditions can greatly improve 
the application capability and scope of CZT detectors.

A γ energy spectrum analysis method has a wide applica-
tion prospect, especially the rapid identification algorithm 
of nuclides under the condition of low counts. In 2002, Eiji 
Yoshida et al. applied the neural network to the γ energy 
spectrum analysis obtained by a Ge detector, and success-
fully realized the isotope identification [6]; In 2013, K 
Peter et al. used machine learning for nuclide identification 
and achieved a good nuclide identification effect by using 
optimization technology for feature peak positioning [7]; 
In the same year, Miltiadis Alamaniotis et al. proposed to 
apply a fuzzy logic-based nuclide identification algorithm 
to radioactive source search and compared it with the maxi-
mum likelihood fitting algorithm, which showed a better 
effect [8–10]. In 2016, C Bobin et al. proposed a real-time 
processing method based on artificial neural networks and 
Bayesian rules for the rapid identification of radionuclides 
[4]. At present, many nuclide recognition algorithms have 
been developed based on various calculation and statisti-
cal tools, especially the development of nuclide recognition 
algorithms based on full-spectrum features such as artificial 
neural networks [11–15], naive Bayes [16, 17], and support 
vector machines [18, 19], which have significantly improved 
the efficiency of nuclide recognition. However, under low 
count conditions, the γ spectrum characteristics are not obvi-
ous and are easily submerged by other background peaks, 
and the recognition accuracy of the nuclide recognition algo-
rithm is easily reduced due to the influence of statistical 
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fluctuations [20]. The existing algorithms cannot achieve 
stable and accurate recognition through a single recognition.

This work proposes a fast nuclide identification algorithm 
based on fuzzy logic and probability factor superposition 
(FPFS). This method uses the fuzzy logic algorithm to 
determine the probability factor of the existence of nuclide 
in each spectrum and eliminates the randomness of single 
identification by accumulating the probability factors of 
multiple γ spectra. In the gamma spectrum, peaks from sta-
tistical fluctuations such as noise are randomly distributed, 
and will not exist stably in the gamma spectrum of multiple 
consecutive measurements. By giving the attenuation factor, 
the probability factor of the peak position will be maintained 
at a low level during the accumulation process. The charac-
teristic peak of a nuclide is relatively stable, and the prob-
ability factor of its peak position will gradually increase as 
the number of accumulation increases. After the probability 
factor has accumulated to a certain extent, the identification 
of the nuclide can be realized. Through the analysis and 
test of the measured spectrum obtained by the CZT detec-
tor, under low count conditions, the algorithm has a higher 
recognition rate for multi-nuclide spectra, and the recogni-
tion rate is significantly enhanced with the increase of the 
number of superpositions.

Methods and experiments

The fast radioisotope identification algorithm proposed in 
this paper is mainly divided into three steps, as shown in 
Fig. 1.

First, fast feature extraction. The potential peaks can be 
obtained by feature extraction. The feature extraction algo-
rithm is required to be simple, fast, and sensitive to possible 
peaks.

Second, probability factor calculation. Fuzzy logic rules 
are used to match the preliminary peak searching results 
with the nuclide library to obtain the probability factors of 
different characteristic peaks of a single spectrum.

Finally, radioisotope identification. By accumulating the 
probability factors of multiple energy spectra measured con-
tinuously over time, more accurate radioisotope identifica-
tion results can be obtained.

Fast feature extraction

For the identification of radioactive isotopes, the most obvi-
ous feature is the characteristic peaks formed in the energy 
spectrum of the gamma rays with specific energy emitted by 
the nuclide. Accurate feature extraction results can greatly 
improve the possibility and accuracy of radioisotope identi-
fication. To take into account the simplicity of the algorithm 
and the compatibility with the fuzzy logic isotope recog-
nition algorithm, this work proposes an adaptive window 
maximum comparison algorithm for feature extraction. The 
steps in the adaptive window maximum comparison algo-
rithm are shown in Fig. 2.

The algorithm firstly judges whether the count of the 
candidate channel is the maximum value of the count of 
each channel in the window. If it is the maximum value, the 
count of the candidate channel is compared to a threshold 
value in its spectral neighborhood. We define the spectral 
neighborhood of a peak as 2 N + 1 channels and N is related 
to the resolution of the detector, and it can be calculated by 
the following formula:

where ceil() means rounding up the data,res is the resolution 
of the detector. A channel is identified to be a potential peak 
if the number of counts in this channel is the maximum value 
in its neighborhood and greater than the threshold value T. 
T is calculated by the following formula:

In the formula, ave represents the average value of the 
counts of each channel in the window and � is the standard 
deviation of the counts of each channel in the window.

(1)N = ceil(i ∗ res) + 2

(2)T = ave + �

Fig. 1   Block diagram of the FPFS algorithm for analysis of low-count spectra
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According to the resolution characteristics of the detector, 
the width of the comparison window gradually increases with 
the increase of energy, so that it can better match the widening 
of the peak position. Experiments show that this method is 
more sensitive to the weak peaks of real nuclide characteristics 
and eliminates some low-frequency noise effects.

After feature extraction, the potential peaks is further trans-
formed into a fuzzy singleton representation:

As shown in Fig. 3, the output of fast feature extraction is 
a set of fuzzy logic singletons containing all potential peaks

(3)
{

�s(i) = 1 potential peak

�s(i) = 0 non - potential peak

(4)S = {(i,�S(i) = 1)} = {(i, 1)}

Calculation of probability factor

Through many experiments, it has been found that under 
the condition of low count, due to the influence of sta-
tistical fluctuations and other factors, the peak positions 
of γ-rays with certain energy and intensity in the energy 
spectrum are random, and generally distributed accord-
ing to the normal distribution law. The broadening of the 
distribution is related to the detector resolution. There-
fore, in this experiment, we use the gaussian membership 
function to define the membership degree of the charac-
teristic peaks of nuclides and construct a nuclides tem-
plate library. The radionuclide library contains eleven 
radionuclides commonly found in industry and nature 
[21]. Table 1 lists these eleven radionuclides and gives 
the more obvious characteristic gamma-ray energy in the 
energy spectrum of each nuclide.

Fig. 2   The block diagram of 
Feature extraction
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Figure 4 shows the distribution of nuclide peak posi-
tions and membership degrees of 60Co peaks, where each 
peak corresponds to a characteristic peak position [8]. The 
membership degree of the j-th characteristic peak of the 
i-th nuclide at the x-th channel can be calculated by the 
following formula:

where Pij represents the j-th characteristic peak position of 
the i-th nuclide in the nuclides template library. h1∕2 is full 
width at half maximum of the fuzzy logic gaussian member-
ship equation. The value of h1∕2 is related to specific applica-
tion scenarios. To reduce the interference of adjacent peaks, 
the value of h1∕2 should match the actual measurement peak 
as much as possible. The resolution of the CZT detector is 
1.4% at 661.66 keV and changes with energy, So the value 
of h1∕2 was set to the product of the channel and the corre-
sponding energy resolution:Pij × res.

The probability factor of the j-th characteristic peak of 
the i-th nuclide at the x-th channel can be calculated by for-
mula (6).

In the formula, �s(x) refers to the fuzzy singleton value, 
which is calculated by formula (3).

Radioisotope identification

The radioisotope identification module mainly adopts the 
method of superposition of probability factors, which is sim-
ilar to the ant colony algorithm [22]. In the application of 

(5)�ij(x) = e

−(x−pij )
2

2∗(h1∕2)
2

(6)fij(x) = �s(x) ⋅ �ij(x)

Fig. 3   The result of feature 
extraction is transformed into 
fuzzy singlet

Table 1   Description of the 
measured spectrum test set

Radionuclides Gamma ray energy Radionuclides Gamma ray energy

241Am 59.54 keV 152Eu 121.78 keV, 
244.70 keV, 
344.28 keV

133Ba 81 keV, 302.85 keV, 356.01 keV 40 K 1460.82 keV
60Co 1173.23 keV, 1332.49 keV 226Ra 186.211 keV
57Co 122.06 keV 192Ir 295.96 keV, 

308 keV, 
316.506 keV, 
468.069 keV

137Cs 661.66 keV 232Th 59 keV, 126 keV
75Se 121.12 keV, 136 keV, 264.66 keV, 

279.54 keV
– –

Fig. 4   Distribution of 60Co peaks positions and probability factors in 
the fuzzy logic nuclide library
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radionuclide identification, each channel of the γ-ray spec-
trum was regarded as a path. The probability factor derived 
from the fuzzy logic algorithm is regarded as a “pheromone” 
[23]. When a certain channel address may have a potential 
peak, the channel will leave a corresponding probability fac-
tor, and the probability factor will increase with the super-
imposition of the spectrum. In the continuously collected 
gamma-ray spectrum, if the probability factor of a certain 
channel is equal to zero, then the probability factor of the 
channel will gradually decrease until it reaches zero (“phero-
mone” volatilization). In this experiment, the volatilization 
rate of probability factor is set to − 0.3 through actual test 
and optimization.

In the above equation, Fij(x) is the probability factor of 
the j-th characteristic peak of the i-th nuclide at the x-th 
channel after T times of superposition,and f d

ij
(x) is the prob-

ability factor of the j-th characteristic peak of the i-th nuclide 
of the d-th γ-ray spectrum at channel x. With the increase of 
iteration times, the probability factor of the nuclide peak 
position will increase, while that of noise peaks will remain 
at a very low level.

Then the probability factor of the j-th characteristic 
peak of the i-th nuclide can be calculated by the following 
formula:

After calculating the probability factor, nuclide matching 
is required. For multi-feature peak nuclides, each feature 
peak can be given a weight wj according to the significance 
of each feature peak, that is, the γ-ray branching ratio of 
the corresponding energy and the sensitivity of the detector 
to the corresponding energy. The probability factor of the 
existence of the i-th nuclide can be calculated by formula:

(7)

Fij(x) =

T
∑

d=1

f d
ij
(x), x = 1, 2⋯N, f d

ij
(x) =

{

f d
ij
(x) f d

ij
(x) > 0

−0.3 f d
ij
(x) = 0

(8)Fij =

x+h1∕2
∑

x=x−h1∕2

Fij(x)

If Fi is greater than the threshold, the i-th nuclide exists. 
For nuclides with only one characteristic peak, it is first nec-
essary to determine whether there are interfering nuclides 
with similar energies in fuzzy logic nuclide library, for 
example, 57Co that emits a gamma ray at 122.06 keV that is 
interfering with the 121.78 keV gamma ray from 152Eu and 
the121.12 keV gamma ray from 75Se. If there are mutual 
interfering nuclides, the probability factor of mutual inter-
fering nuclides needs to be calculated at the same time. 
The results can be divided into three cases: (1) The current 
nuclide probability factor is less than the threshold, which 
can be directly excluded; (2) The current nuclide probability 
factor is less than the threshold, but the probability factor of 
the mutual interference nuclide is less than the threshold, 
and the existence of the nuclide can be directly determined; 
(3) If the probability factors of both are greater than the 
threshold, the algorithm cannot give the result directly, and 
further quantitative calculation is required. But the algo-
rithm can give the relative value of the probability factor 
for reference.

Example case

Taking the analysis of 60Co and 137Cs superposition spec-
trum as an example to illustrate the FPFS algorithm. The 
measurement time of each 60Co spectrum is 1 s and fifteen 
spectra were collected continuously. The measured spectrum 
is shown in Fig. 5a, in which the positions of the character-
istic peaks of two nuclides, 60Co and 137Cs, were marked.

Firstly, the gamma-ray spectrum is given as an input to 
the feature extraction module. The algorithm locates all the 
spectral peaks and represents them with fuzzy singletons as 
described in Section “Fast feature extraction”. Figure 5b, c 
shows the results of the peak search and the fuzzy singletons. 
Due to statistical fluctuations, the feature extraction algo-
rithm also identifies many peaks from statistical fluctuations 
as candidate peaks.

(9)Fi =
∑

wjFij

Fig. 5   The result of feature extraction and the fuzzy monomorphic set
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In the next steps, the probability factor is calculated by 
matching the fuzzy singleton set with the fuzzy logic nuclide 
library. We expect that most of the background peaks will be 
eliminated. The calculation result of the probability factor 
is as follows:

Since the peak positions of the peaks from statistical fluc-
tuations coincide with the characteristic peaks of 241Am and 
133Ba, they are misidentified as characteristic peaks. This is 
also the reason for the inaccuracy of the nuclide identifica-
tion algorithm under the low count condition. When FPFS 
is used for nuclide identification, due to the randomness 
of characteristic peaks, after 15 stacking, its influence on 
nuclide identification will gradually decrease. The normal-
ized results of each nuclide probability factor are shown as 
follows:

By setting the threshold of 0.2 obtained from the sample 
statistics, we can confirm that the gamma spectrum came 
from 137Cs and 60Co.

Experimental system and identification 
performance evaluation

To evaluate the proposed method, a gamma-ray spec-
trometry system was established, which consists of a 
10 mm*10 mm*5 mm CZT detector (Imdetek Inc.) cou-
pled with a multichannel analyzer (MCA) (ORTEC Inc.) 
along with software GammaVision 8.10.02. The detector 
was installed at a fixed location, and the radionuclides were 
placed at different distances from the detector, as shown in 
Fig. 6. Samples with different times, activities, and distances 
were obtained. Table 2 lists the radionuclides utilized in the 
experiment.

The detection rate was used to evaluate the identification 
performance of the proposed algorithm [24]. The detection 

�(241Am) = 0.368;�(137Cs) = 0.778;

�(60Co) = 0.843;�(152Ba)) = 0.04.

�(137Cs) = 0.7852;�(241Am) = 0.0136;

�(60Co) = 0.5865;�(133Ba) = 0.0047;

rate is defined by the ratio of the correctly identified data to 
the total amount of data as shown in Eq. (10)

In the formula, TP represents the number of samples for 
which the nuclide components contained in the energy spec-
trum are correctly identified, FP represents the number of 
samples that were identified incorrectly, and the sum of TP 
and FP is the total number of samples.

Finally, to test the performance of the proposed algo-
rithm, the results of the developed FPFS algorithm were 
compared with those of the Multiple Linear Regression 
algorithm (MLR) [25–27] and Fuzzy logic algorithm (FL) 
[8, 9].

Result and discussion

Analysis of different nuclide superposition spectrum 
identification

The test set consists of four datasets as shown in Table 3. 
Each dataset contains 1000 samples, each sample is com-
posed of 30 continuously measured gamma spectra, and the 
measurement time of each gamma spectrum is 1 s. In the 
experiment, the number of superpositions of the FPFS algo-
rithm is set to 15 times. To form a contrasting effect, the FL 
and MLR algorithms analyze the accumulated spectrum of 
15 gamma spectra, which is equivalent to directly measur-
ing the gamma energy spectrum with a measurement time 
of 15 s.

Figure 7 is the result of three kinds of nuclide identifi-
cation algorithms for different nuclide superposition spec-
trum nuclide identification. It can be seen from the figure 
that the detection rate of the three algorithms for the single 
nuclide spectrum is relatively close, above 95%. However, 
with the increase of the nuclide component in the gamma 
spectrum, the performance of the FL and MLR algorithms 
has decreased significantly. In particular, the detection rates 
of the two algorithms for the five-nuclides superimposed 
spectrum are only 45.4% and 45.3%, respectively, while the 
FPFS algorithm is still keeping it above 98%.

Figures 8 and 9 show the details of the analysis of the 
two-nuclides superposition spectrum and the five-nuclides 
superposition spectrum by the three algorithms. In the 
analysis of the multi-nuclide superposition spectrum, FL 

(10)Detection rate (%) =
TP

TP + FP
× 100

Fig. 6   Schematic of the experimental detection of radioactive sources

Table 2   Radionuclides for the experiments conducted in this study

Radionuclide 241Am 133Ba 152Eu 137Cs 60Co

Activity(μCi) 3.80 1.13 1.03 3.41 3.95
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and MLR algorithms are easily affected by nuclides with 
large statistical fluctuations or nuclides with close char-
acteristic peaks, resulting in a decrease in the recognition 
rate. Since the two nuclides, 133Ba and 152Eu, have a great 
influence on each other, when the two nuclides exist at 
the same time, the probability of 133Ba being recognized 
decreases rapidly. The accuracy of the algorithm that iden-
tifies nuclides through a single judgment is greatly affected 
by statistical fluctuations. Especially when the peaks from 

statistical fluctuations coincide with a single characteristic 
peak nuclide such as 241Am, or when certain characteristic 
peaks of multi-character nuclides are submerged by noise, 
misidentification will occur.

Analysis of radioisotope identification 
under different counts

Experiments have proved that for γ-ray spectra with better 
statistics, especially for nuclides with obvious character-
istic peaks and small noise fluctuations, the radioisotope 
identification algorithm is easier and more accurate to 
identify this nuclide. Some nuclides have high character-
istic peak counts, and the superposition of γ-ray spectra 
has little effect on the accuracy of the identification of the 
nuclides. To test the robustness of the radioisotope iden-
tification algorithm, the position between the radioactive 
source and the detector is adjusted to make the charac-
teristic peak counts of the 1 s spectrum of each nuclide 
close. Four nuclide combinations were selected for testing. 
The spectrum of radioisotopes with similar characteristic 
peaks is shown in Fig. 10, and the Identification results 
are shown in Table 4.

Because the feature extraction algorithm has a high sen-
sitivity to weak peaks, the reduction of the counting rate 
does not significantly reduce the accuracy of radioisotope 
identification and remains above 95%.

Table 3   Description of the 
measured spectrum test set

Test set Gamma spectrum description
(five nuclides 241Am, 133Ba, 137Cs, 60Co and 152Eu were used in the experiment)

Dataset 1 Single nuclide spectrum of the five nuclides
Dataset 2 Superposition spectra of any two nuclides among the five nuclides
Dataset 3 The superposition spectrum of any three nuclides among the five nuclides
Dataset 4 The superposition spectrum of any four nuclides among the five nuclides and 

five nuclides superimposed spectrum

Fig. 7   The detection rate of three nuclides identification algorithms 
on different Dataset

Fig. 8   The Detection rate of 
three kinds of nuclides identi-
fication algorithm to different 
double nuclides superposition 
spectrum
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Probability factor superposition analysis

To study the influence of the measurement time of a single 
spectrum and the number of superpositions of FPFS algo-
rithm on the accuracy of radioisotope identification, the fol-
lowing two-step experiment was carried out:

1.	 Set the number of superpositions of FPFS algorithm to 
15, then change the measurement time of a single spec-
trum, and analyze the performance of the algorithm.

2.	 Set the measurement time of a single spectrum to 1 s, 
then change the number of superpositions of the FPFS 
algorithm, and analyze the performance of the algo-
rithm.

Firstly, the 60Co spectra and the five-nuclides superposi-
tion spectrum with different measurement time of a single 
spectrum were analyzed. The results are shown in Table 5. 
The analysis result shows that increasing the measurement 
time of a single spectrum will increase the detection rate to a 
certain extent. This is because the influence of random noise 
on the γ spectrum will decrease as the measurement time 
of a single spectrum increases, so that the characteristics 
of the γ spectrum will be enhanced, thereby improving the 
accuracy of feature extraction. However, the small increase 
in the measurement time of a single spectrum cannot effec-
tively improve the γ spectrum characteristics, so the effect 
is not obvious.

Secondly, the single nuclide spectra of 60Co, the two-
nuclide spectra of 60Co and 152Eu, and the five-nuclide spec-
tra with the same measurement time of a single spectrum are 
analyzed by the nuclide identification algorithm with differ-
ent number of probability factor superposition. The result is 

Fig. 9   The detection rate of different nuclides in the superposition 
spectrum of five nuclides by three nuclides recognition algorithms

Fig. 10   γ Spectrum of radioiso-
topes with similar characteristic 
peaks counts

Table 4   Identification results 
of different radioisotope 
mixing spectra with similar 
characteristic peak counts

Radioisotope Average of full-
spectrum counts

Detection 
rate (%)

Probability factor of 
target nuclide

Probability factors 
of other nuclides

241Am + 137Cs 728 99.9 0.892 0.002
241Am + 60Co 1948 99.7 0.731 0.008
137Cs + 60Co 2602 99.3 0.623 0.007
241Am + 137Cs + 60Co 2639 99.9 0.385 0.003
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shown in Fig. 11. It can be seen from the figure that increas-
ing the number of superpositions will greatly improve the 
accuracy of nuclide identification. The efficiency of nuclide 
identification is more than 95% when the number of stacking 
times is more than 15 times.

Conclusion

In this paper, a radioisotope identification algorithm (FPFS) 
based on fuzzy logic and probability factor superposition is 
proposed. The method determines the probability factor of 
the existence of nuclides in each spectral line through the 

fuzzy logic algorithm and eliminates the randomness of sin-
gle measurement identification by superimposing the prob-
ability factors of multiple spectra. In the γ-ray energy spec-
trum, the peaks from statistical fluctuations such as noise are 
randomly distributed, and will not exist stably in the gamma 
spectrum of multiple consecutive measurements. By giving 
the attenuation factor, the probability factor will be main-
tained at a low value during the superposition process. The 
characteristic peaks of nuclides are relatively stable, and the 
probability factor will gradually increase with the increase 
of the accumulation times. After the probability factor is 
accumulated to a certain extent, the stable identification of 
nuclides can be realized.

Table 5   Analysis results of 
γ-ray spectra with different 
forming times by dynamic 
radioisotope identification 
algorithm

Measured time of 
a single spectrum

Radioisotope Detec-
tion rate 
(%)

Probability 
factor of target 
nuclide

Probability factors 
of other nuclides

1 s Co60 99.1 0.686 0.015
241Am + 133Ba + 137Cs + 60Co + 152Eu 98.5 0.551 0.022

2 s 60Co 99.3 0.792 0.015
241Am + 133Ba + 137Cs + 60Co + 152Eu 99.0 0.582 0.024

3 s 60Co 99.2 0.812 0.015
241Am + 133Ba + 137Cs + 60Co + 152Eu 98.7 0.601 0.023

5 s 60Co 99.4 0.813 0.013
241Am + 133Ba + 137Cs + 60Co + 152Eu 98.8 0.632 0.021

Fig. 11   Influence of probability 
factors superposition times on 
recognition accuracy: a 60Co; 
b 152Eu, 60Co; c 241Am, 133Ba, 
137Cs, 60Co, 152Eu
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The FPFS algorithm is verified by measured spectrum 
obtained by the CZT detector. Experiments show that, 
compared with the traditional fuzzy logic nuclide identi-
fication algorithm (FL) and the multiple linear regression 
fitting algorithm (MLR), the FPFS algorithm has a higher 
identification rate for nuclides, especially for multi-nuclide 
superposition. When the spectra from single and multiline 
radionuclides is analyzed, the influence of the mutual inter-
ference of the characteristic rays of different nuclide ener-
gies is small, and the high identification efficiency can be 
maintained. By analyzing the influence of the measurement 
time of a single spectrum and the number of superpositions 
of FPFS algorithm on the accuracy of radioisotope identi-
fication, it can be seen that the algorithm can flexibly set 
superposition times of probability factors according to dif-
ferent application environments and requirements, so as to 
obtain the required recognition accuracy in the shortest time. 
The identification results are dynamically updated with the 
increase of the number of superpositions. Under the condi-
tion that the measurement time of a single spectrum is con-
stant, the longer the total measurement time, the higher the 
confidence of the nuclide identification result.
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