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Abstract
The uranium (VI) adsorption performance of g-C3N4/UiO-66 composite (CNUIO) was evaluated under different solution 
pH values, adsorbent dosages, coexisting ions, contact times, initial U(VI) concentrations, and temperatures. The surface 
properties and the interaction mechanism between U(VI) and CNUIO were analyzed via SEM–EDS, BET, FT-IR and XPS. 
CNUIO exhibited the maximum adsorption rate of 95.01% under the conditions of  CU(VI) = 10 mg/L, pH = 6, M/V = 0.4 g/L, 
t = 120 min, and T = 298 K, which was about 25% and 33.73% higher than that of g-C3N4 and UiO-66, respectively. The 
adsorption process was found to be a spontaneous endothermic process and conformed to the pseudo-second-order kinetic 
model and the Langmuir isothermal adsorption model. SEM–EDS and BET analysis revealed that increasing the specific 
surface area effectively improved the adsorption capacity of CNUIO. FT-IR spectroscopy and XPS indicated that the removal 
of U(VI) was attributed to the coordination complexation between the nitrogen-containing and the oxygen-containing func-
tional groups of CNUIO and U(VI). Adsorption–desorption experiment demonstrated that CNUIO has a good reusability.
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Introduction

With the rapid development of nuclear energy, huge amounts 
of uranium-containing water are produced by uranium min-
ing and processing and utilization of uranium raw materi-
als [1]. Untreated uranium-containing water that is directly 
discharged into aqueous environments can cause serious 
harm to human health and the ecological environment [2, 
3]. Therefore, effective treatment of uranium-containing 
water has become an urgent environmental concern. Various 
effective treatment techniques, such as adsorption method, 
chemical precipitation, ion exchange, redox, and biologi-
cal treatment [4–7], have been developed, among which the 
adsorption method is widely used because it is a simple and 
cost-effective operation.

Graphitic carbon nitride (g-C3N4) is a low-cost absorbent 
that contains both amino and imino groups on its surface 
[8], and the highly condensed nature of the CN framework 
endows it with excellent physical and chemical stability [9]. 
g-C3N4 reportedly has a good removal effect on U(VI) [10], 
Pb (II), Ni (II), Cd (II), and Cu (II) in aqueous solutions 
[11]. However, the adsorption capacity of g-C3N4 is lim-
ited because of its small specific surface area owing to its 
layered structure formed by the stacking of nanosheets and 
insufficient number of functional groups [12]. To enhance 
its adsorption capacity, we used morphology control [13] 
and made a g-C3N4 composite with other materials. Liu 
et al. [14] combined polyaniline with oxidation etching 
g-C3N4. They reported that at the adsorption rate of U(VI) 
was 36.24% higher than that of g-C3N4. A previous study 
found that  MnFe2O4/PCN composites have an improved 
adsorption capacity of 182.8 mg/g [15]. Long et al. [16] also 
found that  Fe3O4@g-C3N4 nano magnetic materials can be 
used for purifying uranium ion. Wang et al. [17] reported a 
β-CD modified g-C3N4 nanosheet for the extraction of U(VI) 
with high selectivity from solution system and simulated 
seawater.

UiO-66, as a zirconium dicarboxylate (Zr)-based metal 
organic framework material, not only has a large specific 
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surface area and a high porosity but also has outstanding 
hydrothermal and chemical stability, which makes it a prom-
ising candidate of adsorbent [18]. Luo et al. [19] demon-
strated that the maximum adsorption capacity of UiO-66 
for U(VI) at pH 5.5 is 109.9 mg/g. Chen et al. [20] found 
that the uranium adsorption capacity was higher for amine-
modified UiO-66. Tripathi et al. [21] prepared a series of 
functionalized UiO-66 for uranium separation, which exhibit 
efficient sorption and moderate recyclability to uranium. 
These works highlight the tremendous potential of UiO-
66 in removal of U(VI) from aqueous solution. In order to 
enhance the adsorption performance of g-C3N4, UiO-66 was 
assembled on its surface to increase its specific surface area 
and enrich its surface functional groups, which overcame 
the shortcoming of a single component and improved the 
capture ability of U (VI). Therefore, in this study, a g-C3N4/
UiO-66 composite (CNUIO) was synthesized. Its perfor-
mance in removing U(VI) was evaluated and the underlying 
mechanism was investigated. This study provides a conveni-
ent adsorbent with efficient adsorption performance for the 
treatment of uranium-containing water.

Experimental section

Materials and chemicals

Melamine, zirconium chloride  (ZrCl4), terephthalic acid 
 (H2BDC), N, N-dimethylformamide (DMF), acetic acid gla-
cial, methanol. Uranium stock solution were prepared from 
GBW04201  U3O8 standard. All reagents were of analytical 
grade, and all solutions were prepared with deionized water.

Synthesis of g‑C3N4

Typically, 5 g melamine was placed in a covered crucible 
and calcined in the muffle furnace at 550 °C for 4 h (2°C/

min). After cooling to room temperature and grinding, the 
obtained yellow powder was g-C3N4.

Synthesis of UiO‑66

UiO-66 Octahedrons were synthesized by solvothermal 
method:1.059 g  ZrCl4 and 0.755 g  H2BDC were dissolved 
in 100 ml DMF with a continuous stirring for 1 h and then 
60 ml acetic acid glacial was added dropwise to adjust the 
shape of UiO-66. The solution was transferred into a Tef-
lon-lined stainless steel reactor, followed by being heated 
at 120 °C for 24 h. The product was washed several times 
with DMF and methanol. Finally, the UiO-66 samples were 
obtained after dried in oven at 80 °C overnight.

Synthesis of CNUIO

An improved scheme for preparing CNUIO was adopted 
herein following the method described in a previous study 
[22]. First, 1 g of g-C3N4 was dispersed into 10 mL DMF 
and sonicated for 1 h. Then, 0.053 g of  ZrCl4 and 0.034 g of 
 H2BDC were dissolved in 5 mL DMF. Afterward, 6 mL of 
glacial acetic acid was added dropwise to adjust the shape 
of UiO-66. The mixture was sonicated at room tempera-
ture until the solution became homogeneous. The g-C3N4 
solution was added into the above solution and continuously 
ultrasonicated for 1 h. The mixture was transferred into a 
Teflon-lined stainless steel reactor and then heated at 120 °C 
for 24 h. The subsequent washing and drying operations 
were the same those performed on UiO-66. The schematic 
of the synthesis process is shown in Scheme 1.

Adsorption performance experiments

Uranium stock solution was diluted to the required concen-
tration, and U(VI) adsorption by CNUIO was conducted 
through batch experiments. First, the pH of 50 mL U(VI) 

Scheme 1.  Schematic illustra-
tion for synthesis of the CNUIO
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solution was regulated to a range of 2–8 by adding negli-
gible amounts of 0.1 M HCl and NaOH solutions. In the 
uranium adsorption experiment, 20 mg adsorbents were 
added into the 10 mg/L U(VI) solution. The mixture was 
shaken at 160 rpm in an air batch shaker. After continu-
ous shaking to reach adsorption equilibrium, the adsorbent 
was separated from the reaction solution via centrifuga-
tion and filtration. The residual concentration of U(VI) in 
the supernatant was measured via a standard spectropho-
tometry method (578 nm). It was based on the formation of 
colored complexes of U(VI) ion with bromine generation 
ethanol in aqueous medium [23]. The average values of each 
experimental result were obtained through three repeated 
experiments. The % adsorption and adsorption capacity q 
(mg/g) were calculated by the following Eqs. (1) and (2):

where C0 is the initial U(VI) concentration (mg/L), Ce is the 
equilibrium concentration (mg/L), V is the volume of the 
solution (L), M is the mass of the adsorbent (g).

Adsorption–desorption test

The 20 mg of CNUIO adsorbed by U(VI) was added to 
50 mL HCl (0.1 M) and desorbed by shaking for 6 h. A cer-
tain volume of the supernatant was centrifuged at 7000 rpm 
for 10 min. The concentration of U(VI) was measured, and 
its desorption rate was calculated. Desorbed CNUIO was 
repeatedly washed with distilled water, dried by a vacuum 
drying tank, and repeatedly adsorbed five times under the 
same conditions to determine the adsorption efficiency. The 
% desorption was calculated by the following Eqs. (3):

where q0 is the desorption capacity of U (VI) (mg/g), q is 
the adsorption capacity of U (VI) (mg/g).

Characterization

The morphology of the adsorbents was observed via scan-
ning electron microscopy (SEM) (JSM–7500F, Japan). 
The surface area of the adsorbents was determined by 
Brunauer–Emmett–Teller (BET) analysis, and the pore size 
and volume were calculated by Barrett–Joyner–Halenda 
(BJH) model (Micro for Tristar II,USA). The crystal texture 
of the adsorbents was identified using an XRD (Bruker D8, 
Germany). The functional groups of the adsorbents were 

(1)% adsorption =
C0 − Ce

C0

× 100%

(2)q =

(

C0 − Ce

)

× V

M

(3)% desorption =
q0

q
× 100%

ascertained via Fourier transform infrared (FTIR) spectros-
copy (Nicolet–iS10, USA). The chemical elements of the 
adsorbents were identified via X-ray photoelectron spectros-
copy (XPS) (ESCALAB250Xi, USA).

Results and discussion

Experiments on adsorption performance of CNUIO

Effects of pH and ionic strength

The effect of the initial pH value (2–8) on U(VI) removal by 
the three adsorbents were evaluated (Fig. 1). When the pH 
value increased from 2 to 6, the adsorption rate of CNUIO 
for U(VI) increased from 22.03% to 95.01%. When the 
pH value increased to 8, the adsorption rate decreased to 
88.90%. At pH 6, the adsorption rate of CNUIO for U(VI) 
was about 25% and 33.73% higher than that of g-C3N4 and 
UiO-66, respectively. Furthermore, the removal rate of 
U(VI) by g-C3N4 and UiO-66 was lower than that of CNUIO 
within the range of pH values studied herein, indicating that 
the adsorption performance of the composite on U(VI) was 
better than that of each single component.

The effects of pH may be attributed to the fact that the 
acid–base of the solution has an important effect on the 
morphology of uranium, the surface charge distribution 
of the adsorbent, and the binding sites. The uranyl ion 
species in natural water has been widely studied [24]. The 
reason for the changes in the adsorption rate of CNUIO 
to U(VI) with pH was further explored by simulating 
uranyl species at different pH values by using the Visual 
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Fig. 1  The effect of the pH on U(VI) adsorption onto g-C3N4, UiO-
66 and CNUIO. (M/V = 0.4  g/L,  CU(VI) = 10  mg/L, T = 298  K, 
t = 120 min)
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MINTEQ software. As shown in Fig. 2, at pH < 4, U(VI) 
mainly existed as  UO2

2+, and at pH = 5–7, several kinds of 
uranyl hydroxides, such as  UO2(OH)+,  (UO2)3(OH)5

+ and 
 (UO2)4(OH)7

+, were gradually generated. When pH = 6, 
the dominating uranyl specie is  (UO2)3(OH)5

+ and the 
adsorption rate reached 95.01%. At pH > 8, the predomi-
nant species are  UO2(CO3)3

4− and  UO2(CO3)2
2−.

According to the zeta potential (Fig. 3), the point of 
zero charge of CNUIO was measured at pH = 6.02. The 
surface of the adsorbent was positively charged prior to 
6.02 because of the protonation of functional groups on 
CNUIO by  H+. At this time, electrostatic repulsion was 
formed between the protonated adsorbents and the posi-
tively charged  UO2

2+; moreover, the high concentration 
of  H+ completed with  UO2

2+ for the active sites, thereby 
restricting uranium adsorption [25]. As pH increased, the 
surface charge of CNUIO changed from positive to nega-
tive. Owing to the electrostatic attraction between CNUIO 
and  UO2

2+, adsorption efficiency gradually improved. 
After the zero potential, the negatively charged CNUIO 
repelled each other with various U(VI) complexes, such 
as  UO2(CO3)3

4− and  UO2(CO3)2
2−, resulting in a slight 

decrease in adsorption rate.
The influence of ionic strength on U(VI) adsorption by 

CNUIO was assessed (Fig. 4). When  Na+ concentration 
increased from 0 to 0.1 mol/L, U(VI) adsorption was neg-
ligibly affected within the specified pH range, indicating 
that the adsorption was dominated by inner-sphere surface 
complexation and electrostatic attraction [26].

Effects of adsorbent dosages

The dosage of CNUIO may affect the number of binding 
sites between CNUIO and U(VI), thus affecting the adsorp-
tion capacity of U(VI). The effect of CNUIO dosages on 
U(VI) adsorption were examined (Fig. 5). When the dosage 
increased from 0.1 to 1.6 g/L, the adsorption efficiency of 
U(VI) by CNUIO increased from 69.19 to 97.4%, whereas 
the adsorption capacity decreased from 69.19 to 6.09 mg/g. 
As the dosage increased, the number of active sites of the 
adsorbents and the adsorption rate of U(VI) correspond-
ingly increased [27]. However, excessive CNUIO dosages 
will reduce the unsaturation sites per unit mass adsorption, 
so the adsorption capacity was decreased. When CNUIO 
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dosage exceeded 0.4 g/L, U(VI) adsorption tended to remain 
stable. Therefore, the subsequent dosage of CNUIO in this 
experiment was 0.4 g/L.

Effects of coexisting ions

The effects of coexisting ions on U(VI) adsorption by 
CNUIO are illustrated in Fig. 6. A low concentration of 
the coexisting ions (10 mg/L) had little effect on CNUIO 
adsorption. As their concentration increased,  SO4

2− and 
 NO3

− had little effect on U(VI) adsorption. However, 
 Cu2+,  Ca2+,  Mg2+, and  F− inhibited the adsorption to 
a certain extent, and the degree of inhibition was posi-
tively correlated with the concentration of the coexisting 
ions.  Cu2+,  Ca2+, and  Mg2+ competed with uranyl ions 

for CNUIO surface activity adsorption sites during the 
adsorption process, resulting in a decrease in adsorption 
rate. The adsorption inhibition of  F− on U(VI) was the 
strongest. When the concentration of  F− was 90 mg/L, 
the adsorption rate was only 60.97%. Owing to the high 
affinity between fluorine and zirconium, zirconium-based 
adsorbents usually exhibit ideal  F− removal [28]. There-
fore, in the presence of interference ions other than  F−, the 
removal rate of U(VI) by CNUIO remained above 80%, 
indicating that CNUIO had a certain selective adsorption 
of U(VI) in aqueous solutions.

Effects of contact time and adsorption kinetics

The effect of contact time on adsorption of CNUIO was 
shown in Fig. 7(a). As can be seen, the adsorption capacity 
rapidly increased within the first 20 min, and the adsorp-
tion equilibrium was reached within 60 min. This result 
was attributed to the sufficient active sites on CNUIO and 
the large concentration gradient at the initial stage. As 
the adsorption progressed, the active sites on the CNUIO 
surface became saturated, resulting in almost no increase 
in adsorption capacity.

The adsorption behavior of U(VI) was simulated by 
the pseudo-first-order model (Eq. (4)), pseudo-second-
order model (Eq. (5)), and intraparticle diffusion model 
(Eq. (6)):

where qe is the equilibrium adsorption capacity (mg/g), 
and qt (mg/g) is the adsorption capacity at time t (min). k1 
 (min−1), k2  (min−1), and ki (mg/m·min1/2) are the adsorption 
rate constants of the pseudo-first, pseudo-second, and intra-
particle diffusion models, respectively.

The dynamic model fitting curves are plotted in 
Fig. 7(b)–(d), and the fitting parameters were listed in 
Table 1. The equilibrium adsorption capacity fitted in 
the pseudo-second-order kinetic model was closer to the 
U(VI) adsorption capacity obtained from the test, and the 
correlation coefficient (R2 = 0.999) was high, indicating 
that the pseudo-second-order kinetic model could describe 
the adsorption process better. Thus, the adsorption was 
mainly based on the chemical adsorption [29]. In addition, 
as intercept not zero, intraparticle diffusion is not the only 
rate limiting step.

(4)ln(qe − qt) = ln qe − k1t

(5)
t

qt
=
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k2 ⋅ q
2
e

+
t

qe

(6)qt = ki ⋅ t
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Fig. 5  Effect of the adsorbent dosage on U(VI) adsorption to CNUIO. 
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Adsorption isotherms and thermodynamic analysis

To further explore the adsorption behavior, the experimental 
data were fitted by the Langmuir model (Eq. (7)) and Freun-
dlich isotherm model (Eq. (8)).

where Ce is the concentration of U(VI) after adsorption 
equilibrium (mg/L), b is Langmuir adsorption equilibrium 
constant (L/mg), qmax is the maximum adsorption capacity 

(7)
Ce

qe
=

1

b ⋅ qmax
+

Ce

qmax

(8)ln qe = ln kF +
1

n
lnCe

(mg/g), kF is the Freundlich adsorption equilibrium constant, 
and n is a dimensionless constant.

The fitting curves were shown in Fig. 8, and more fitted 
parameters were provided in Table 2. A comparison of the 
correlation coefficient between the two models revealed 
that the process of U(VI) adsorption on CNUIO was more 
consistent with the Langmuir model. The adsorption pro-
cess was a uniform monolayer adsorption, and the interac-
tion between adjacent uranyl ions could be ignored. The 
separation factor  RL  (RL = 1/(1 +  bC0)) [30] in the Lang-
muir model was 0.423, 0.510 and 0.609 in the range of 
(0–1), thereby demonstrating that the adsorption of U(VI) 
by CNUIO was favorable. Furthermore, the maximum 
adsorption capacity was calculated from the Langmuir 
model was 261.16 mg/g. The comparison of adsorption 

Fig. 7  Effect of contact time 
on U(VI) adsorption by 
CNUIO (a), pseudo-first-
order model (b); pseudo-
second-order model (c), 
intra-particle-diffusion model 
(d). (pH = 6, M/V = 0.4 g/L, 
 CU(VI) = 10 mg/L, T = 298 K)
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Table 1  Adsorption dynamics 
model of U(VI) on CNUIO

C0/(mg/L) qe,exp/(mg/g) Pseudo-first-order Pseudo-second-order Intra-particle-diffusion

k1 qe,cal R2 k2 qe,cal R2 C ki R2

5 12.04 0.182 11.57 0.950 0.037 11.97 0.999 10.17 0.125 0.779
10 24.31 0.203 23.73 0.805 0.025 24.31 0.999 21.74 0.174 0.608
15 33.98 0.212 33.06 0.904 0.021 33.76 0.999 30.55 0.219 0.584
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capacities of various uranium adsorbents was provided 
in Table 3. CNUIO exhibited superior adsorption perfor-
mance, which verified its great potential in the field of 
uranium-containing water treatment.

In order to better reflect the feasibility of the adsorption 
process, the thermodynamic parameters entropy change 
(ΔS0), the enthalpy change (ΔH0), and the standard free 
energy charge(ΔG0) were calculated according to the fol-
lowing Eqs. (9) and (10).

where K0 is the distribution coefficient, R is the universal gas 
constant (8.312 J  mol−1  K−1), T is the temperature (K). The 
thermodynamic parameters for the adsorption of U(VI) on 
CNUIO were listed in Table 4. The values of ΔH0 and ΔS0 
were determined from the intercept and slope of  lnK0 and 
1/T linear curve (Fig. 9), and the value of ΔG0 at the three 
temperature was calculated according to the above formula.

ΔG0 < 0 and ΔH0 > 0 confirmed that the adsorption was 
a spontaneous endothermic process. ΔS0 > 0 indicated an 
increase in disorder throughout adsorption. Meanwhile, 
the value of ΔG0 decreased as temperature increased. This 
result indicated that the rise in temperature was condu-
cive to the adsorption of U(VI) on CNUIO because this 
phenomenon can provide more energy for the reaction 

(9)lnK0 =
ΔS0

R
−

ΔH0

RT

(10)ΔG0 = −RT ⋅ lnK0
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Fig. 8  The fitting of adsorption isotherm model. (pH = 6, 
M/V = 0.4 g/L, t = 60 min)

Table 2  Parameters of 
Langmuir and Freundlich model 
of U(VI) at 293, 303, 313 K

T/K Langmuir Freundlich

qmax b R2 kF n R2

293 225.34 0.017 0.996 5.552 1.384 0.967
298 235.42 0.012 0.994 7.080 1.542 0.949
303 261.16 0.008 0.994 9.184 1.770 0.920

Table 3  Comparison of the capacities with other adsorbents for 
U(VI)

Adsorbents Conditions qmax/(mg  g−1) References

CNUIO pH = 6, T = 303 K 261.16 This study
PCN pH = 5, T = 303 K 92 [13]
g-C3N4@Ni-Mg–

Al-LDH
pH = 5, T = 298 K 99.70 [31]

PPy/g-C3N4 pH = 5, T = 298 K 196.08 [32]
UiO-66-TBP pH = 5, T = 298 K 201.9 [33]
UiO-66-AO pH = 5.5, T = 313 K 227.80 [34]
GO-COOH/UiO-66 pH = 8, T = 298 K 188.30 [35]

Table 4  CNUIO absorbs the thermodynamic parameters of U(VI)

ΔG0/ (KJ  mol−1) ΔH0/ (KJ  mol−1) ΔS0/(J  mol−1)

293 K 298 K 303 K 12.43 54.94
−3.66 −3.97 −4.20

0.00330 0.00332 0.00334 0.00336 0.00338 0.00340
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Fig. 9  The plots of  lnK0 versus 1/T for U(VI) adsorption on CNUIO
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process and promote the formation of stable chemical 
bonds between the surface of adsorbent and uranyl ions, 
thereby promoting the adsorption [36].

Adsorption–desorption experiment of CNUIO

The five adsorption–desorption cycles of CNUIO using 
0.1 mol/L HCl are shown in Fig. 10. The initial adsorp-
tion rate and desorption rate of CNUIO were 92.55% 
and 93.27%, respectively. In the first three experiments, 
the effective removal of U(VI) could still be maintained 
(removal rate > 85%). When the desorption experiment was 
repeated five times, the adsorption rate decreased to about 
80% probably because some adsorption sites on the material 
surface were not successfully desorbed during the desorp-
tion process. In the process of acid desorption, part of  H+ 
occupied the surface binding site. Although the desorbed 
adsorbent was washed to neutral several times before the 
next cycle, the effect of acid treatment was irreversible, 
resulting in the gradual reduction in removal rate. The five 
adsorption–desorption tests demonstrated that CNUIO had a 
strong renewable capacity within a short time, and multiple 
cycles reduced its adsorption capacity.

Characterization of the adsorbents

SEM–EDS analysis

The SEM images of g-C3N4, UiO-66, and CNUIO are given 
in Fig. 11. g-C3N4 was composed of dense, thick-layered 
block structures, and its surface was relatively smooth 
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Fig. 10  The effect of cycle times on U(VI) adsorption–desorption by 
CNUIO. (pH = 6, M/V = 0.4 g/L,  CU(VI) = 10 mg/L, T = 298 K)

Fig. 11  SEM images of g-C3N4 (a), UiO-66 (b), CNUIO (c), EDS patterns of CNUIO adsorption U(VI) before(d), after (e)
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(Fig. 11(a)). UiO-66 had an obvious cubic structure with 
a smooth surface and a uniform particle size (Fig. 11(b)). 
CNUIO had a rougher and more wrinkled structure than 
g-C3N4 (Fig. 11(c)). Moreover, g-C3N4 had a small particle 
aggregation, indicating that UiO-66 nanoparticles were suc-
cessfully loaded on the g-C3N4 layer, and a small amount 
was intercalated between g-C3N4 layers. After the introduc-
tion of UiO-66, the thickness of block g-C3N4 became thin, 
which greatly increased its specific surface area and pro-
moted U(VI) adsorption.

The EDS elemental energy spectra of CNUIO before and 
after U(VI) adsorption are shown in Figs. 11(d) and (e). The 
elemental composition of CNUIO before absorption mainly 
consisted of O, C, N, and Zr (Fig. 11(d)). The abundant 
O and N elements formed oxygen-containing and nitrogen-
containing functional groups, thereby providing numerous 
active sites for U(VI) adsorption. The increase in uranium 
peak in the Fig. 11(e) proved that U(VI) was successfully 
adsorbed onto the sample surface. The drastic decrease in 
weight (%) of Zr after U(VI) adsorption may be the interac-
tion between the Zr–O bond and U(VI).

XRD analysis

The crystal structure of g-C3N4 and CNUIO are character-
ized via XRD. Figure 12 shows two characteristic peaks at 
13.1° and 27.4° in g-C3N4, corresponding to planar pack-
ing of tri-s-triazine units are the (100) peak and interlayer 
stacking of conjugated aromatic system as the (002) peak, 
respectively [37]. The decrease of the (002) peak value in 
CNUIO indicated that the graphite layer spacing became 
larger, further confirming the intercalation phenomenon of 
UiO-66.

BET analysis

The  N2 adsorption–desorption isotherms of g-C3N4 and 
CNUIO are shown in Fig. 13. The text parameters are sum-
marized in Table 5. The adsorption curves of CNUIO were 
similar to those of the typical type IV isotherm with obvious 
H3 hysteresis loops, indicating the presence of mesopores 
in the materials [38]. The smaller pore size of the compos-
ite indicated that UiO-66 particles stay in the channel of 
g-C3N4, resulting in the increase of specific surface area 
from 5.92 to 40.03  m2/g. The incorporation of UiO-66 sub-
stantially enlarged the specific surface area and the pore vol-
ume of g-C3N4, further confirming that the excellent adsorp-
tion performance of CNUIO could be attributed to its large 
specific surface area.

Mechanisms of U(VI) adsorption on CNUIO

FT‑IR spectroscopy

The FT-IR spectra of CNUIO before and after adsorption 
only slightly changed (Fig. 14), indicating that the structure 
and surface functional groups of CNUIO were not destroyed 
during the adsorption process. This result also indicated that 
the material had good regeneration properties. After U(VI) 
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Table 5  BET surface area and pore parameters of the g-C3N4 and 
CNUIO

Sample SBET  (m2/g) Pore volume 
 (cm3/g)

Pore size (nm)

g-C3N4 5.92 0.029 20.17
CNUIO 40.03 0.052 5.22



478 Journal of Radioanalytical and Nuclear Chemistry (2022) 331:469–481

1 3

adsorption, some of the peaks showed the changes of dis-
placement and strength. The increase in the band strength 
at 923.71  cm−1 was attributed to the O = U = O stretching 
vibration [39]. The main peak shifted, the broad peak at 
3000–3500  cm−1 was associated with the stretching vibra-
tion of N–H and –OH, resulting from uncondensed amino 
groups (–NH2– or –NH–) and absorbed water. However, the 
shape and strength of the peak did not remarkably change, 
which might have been caused by the complexation between 
N–H and –OH and U(VI) [40]. Several typical vibrations 
of carbon–nitrogen heterocycles were detected within the 
1200–1700   cm–1 wavenumber range. The C = N tensile 
vibration peaks at 1639.22 and 1573.86   cm–1 shifted to 
1634.57 and 1574.40  cm–1, respectively [41]. The C–N ten-
sile vibration peaks at 1408.87, 1321.65, and 1240.65  cm−1 
moved to 1413.37, 1329.43, and 1249.07  cm−1, respectively 
[42]. The N–H stretching vibration peak at 886.60  cm−1 
caused by incomplete condensation of amino moved to 
887.76  cm−1 [43]. These movements may be the forma-
tion of complexes between nitrogen-containing functional 
groups and U(VI) in CNUIO. Furthermore, the Zr–O bond 
(744.07  cm−1) peak position did not change, but the vibra-
tion peak intensity increased, which indicated that Zr–O 
was also involved in the reaction [44]. On the basis of 
the changes in FTIR spectra before and after adsorption, 
N–H, –OH, C = N, C–N and Zr–O are speculated to be the 
main adsorption sites in the process of U(VI) adsorption by 
CNUIO.

XPS analysis

The interaction mechanism between CNUIO and U(VI) 
was further analyzed via XPS (Fig. 15). The total spectrum 
of the sample indicated that the element types contained 

in the material were consistent with the EDS results 
(Fig. 15(a)). The two peaks at the binding energy of 392.70 
and 381.93 eV were attributed to U4f 5/2 and U4f 7/2 peaks 
in hexavalent form, respectively (Fig. 15(b)), illustrating 
that U(VI) was only adsorbed onto the CNUIO surface via 
oxidation [45].

The typical Zr3d 3/2 and Zr3d 5/2 peaks at 185.24 and 
182.85 eV revealed the existence of  Zr4+ (Fig. 15(c)) [46]. 
After adsorption, the two peaks moved to the low binding 
energy end probably because of the interaction between the 
Zr–O bond and U(VI) [47]. The high-resolution spectrum 
of C1s is shown in Fig. 15(d). The peak at 284.80 eV came 
from the graphitic carbon or the amorphous carbon of the 
 sp2 C–C bond in g-C3N4, whereas the peak at 288.19 eV 
was the  sp2 hybridized carbon (N–C = N) in the triazine ring 
structure that was bound to nitrogen atom [48]. The weak 
peak at 286.01 eV was attributed to the C–NHx (x = 1, 2) 
groups at the edge of heptazine [49]. The pre-adsorption 
N1s spectra at 404.64, 400.42, and 398.63 eV belonged to 
N–oxide [50], the N–H bond, and the C–N = C  sp2 hybrid 
nitrogen, respectively (Fig. 15(e)) [51]. The binding energy 
of the three peaks increased after adsorption because the 
lone pair of electron in the N atom transferred to the unoc-
cupied orbital of U electron, resulting in a decrease in elec-
tron cloud density and the positive movement of binding 
energy [52]. Additionally, the decrease of diffraction peak 
intensity can be attributed to the combination of these func-
tional groups with U(VI), which is consistent with the FTIR 
results. In the spectrum of O1s, the peak at 532.30 eV cor-
responded to the surface hydroxyl group of melamine ther-
mal polymerization [53], whereas the peaks at 531.65 and 
530.15 eV represented the C = O and Zr–O bonds, respec-
tively (Fig. 15(f)) [54]. After U(VI) adsorption, the binding 
of O1s peaks shifted to higher, thereby demonstrating that 
the oxygen-containing functional groups on the surface of 
CNUIO provided active sites for U(VI) adsorption. To sum 
up, the above results demonstrated that the nitrogen- and 
oxygen-containing functional groups were in charge of the 
interaction between CNUIO and U(VI).

Conclusion

In this work, CNUIO was synthesized and successfully 
applied to U(VI) adsorption. Tests demonstrated that 
this composite had good reusability. Under the condi-
tions of pH 6, absorbent dosage = 0.4 g/L, t = 120 min, 
and  CU(VI) = 10 mg/L, the adsorption rate of U(VI) by 
CNUIO was 95.01%. U(VI) adsorption onto CNUIO 
was strongly dependent on pH but independent of ionic 
strength, indicating that the adsorption process was domi-
nated by inner-sphere surface complexation and electro-
static attraction. The adsorption process fitted well with 
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the pseudo-second-order kinetic model and the Lang-
muir isothermal adsorption model, indicating that U(VI) 
adsorption was mainly monolayer chemical adsorption on 
the CNUIO surface. The maximum Langmuir adsorption 
capacity was 261.16 mg/g. Thermodynamic parameters 
(ΔG0 < 0 and ΔH0 = 12.427 kJ  mol−1) revealed that U(VI) 
adsorption by CNUIO was a spontaneous endothermic 
process. SEM–EDS and BET analysis revealed that the 

specific surface area of CNUIO substantially increased, 
which promoted U(VI) adsorption. According to the 
results of FTIR spectroscopy and XPS, the underlying 
adsorption mechanism was the synergistic complexation 
of nitrogen-containing and oxygen-containing functional 
groups. In conclusion, CNUIO can be used as a suitable 
adsorbent in practical radioactive wastewater treatment.

Fig. 15  XPS survey spectra for 
CNUIO before and after U(VI) 
adsorption (a), the correspond-
ing high-resolution spectra of 
U4f (b), Zr3d (c), C1s (d), N1s 
(e), O1s (f)
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