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Abstract
Several long half-life natural and anthropogenic radionuclides, including 137Cs, 226Ra, 232Th, and 40K, in a 45 cm-long 
sediment core collected from the east continental shelf of Hainan Island, South China Sea, have been analyzed. The results 
showed that mean activity of 137Cs, 226Ra, 232Th, and 40K were 2.03 ± 1.2, 20.4 ± 1.8, 45.7 ± 3.0, and 520.0 ± 20.0 Bq/kg, 
respectively. Radium equivalent activity and External hazard index imply a low radiation, and the study area could serve as 
a background reference value for environmental radionuclides in east continental shelf of Hainan Island, South China Sea.
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Introduction

Environmental radionuclides are omnipresent in the Earth 
environment. Radionuclides with different half-lives may 
derive from various source materials, making them ideal 
tools to trace geochemical processes, examine rock ages, and 
construct the chronology of sediment profiles [1, 2]. How-
ever, radionuclides may pose some potential health hazards 
to human beings through continuous internal and external 
irradiation [3]. Natural and anthropogenic radionuclides 
can enter the marine environment through several path-
ways, such as the discharge of radioactive wastes produced 
by nuclear tests or nuclear plants, leakage associated with 
nuclear accidents, weathering and erosion of terrestrial rocks 
and subsequent transportation by water, wind and gravity, 
etc., through surface running and groundwater infiltrating. 
The ocean acts as a sink and reservoir of various terrestrial 

materials and marine sediments, which have a high capac-
ity to absorb some radioactive materials [4]. Thus, marine 
sediments can well record the sedimentary history of radio-
nuclides in the environment [5]. Radionuclides in marine 
sediments could also play a positive role in chronological 
analysis, environmental radiological risk assessment, and 
establishment of environmental radiation safety standards 
[6–9].

Some areas on the southern coast of China are typical 
high background radiation areas [10]. In addition, 16 nuclear 
power plants are currently in regular use in China’s coastal 
areas and more are under construction or proposed for con-
sideration [11]. Terrestrial materials from high radiation 
background areas and nuclear ore processing by nuclear 
power plants may release natural and anthropogenic radio-
nuclides [12, 13], which may ultimately enter the ocean.

In addition, based on recent geological survey, continental 
shelf areas surrounding the Hainan Island were found to be 
enriched in marine sand resources [14]. These resources are 
good engineering construction materials with high quality, 
and future exploitation are under consideration according 
to the planning of the Chinese government (https:// en. zgss. 
org. cn/). The sampling site of this study is located within the 
planning exploitation area. Thus, radiological risk assess-
ment of these sediments is of great significance. To date, 
time-series distributions of environmental radionuclides in 
marine sediments, and their radiological risk in coastal areas 
are largely unknown. One of our aims is to examine and 
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compare overall radioactivity of the marine sediments in 
ancient and recent times, respectively.

To assess and monitor the environmental risk of radio-
nuclides, radium equivalent radioactivity  (Raeq), which 
incorporates long half-life radionuclides of 226Ra, 232Th and 
40K, was proposed by scientists [15–19]. It has been widely 
used to assess radiological risk of marine sediments. For 
example, Sam et al. [20] analyzed the distributions of natu-
ral and man-made radionuclides in the surface sediments 
of the Sudan and Suakin ports along the Sudan coast of the 
Red Sea, and identified the influence of organic matter on 
radionuclide distributions. By analyzing natural radionu-
clides in the surface sediments of the Vizag coast in south-
eastern India, Tripathi et al. [21] reported a low level of 
radioactive hazards. However, soil/beach sand samples in 
Kalpakkam, India, have much higher levels of long half-life 
radionuclides, resulting in higher  Raeq [22]. In addition, a 
few studies were performed on radionuclides in marine sedi-
ments from China. For instance, Liu et al. [23] measured 
the spatial distributions of radionuclides in the sediments 
of the Beibu Gulf, South China Sea and reported radioac-
tivities decreasing with the offshore distance. Wang et al. 
[24] and Lin et al. [25] determined radionuclides in coastal 
wetlands and marine sediments of the Laizhou Bay, and 
discussed their potential environmental risks. The external 
hazard index  (Hex) is also a good marker for radiological risk 
[21, 26–28]. In terms of risk assessment of radionuclides in 
soil or sediments, most of the previous research focused on 
spatial distribution [29–33], whereas time-series analysis in 
environmental samples is extremely insufficient.

This study was designed to reconstruct the records of 
several environmental radionuclides in the sediments of the 
eastern continental shelf of Hainan Island, South China Sea, 
and to examine the long-term changes in potential radio-
logical risk. Our study also aids for future management and 
exploitation of marine sand resources, and helpful for under-
standing radiological baseline of the study area.

Materials and methods

Sample collection

The South China Sea (SCS) is located in the Western 
Pacific warm pool area and is the largest semi-enclosed 
marginal sea in the region. It is one of the regions with the 
highest level of biodiversity in the world [34, 35]. Due to 
its unique geographical location, the SCS is very sensitive 
to environmental changes and thus an ideal area for study-
ing global and regional environmental changes [36]. The 
Pearl River in China and, the Red River, and the Mekong 
River in Vietnam are the major rivers entering the SCS 
[34]. These rivers provide the main source materials for 

the sediments on the shelf area of the SCS. The study 
area is located on the eastern continental shelf of Hainan 
Island, northern SCS.

According to previous studies of [37, 38], terrestrial input 
of the Pearl River is the main sediment source in the north-
ern shelf area of the SCS. Over the past decades, countries 
around the SCS have been experiencing the fastest economic 
development with more than 270 million people living in the 
coastal areas of the SCS. The Pearl River Delta and its city 
cluster are the most economically developed areas in China, 
with a large population and high density. To relieve the pres-
sure on energy and resources, the Chinese government has 
constructed several nuclear power plants on the northern 
coast of the SCS, and more are under consideration (Fig. 1). 

The sediment core analyzed in this study was collected 
during the “National Natural Science Foundation of China 
(NSFC) sponsored Open Scientific Expedition Cruise to the 
western SCS” in 2015 and was named QD2. Though we 
used one core in the present study, we believe it can gener-
ally reflect regional environmental changes. Sediments on 
the eastern and northern coasts of the South China Sea share 
a common source, i.e. the Pearl River [37]. The sedimen-
tary environment is thus relatively simple. Similar material 
sources in this area probably record similar deposition his-
tory. Marine productivity record based on QD2 coupled with 
large scale climatic (temperature, monsoon, etc.) changes 
[39]. This also partly suggests that the sampling site may 
serve as a good record for a large area.

The water depth of the sampling site, approximately 
20  km offshore, is 84.6  m (coordinates 18°54.00′N, 
110°42.00′E; Fig. 1). The sampling equipment was sup-
ported by vessel “Experiment No. 3” (owned by the South 
China Sea Institute of Oceanology, Chinese Academy of 
Sciences). A box corer with a height of 60 cm was used as a 
sampler. After the sampler was retrieved from the seafloor to 
the deck, the seawater was siphoned out. A 7.5 cm diameter 
push core was then inserted into the box corer. The pipe 
was sealed with made-to-fit ends, and the core was 45 cm in 
length. Prior to analysis, it was brought back to the labora-
tory and stored at − 20 °C.

The core was opened in the laboratory and sectioned at 
intervals of 1 cm (45 samples in total). The core was pho-
tographed and its lithological characteristics were also 
recorded in detail. In general, the core could be divided into 
two parts from the top toward the bottom. The upper part 
of the core from 0 to 20 cm is composed of yellow–gray 
fine sand, while sediments at the depth of 20–45 cm are 
mainly gray–black silt with some tiny mollusk shells [39]. 
Chronology analysis also revealed that sample age increased 
with depth (see Results and discussion), and no evidence of 
bioturbation was observed during core slicing. We are thus 
confident that the sediments have been well-preserved and 
the core serves as a natural archive.
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Analytical methods

Chronological and grain size analysis

The age-depth model of the core QD2 was constructed by 
both 210Pb analysis of the surface sediments and radiocarbon 
(14C) dating of foraminifera samples in the lower part sedi-
ments. Details of the chronological analysis were described 
in Ji et al. [39, 40]. Grain size composition of each sample 
was determined with a laser particle size analyzer after the 
samples were treated with excess  H2O2 and HCl. The ana-
lyzer model is Malvern Mastersizer 2000 with a detection 
range of 0.02–2000 μm.

Radionuclide analysis

The radionuclides test is specified as follows: after freeze-
drying, each sample was ground with an agate mortar and 
pestle to pass a 100-mesh sieve. Approximately 5–6 g of 
the sample was transferred to a standard centrifugal tube. 
The tube was then sealed with cyanoacrylate glue and stored 
for three weeks to reach the secular radioactive equilibrium 
between 226Ra and its daughter isotopes. Sealing is very 
important for reaching equilibrium between 222Rn and 226Ra 
in the present study. Prior to experiment, we performed leak 
detection on the tubes we used. A centrifugal tube was sealed 
with cyanoacrylate glue and then soaked into a 500 mL 
beaker. No any bubble was observed during this process, 
implying that leakage of air was impossible. Measurements 
of the activity concentrations of 137Cs, 226Ra, 228Ra and 
40K in Bq/kg (in dry weight) of the collected samples were 
determined using low-background high-purity germanium 

(HPGe) gamma spectrometer. The counter has an energy 
resolution better than 2.3 keV at 1332 keV (Co-60). Several 
radionuclides, including 241Am, 155Eu, 57Co, 54Mn, 65Zn and 
60Co (provided by National Institute of Metrology of China), 
were used to calibrate the spectrometer. The counting time 
for each sample was approximately 24 h. The detection limit 
for 137Cs is 0.19 Bq/kg, and the limit for 226Ra/228Ra/40K is 
4.5 Bq/kg. 137Cs was measured at the position of 661.7 keV. 
Radioactivity of 226Ra was obtained by the weighted mean 
of its daughter isotopes 214Pb at 295 keV and 351.9 keV and 
214Bi at 609.3 keV. For 228Ra measurement, the weighted 
mean was taken from signals at the 338.3 keV, 911.2 keV, 
and 968.8 keV peaks of 228Ac. The photopeak for 40K was 
1460.8 keV.

Results and discussion

Chronology and grain size compositions

According to the age-depth model constructed for QD2 by 
210Pb and 14C tests, the ages of the QD2 samples increase 
with the depth without age inversion, implying good pres-
ervation of the samples. The age of the bottom sample of 
this core is 1852 years before present (106 AD), suggesting 
the core has a history of approximately 1900 years [39, 40] 
(Fig. 2). 

Grain size compositions of sediment samples in QD2 
were provided in Fig. 3. It tells that the sediments mainly 
consist of coarse components, i.e. sand and silt. In con-
trast, the content of clay is low. Additionally, the con-
centrations of typical land-origin element Aluminum (Al) 

Fig. 1  Map showing the 
sampling site and some nuclear 
power plants (NPPs) on the 
coast (based on Ocean Data 
View to create; the red filled cir-
cle shows the location of QD2 
(which means Qiong-Dong 
area of the South China Sea); 

: the running nuclear power 
units; : NPPs under considera-
tion. The marked numbers in 
the figure represent the nuclear 
power plants: ① Ningde NPP; 
② Fuqing NPP; ③ Zhangzhou 
NPP; ④ Taipingling NPP; ⑤ 
Daya Bay and Lingao NPP; 
⑥ Taishan NPP; ⑦ Yangjiang 
NPP; ⑧ Fangchenggang NPP; ⑨ 
Changjiang NPP). (Color figure 
online)
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in this core are as high as ~ 4–6% [39]. This implies ter-
restrial input is the dominant source of these sediments. 
This is in agreement with an earlier study which reported 
that sediments from this study area were derived from the 
Pearl River [37].

Based on statistics, both sand and silt have relatively 
small coefficients of variation (CV) (~ 15%). Together with 
the relatively uniform lithology, the results suggest that the 
sediments in the study site could be in a relatively stable 
sedimentary environment, and the source material has not 
changed significantly.

Distribution of nuclides in the sedimentary profile

Among the radionuclides that we analyzed, 137Cs has the 
lowest radioactivity. It was found in the sediments above 
depth of 5 cm, and the radioactivity concentrations for these 
five samples are 4.0, 2.2, 1.8, 0.7, and 1.4 Bq/kg, respec-
tively. The 137Cs signal in the upper most layer could be a 
record of Fukushima Daiichi nuclear disaster in 2011. 137Cs 
shows a small peak at the depth of 5 cm, and this might 
be measured from the Chernobyl nuclear accident. The 
distribution of 137Cs in core QD2 also suggests a relatively 
low sedimentation rate. The missing of 137Cs in deep layers 
could be explained by its natural decay, as it has a relatively 
“short” half-life in comparison with 226Ra, 228Ra and 40K. 
The anthropogenic 137Cs data also imply an insignificant 
impact of human activity on the sediments.

The activity concentrations of long-lived natural radio-
nuclides 226Ra, 228Ra, and 40K in QD2 sediment core are 
given in Fig. 4.

Figure  4 shows that the radioactivity of 226Ra in 
QD2 ranges from 14.8 to 27.1 Bq/kg with an average of 
20.4 ± 1.8 Bq/kg (n = 45). The minimum value appears at the 
depth of 6 cm and the maximum appears at 17 cm. The radi-
oactivity of 226Ra between 18 and 30 cm is slightly lower, 
but its overall trend is not evident.

The radioactivity of 226Ra in QD2 is slightly lower than 
the worldwide average concentration of 35 Bq/kg [41] and 
significantly lower than most of the reported radioactivi-
ties of soil and sediment samples in China (Table 1). For 
example, 226Ra radioactivities in soil samples of the Pearl 
River Delta and surface sediments from Nansha are as high 
as 135.9 Bq/kg and 80.6 Bq/kg, respectively [42, 43]. The 
Huangmao Sea-Guanghai Bay and adjacent sea areas and 

Fig. 2  Age-depth model for the profile QD2 based on 210Pb and 14C 
dating (Reprinted from [40] with permission from Wiley)

Fig. 3  Down core distributions 
of grain components [(1) clay, 
(2) silt and (3) sand] and Al (the 
data of Al are cited from refer-
ence [39])
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the Yangjiang nuclear power sea area also have much higher 
activity concentrations of 226Ra [10, 44]. This large variabil-
ity of 226Ra could be partly attributed to the type of soil/sedi-
ments, soil parent material, landform and radiochemistry in 
specific areas. For instance, the Pearl River Delta watershed 
is an area with high radiation background [45, 46], leading to 
a relatively high level of 226Ra in its soil sediments. In terms 
of the absolute values, the radioactivity of 226Ra in QD2 is 
approximately half of the average radioactivity of 226Ra in 
Chinese soil, i.e. 37.6 Bq/kg [47].

Compared to 226Ra, 228Ra in the QD2 sediments has 
higher radioactivity ranging from the minimum of 33.7 Bq/
kg (at 15 cm) to the maximum of 59.4 Bq/kg (at 42 cm), 
with an average of 45.7 ± 3.0 Bq/kg (n = 45). Throughout 
the entire profile, the radioactivity of 228Ra in the upper part 
(0–20 cm) of the core is lower than that of the lower sedi-
ments (Fig. 4). From a global perspective, the 228Ra radio-
activities in the QD2 core are higher than the international 
average of 30 Bq/kg [41].

Among the analyzed radionuclides, 40K in QD2 core 
shows relatively higher radioactivity level (Fig. 4) between 
464.8 and 575.6 Bq/kg, with an average of 520.0 ± 20.0 Bq/
kg. The radioactivity of 40K in QD2 core was higher than 
those in some previously investigated coastal areas of China, 
e.g. the Beibu Gulf, Bailong Peninsula, Pearl River Estu-
ary and Nansha sea area (253–511.5 Bq/kg) [48–52]. Con-
versely, the radioactivity of 40K in QD2 core was overall 

Fig. 4  Radioactivity-versus-depth profiles of 226Ra, 228Ra, and 40K in 
QD2 core with depth

Table 1  The  Raeq values in 
marine and estuary sediments

Raeq values in areas marked with asterisks were given in the cited papers.  Raeq in areas without asterisks 
were calculated by nuclide activity values provided in the respective paper(s)

Area Radioactivity (Bq/kg) Raeq (Bq/kg) References
226Ra 228Ra 40K

South China Sea Coral Reef 3.3 5.1 24.4 12.5 [25]
Beibu Gulf* 22.2 34.4 253.0 90.9 [48]
Pearl River Estuary, Dapeng Bay and Daya Bay 27.9 36.5 456.2 115.2 [50]
Shenzhen coastal areas 26.5 43.2 364.2 116.3 [51]
The adjacent areas to Bailong Peninsula, Beibu Gulf* 32.4 46.1 355.0 125.7 [49]
Continental shelf areas of Hainan Island 20.4 45.7 520.0 125.7 This study
Yangtze River Estuary 24.3 40.9 628.0 131.1 [71]
Northeast of South China Sea 27.7 44.9 538.0 133.3 [23]
Yangtze River Estuary and adjacent areas* 18.5 48.5 684.0 140.5 [72]
Hong Kong sea areas 32.5 48.1 625.0 149.4 [73]
Changyi Coastal Wetland/Laizhou Bay 28.6 57.9 542.0 153.1 [15]
Tianwan Sea Area, Lianyungang 25.2 46.7 899.0 161.2 [56]
Jiaozhou Bay 26.5 40.3 688.0 164.4 [53, 74]
Yangjiang Nuclear Power Sea Area 35.5 57.1 621.0 165.0 [10]
Huangmao Sea-Guanghai Bay and adjacent sea areas 36.6 61.3 571.0 168.2 [44]
Xinghua Bay, Fujian 24.8 63.7 734.0 172.4 [55]
Intertidal zone in Xiamen sea areas 32.4 69.3 692.0 184.8 [54]
Nansha sea area 80.6 45.5 511.5 185.0 [52]
Pearl River Delta 135.9 196.9 670.2 469.1 [42]
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lower than those in sediments from the northeastern of SCS, 
Laizhou Bay, Xinghua Bay, Taiwan sea and other investi-
gated areas (538–899 Bq/kg) [10, 43, 53–56]. In general, the 
average radioactivity of 40K in QD2 core is slightly lower 
than the average radioactivity of 40K in China (584.0 Bq/
kg), but higher than the global average of 400 Bq/kg. To 
further assess the overall long-term environmental risk of 
radionuclides in the study area, we calculated the  Raeq index 
based on the measured radioactivity concentrations of 226Ra, 
228Ra and 40K.

Radiological risk assessment of radionuclides 
in core QD2

Individual radionuclides may not reflect the overall long-
term risk of the bulk sediments, and an integrated marker is 
thus required. Hazard indexes could be good indicators that 
reflect general radioactivity of environment samples. Such 
indexes are thus employed to investigate changes in radiation 
of marine sediments on millennial scales. The utilization 
of hazard indexes to examine marine sediments was gener-
ally acknowledged by scientific community, and the indexes 
have been applied to some ocean areas, including the Bay of 
Algeciras [57], shore of Vizag [21] and the southern South 
China Sea [58]. As stated above, the core dates back approx-
imately 1900 years. Together with the established chronol-
ogy, we used radium equivalent activity and external hazard 
index to evaluate radiological risk over the last ~ 1900 years.

Radium equivalent activity  (Raeq)

In order to compare the comprehensive radiological effects 
of the main natural radionuclides in the continental shelf 
of eastern Hainan Island,  Raeq was used to evaluate the 
radioactivity of each sample in QD2 sediment core, which 
is widely used in radioactive risk assessment [59–61]. The 
hazard index is calculated based on the activity of natural 
long half-life radionuclides 226Ra, 232Th and 40K, mathemati-
cally defined as follows [62–65]:

where  ARa,  ATh,  AK are the activity concentrations of 226Ra, 
232Th, and 40K in the sediments, respectively. It is generally 
accepted that the radioactivity of 232Th is equal to its decay 
daughter 228Ra due to secular equilibrium [26, 28, 63, 66]. 
Thus, 228Ra is frequently used as a substitution for 232Th 
in the calculation of  Raeq. Based on chronology and activ-
ity data, we have constructed a 1900-year record of  Raeq 
for the QD2 core (Fig. 5), which is the first long-term, i.e. 
millennial-scale,  Raeq record.

Figure 5 shows the minimum value of  Raeq is 107.5 Bq/
kg at the year of 1989 AD, and the maximum (149.8 Bq/

(1)Raeq = ARa + 1.43 × ATh + 0.077 × AK

kg) appears at 180 AD. The present-day  Raeq of 115.0 Bq/
kg is approximately 77% of the maximum. The aver-
age  Raeq over the past 1900 years is 125.7 Bq/kg ± 10.4 
(n = 45). In general,  Raeq of 370 Bq/kg is widely accepted 
by the scientific community as a safety threshold [34, 
67–70]. In comparison with this recommendation value, 
the  Raeq of sediments from the eastern continental shelf of 
the Hainan Island, SCS, is significantly lower. This sug-
gests that the radiological hazard in the study area is low. 
It is also noted that  Raeq shows a decreasing trend in the 
past 1900 years (Fig. 5) and is currently at a relatively low 
level, which is only 31% of the safety threshold.

We compared the  Raeq values of marine and estuary 
sediments in some other areas of China by compiling the 
published  Raeq data (Table 1). According to this table, 
sediment  Raeq values in other regions of China are gener-
ally low, ranging from 12.5 to 469.0 Bq/kg. The overall 
radioactivity level of the QD2 samples is similar to that of 
marine sediments in some coastal areas of China (such as 
the sediments adjacent to the Bailong Peninsula in Beibu 
Gulf and the surface sediments in the Yangtze River estu-
ary) but lower than the average radioactivity of the Chi-
nese soils (165.7 Bq/kg)[42].

Due to the widespread granite and acidic volcanic rocks 
around the Pearl River Delta, northern coast of the South 
China Sea is a high radiation background area and geologi-
cal samples there contain high levels of uranium and tho-
rium, and its  Raeq (469.1 Bq/kg) exceeds the safety threshold 
of 370 Bq/kg (Table 1) [10, 42, 73, 74]. All the other inves-
tigated areas in China, including the coast area in this study, 
have  Raeq values below the threshold, further attesting to a 
low radiological risk. Therefore, the  Raeq data obtained in 
this study can serve as the background value of radioactivity 
in the study area. The average value can be further used as 
an environmental background to guide environmental man-
agement and decision-making concerning environmental 
radioactivity.

Fig. 5  Raeq values for sediments in the core QD2 over the past 
1900 years
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We also investigated the radioactivities of radionuclides 
in samples around the globe.  Raeq data from different regions 
of the world are presented in Fig. 6 [47, 75–78]. Figure 6 
shows most studies on soil/sediment radioactivity are from 
Europe [20, 41, 79], East Asia and South Asia [22, 56, 74, 
80], with a few related studies from West Asia [81–83]. 
Comparatively, studies of  Raeq from Africa, Australia and 
America are scarce [26, 84, 85].

The average radioactivity of QD2 samples is (125.7 Bq/
kg) slightly higher than that of the world average of 
108.7 Bq/kg [41]. Available global data show the radioac-
tivities of sediments and soils from Europe are relatively 
low [41, 79]. The European average  Raeq value is very close 
to that of QD2 samples in this study (125.7 Bq/kg), and 
the lowest radioactivity (43.1 Bq/kg) is from the Black Sea 
coast of Turkey [86]. Among all the data we collected, the 
maximum  Raeq is from Kalpakkam, India [22], which is as 
high as 644.1 Bq/kg, about four times greater than sediments 
in our study. From a global perspective, the average radioac-
tivity level in sediments from the eastern continental shelf 
of Hainan Island, SCS, is at a medium level and below the 
safety threshold. Therefore, the study area is at low radio-
logical risk.

External hazard index  (Hex)

The external hazard index  (Hex) is also a good indicator of 
radiological risk. The sediments in the marine environment 
mainly come from the nearby land continent. Thus,  Hex can 
be used to estimate the hazard of natural gamma radiation 

of the marine sediments and the terrestrial mainland [21, 58, 
87]. The calculation formula is as follows [21]:

The results revealed that  Hex values of QD2 core samples 
ranged from 0.29 to 0.40, with an average of 0.34, less than 
the safety threshold value 1 [26, 65, 88, 89]. In comparison 
with published some  Hex values of marine sediments (e.g. 
Southeast India, Egyptian Red Sea Coast, Southern Italy 
and Upper Gulf of Thailand etc.), our values are low. This 
also suggests that the risk of external radiation hazards is 
very small.

Based on  Raeq and  Hex, together with the pretty low level 
of 137Cs, it is concluded that the delivery of land-based 
materials to the sediments and nuclear power plant opera-
tions (including nuclear ore processing) nowadays in China's 
coastal areas do not cause great radiation hazards.

Conclusions

A sediment core QD2 was collected from the eastern conti-
nental shelf of Hainan Island, SCS. Several radionuclides, 
including 137Cs, 226Ra, 228Ra and 40K were determined. The 
activities of 137Cs are very low, suggesting a minor impact 
of anthropogenic impact. Average activities of 226Ra, 
228Ra and 40K are 20.4 ± 1.8 Bg/kg, 45.7 ± 3.0 Bg/kg, and 
520.0 ± 20.0 Bq/kg. In combination with chronological 
analysis, the time-series distributions of 226Ra, 228Ra, 40K 
in the sediments of the core were reconstructed. Radium 

(2)Hex = ARa∕370 + ATh∕259 + AK∕4810

Fig. 6  Global distributions of soil/sediment  Raeq values (black bar denotes marine sediments in this study; green and yellow markers represent 
sediment and soil samples, respectively). (Color figure online)
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equivalent activity  (Raeq) and external hazard index  (Hex) 
were employed to evaluate the radiation risk. The mean 
value of  Raeq and  Hex are 125.7 Bq/kg and 0.34, respectively. 
The  Raeq value of QD2 is generally low with an average of 
125.7 Bq/kg, much smaller than the  Raeq safety threshold 
(370 Bq/kg). Thus, the environmental risk associated with 
radionuclides around the study area should be low. In com-
bination with chronological analysis, a 1900-year record of 
 Raeq was reconstructed, and the record shows a decreasing 
trend in  Raeq.  Hex average is less than the safety threshold 1. 
Both  Raeq and  Hex suggest a low radiological risk. Together 
with low level of 137Cs, it is concluded that the environ-
mental risk associated with radionuclides around the study 
area should be low. The eastern continental shelf area of 
Hainan Island, SCS, could serve as a natural background 
in environmental radiation studies. The results of this study 
provide reference values for the assessment of marine radia-
tion safety in coastal areas and monitoring of radionuclide 
pollution.
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