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Abstract
A chemical treatment process for removal of radionuclides associated with concrete from the decommissioning of nuclear 
power plants was adopted using a simple and effective precipitation method. Major radionuclides Co-60 and Eu-152 present 
in the concrete were confirmed to be selectively removed from the dissolved-concrete liquor as precipitates by pH-adjustment 
to pH 9. It was evaluated that HFO and HAO played important roles in the co-precipitation of Eu and Co, respectively. 
Nuclide decontamination factors were at least 6666 for Co-60 and 10,000 for Eu-152, respectively, and high enough to meet 
the requirement for release of decontaminated radioactive wastewaters in Korea.

Keywords  Radioactive concrete waste · Flocculation · Precipitation · Hydrous ferric oxide · Hydrous aluminium oxide · 
Nuclear decommissioning

Introduction

When nuclear facilities, including nuclear power plants, are 
operated, or decommissioned, a variety of radioactive wastes 
are generated. Management options for the wastes and the 
treatment methods to be used are determined depending on 
not only the physical and chemical characteristics of the raw 
waste but also the circumstances within each country, e.g. 
disposal cost, available disposal sites, and the acceptance 
criteria required by the disposal site to which the wastes 
will be consigned, etc. [1–5]. The Kori 1 nuclear reactor, a 
pressurized water reactor (PWR) which was the first nuclear 
power plant in Korea, was permanently shut down in 2017 
and is to be decommissioned by mid-2030. Other units in 
Korea will face the same fate in series when they reach the 
end of their operating lifetime; with the recent closure of 
Wolsong 1, a pressurized heavy water reactor (PHWR), in 
late 2019. A further five reactors are scheduled for closure 

between 2023 and 2026, bringing the total to seven. Such a 
rate of closures within a relatively short space of time will 
significantly increase the demand for treatment and manage-
ment solutions for wastes arising during decommissioning 
activities over the coming years.

Concrete accounts for approximately 30% of the total vol-
ume of construction materials used for a nuclear power plant 
(NPP) [6]. Some of this concrete is contaminated over the 
course of its operational lifetime. Two kinds of radioactive 
concrete wastes can occur, either by activation or contami-
nation. The former is generated around bioshield structures 
due to neutron absorption by stable isotopes in the struc-
ture, while the latter occurs when pre-existing radionuclides 
come into contact and remain associated with the surface or 
subsurface of the concrete in the nuclear facilities, such as 
around fuel storage ponds, waste handling operations, and 
other supporting facilities [7–9].

The quantities of radioactive concrete waste greatly 
change depending on the type and operational history of the 
nuclear power plant, contamination level, applied disman-
tling and decontamination technologies, and the disposal-
related regulation to be applied within each country etc.. The 
IAEA reported that the estimated amounts of radioactive 
concrete waste are 750 ton and 900 ton from decommission-
ing of GCR (250 MWe) and PWR (900 to 1300 W), respec-
tively [9–11]. However, actual amounts generated in the 
cases of decommissioning of Tokai-1 (GCR, 166 MWe) in 
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Japan, and Maine Yankee (PWR, 860 MWe) in United States 
are known to be 10,000 ton and 63,485 ton, respectively [12, 
13]. Furthermore, the worldwide trend of tightening regu-
lation on radioactive waste management can greatly affect 
the generated amount of radioactive concrete waste and the 
disposal cost [2, 14]. The disposal cost for radioactive waste 
in Korea is very expensive at approximately US$ 13,000 per 
drum of 200 L as of 2020. Taking into consideration the pos-
sibility of generating large amounts of radioactive concrete 
waste from the decommissioning of nuclear power plants, 
the effort to reduce the amount is essential for successful 
decommissioning under planned budgetary constraints. It 
is therefore important to propose and develop new ways in 
which to handle and treat this waste such that the overall 
volume of waste designated for disposal can be reduced.

Process suggested for decontamination 
of radioactive concrete waste using physical 
and chemical treatments

As a part the effort to reduce waste volumes, KAERI is 
developing a process for the high volume reduction of the 

concrete waste to be disposed through decontamination of 
the radioactive concrete, as proposed in Fig. 1 [15, 16]. At its 
core, the proposed process involves separating the aggregate 
and cement components.

Concrete consists of aggregates (gravel (coarse aggre-
gate, > 2.5 mm), sand (fine aggregate, < 2.5 mm), etc.) and 
cement; the latter acting as a binder for the aggregates [12]. 
It is known that the aggregate accounts for around 70–75% 
of concrete volume, while the radionuclides are mainly 
associated with the cement phase rather than the aggregate 
[17–20]. Therefore, if the cement phase is separated from the 
concrete, thus leaving the aggregate ‘contaminant free’, then 
the volume of the radioactive concrete waste to be disposed 
of can be greatly reduced.

The process in Fig. 1 consists of two main categories, i.e. 
physical and chemical treatments. The former is for separa-
tion of cement and aggregates of the concrete and is achieved 
by thermal treatment of the concrete followed by physical 
grinding and sieving. This represents conventional methods 
utilized for the recycling of ordinary concrete wastes [14, 15, 
17–19]. The latter, chemical treatment, is for the dissolution 
of (1) cement remaining on the separated aggregate (Fig. 1 

Fig. 1   Flow diagram of the 
process for treatment of radioac-
tive concrete waste developed 
by KAERI
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Chem. treatment 1), and (2) separated cement (Fig. 1 Chem. 
treatment 2) producing a dissolved-concrete liquor; and is 
the focus of this work.

Studies to reduce the volume of contaminated concrete 
waste to be disposed have been performed by separating 
cement from aggregate of concrete waste by physical grind-
ing and sieving after heating the concrete to temperatures 
between 500 and 800 °C [12, 14, 15, 17–21]. However, phys-
ical treatment alone is found to be insufficient to meet regu-
latory requirements in Korea for the release of the separated 
aggregate as clearance [21, 22], because some contaminated 
cement phase still remains on the gravel surface even after 
the treatment [17, 23]. Therefore, as shown in Fig. 1, a step 
of gravel washing with HCl (Chem. treatment 1 in Fig. 1) 
is suggested to be added after the separation of cement 
from gravel by the physical treatment. To further reduce 
the volume of radioactive concrete waste to be disposed, 
the process involves the chemical treatment of the separated 
cement which consists of: dissolving the cement with HCl; 
selective separation of the radionuclides; and physical sepa-
ration of the precipitate and supernatant (Chem. treatment 2 
in Fig. 1). The effluent generated during the gravel washing 
step (Chem. treatment 1) is combined with the dissolved 
cement liquor (Chem. treatment 2).

If the separated gravel and fine aggregates like sand are 
decontaminated sufficiently to meet clearance requirements, 
then they can be recycled, reused or released to the environ-
ment as landfill [24, 25]. Further, provided that the radio-
nuclides in the dissolved-concrete liquor are separated from 
the solution as a precipitate and filtered sufficiently, then 
the filtrate can be released to the environment as well, with 
the separated solids stabilized and immobilized for disposal.

Estimation of radionuclides in contaminated 
concrete waste generated from decommissioning 
NPPs

It is important to know the radionuclides present within 
radioactive concrete wastes because the means to separate 
the nuclides from the cement phase can be tailored accord-
ing to their chemical characteristics. Specific radionuclides 
formed in activated concrete depend heavily on the ele-
mental composition of the concrete. In other words, they 
are typically formed through activation of impurities in the 
cement phase of the bioshield concrete by neutron capture 
during reactor operation [26]. Furthermore, nuclide ratios 
depend heavily on reactor operational parameters such as 
neutron flux and operational lifetimes. On the other hand, 
contaminated concrete occurs by spills of radioactive 
materials or radioactive water on the concrete surface and 
their infiltration into the concrete interior. Accordingly, 
the generation of activated concrete is inevitable, but 
that of contaminated concrete is site specific and varies, 

depending on the history of the NPP and maintenance 
regimes. The major radionuclides formed via activation 
are known to be Co-60 and Eu-152 [7, 26, 27]. The Co and 
Eu components in the bioshield concrete exist as impuri-
ties of cement. The radionuclides were also reported to 
be dominant in the bioshield concrete of a demolished 
research reactor in Korea [28]. The most abundant radio-
nuclides in surface contaminated concrete were known to 
be Cs-137, Co-60, and others [17, 26, 27]. Based on these 
evaluations, the representative radionuclides existing in 
the radioactive concrete waste generated from the decom-
missioning of a NPP can be said to be Cs-137, Co-60 and 
Eu-152 [26, 29].

Cesium is known to be removed from solution by 
unique adsorbents such as zeolite, metal ferrocyanide, 
silicotitanate, etc. rather than precipitation technology 
[30–32]. Cs was confirmed to be easily removed from the 
dissolved-concrete liquor by K4Fe(CN)6 in our preliminary 
experiment [33]. Accordingly, this work studied selective 
removal of Co and Eu using coprecipitation induced by the 
formation of hydrous ferric oxide (HFO) and hydrous alu-
minium oxide (HAO) formed in the dissolved-concrete liq-
uor with simple pH control; where Fe and Al ions already 
exist together in the dissolved-concrete liquor (Refer to 
Table 1). Coprecipitation by HFO and HAO can produce 
extremely low soluble metal species in solution, which 
are highly pH dependent [34–36]. Coagulation–floccula-
tion of hydrolysis species of Fe and Al ions form a host 
phase to which target nuclides can associate, leading to 
their removal by coprecipitation through either inclusion, 
occlusion or by adsorption via inner-sphere/outer-sphere 
binding mechanisms [37].

In this work, the thermodynamic chemical behaviour 
of chemical species existing in the dissolved-concrete liq-
uor were first evaluated as a function of pH change, and 
then the coagulation–flocculation system for the removal 
of Co and Eu from solution was investigated in single, 
binary (M–Fe or M–Al, M = Co or Eu), ternary (M–Fe–Al, 
M = Co or Eu), and multi-components systems. The copre-
cipitation mechanism and optimal conditions for selective 
separation of the target radionuclides were also evaluated. 
Results show that the proposed chemical processes (Fig. 1) 
can greatly reduce the volume of concrete waste generated 
from the decommissioning of nuclear power plants, thus 
reducing the final volume destined for disposal.

Table 1   Concentrations of major elements in dissolved-concrete solu-
tion

Element Al Ca Fe Mg Si

ppm 1104 11,450 735 432 2481
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Experimental

Concrete handling and dissolved concrete liquor 
generation

The goal of the chemical treatment process (Fig. 1) is to 
separate the target radionuclides (Co-60, Eu-152) from the 
combined effluents. In this work, hydrochloric acid was 
selected to dissolve the separated cement and to wash the 
aggregate based on our preliminary experiments and lit-
erature [21, 33, 38, 39]. The concrete block specimen used 
in this work was an ordinary Portland cement concrete 
obtained from a company in Korea (Chungcheong Environ-
ment Ltd Co.). The concrete blocks were first milled to a 
size of approximately 40 mm. Then the crushed concrete 
was heated at 550 °C for 1 h and was pulverized with a ball-
mill to sequester the cement phase from the course aggre-
gate. The milled particles were sieved to separate them with 
less than 1 mm diameter. The cement powder (mixture of 
cement and fine aggregate such as sand) and the separated 
course aggregate (on which the cement phase was still left) 
were dissolved and washed with 2 M HCl at room tempera-
ture for 2 h, respectively. In both cases, a ratio of 10 ml 
of the acid and 1 g of the solid phase was used. When the 
cement powder was dissolved, 29.7% of its initial weight was 
measured to decrease leaving the undissolved fine aggregate 
component. The dissolution yield was very similar to the 
ratio of cement to aggregate in the cement phase of con-
crete as reported in the literature [6, 13, 17]. It means almost 
complete dissolution of cement phase consisting of mostly 
3CaO·SiO2(C3S), 2CaO·SiO2(C2S), 3CaO·Al2O3(C3A), 
4CaO·Aln·Fe2-nO3(C4AF) and others in the acid solution 
[18]. The effluents from both of the dissolution and wash-
ing step were mixed.

Table 1 shows the concentrations of major elements in 
the solution where all the effluents from three batches of the 
dissolution and the washing were put together. Then inac-
tive Co (CoCl2) and Eu (EuCl3) were added into the solution 
(where the Co and Eu did not exist in the Portland cement 
concrete sample used this work) such that the concentrations 
of Co and Eu were 10 ppm and 1 ppm, respectively, to obtain 
a simulated dissolved-concrete solution; the target solution 
in this work. The concentrations of added Co and Eu were 
determined based on a literature where the average composi-
tion of 36 bioshield concrete samples from the 12 nuclear 
power plant sites in United State were evaluated [26].

Dissolved concrete liquor treatment

To evaluate the coprecipitation of Co and Eu by forma-
tion of HFO and HAO from Fe and Al existing in the 

target solution, the dissolved-concrete solution (100 mL) 
was placed into a 250  mL beaker and stirred with a 
magnetic stirrer bar at either 60 rpm (slow mixing) or 
300 rpm (rapid mixing). The pH of the solution was then 
adjusted in a range between 1 and 13, while stirring, via 
the addition of NaOH solutions (5, 1, 0.1 M). The pH of 
the solution was recorded throughout using a pH meter 
(Orion Star A215) and an electrode (ROSS Ultra® pH/
ATC Triode Electrode 8157BNUMD, Thermo scientific). 
Solution samples of 0.2 mL were taken throughout the pH 
adjustment phase and filtered through a 0.22 μm syringe 
filter before being appropriately diluted and analysed. To 
further understand the effect of elements existing in the 
dissolved-concrete solution on the removal of Co and Eu, 
the chemical behaviours of each element in Table 1 or their 
binary and ternary systems were measured with a change 
of pH. The volume of final precipitate was measured using 
a measuring cylinder into which the solution containing 
the flocs generated after the precipitation experiment was 
poured. Active dissolved-concrete liquor simulant was 
prepared which was dosed with radioisotope solutions of 
Co-60, and Eu-152 to have 200 Bq mL−1 of Co-60 and 
100 Bq mL−1 of Eu-152. For the experiment using active 
concrete solution, once the required pH was reached, the 
liquor was separated via centrifuge (3000 rpm, 10 min). 
The separated supernatant was then filtered through a 
0.22 μm syringe filter before being analysed.

All the elemental concentrations in inactive solutions 
and radionuclides in active solutions were measured by an 
Inductively Coupled Plasma Optical Emission Spectrom-
eter (ICP-OES) (Analytikjena PQ9000 Elite), and a MCA 
(Multi-channel γ-analyser with a HP-Ge detector, Camberra, 
GC2018), respectively. All the experiments were carried out 
at room temperature. All the chemicals used in this work 
were reagent grade and used as received.

Results and discussion

Removal of radionuclides in dissolved concrete 
liquor

The coprecipitation method is usually used when direct 
precipitation of the target metal ions to levels permissible 
for release is difficult, typically due to their low initial con-
centrations in solution. Accordingly it is widely used in the 
treatment of radioactive wastewater where the concentra-
tions of target radioactive ions are very low compared with 
other species in solution [34–36, 40–44]. The coprecipita-
tion of target metal ions in the carrier phase (host phase) 
occurs by their adsorption on to or incorporation in to a 
freshly precipitated solid phase of the different metal ion as 
a carrier phase [37]. The carrier phase is usually hydrous 
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metal oxides (HMO: M = Fe, Al) with an amorphous struc-
ture, which are formed through the hydrolysis of the carrier 
phase ions due to their low solubilities near neutral pH range 
[34–38]. Hydrolysis accompanied by coagulation-floccula-
tion of ionic species of the carrier phase in solution was initi-
ated by the solution pH adjustment. When iron or aluminium 
amorphous metallic hydroxides (HFO or HAO, respectively) 
form in solution, their surface charge changes depending on 
the condition of the solution [45, 46]. Surface charge affects 
the coprecipitation phenomena because the HMO solid can 
adsorb contaminants due to electrostatic interactions with 
metal ions of opposite charge [37, 46]. The coprecipitation 
mechanism can be explained as follows. Fe and Al ions in 
solution form several interchangeable mononuclear species 
through hydrolysis according to the corresponding pH like 
Eq. (1) [47–49]. The Al and Fe ion species such as MOH2+, 
M(OH)2

+ (M = Fe, Al) are known to form polynuclear clus-
ters with hydroxyl bridges forming, which is called coagu-
lation, before their precipitation as the amorphous phases 
Al(OH)3(am) and Fe(OH)3(am) takes places. The hydrous 
oxide cluster exhibits amphoteric behaviour via surface ioni-
zation e.g. Eq. (2) and Eq. (3) [50]. The clusters play the role 
of carrier material facilitating the coprecipitation of other 
metal ions. Sorption reactions of target metal ions occurs on 
the surface of the clusters, which is generally explained with 
the surface complexation reaction model between the sorb-
ing metal ion and surface functional groups of the hydrous 
oxide of the cluster according to Eq. (4). The surface com-
plex model is known to be extended further with the surface 
precipitation model like Eqs. (5) and (6) to explain new sur-
face continuum phase between adsorption and bulk solution 
precipitation of the target metal ion [50–53].

where M is Fe or Al, and ≡ MOH
+

2
 , ≡ MOH

0 , and ≡ MOH
− 

represent positively charged, neutral, and negatively charged 
surface hydroxyl groups, respectively.

where X represents target metal ion.
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where ≡ and = denote bonds at the surface: ≡M(OH)0 repre-
sents [M(OH)3]n and = M(OH)0 represents [M(OH)2]n.

As seen in Table 1, the dissolved-concrete liquor contains 
Fe and Al ions in high enough concentrations for coagula-
tion-flocculation to occur together with the target elements 
of Co and Eu [54]. Coprecipitation of Co and Eu induced 
through the formation of HFO and HAO was tried as a way 
to remove them from the dissolved-concrete liquor, because 
coprecipitation is simple and effective to treat the concrete 
waste solution. To evaluate the chemical behaviour of such a 
coprecipitation phenomenon between Fe, Al, and the target 
elements, it is necessary to understand the speciation of all 
the relevant elements in the solution. For that, actual thermo-
dynamic equilibrium data of the elements measured in the 
media are required, but it is very hard to obtain them at this 
stage. Therefore, thermodynamic analysis was carried out in 
this work by using the equilibrium data of major species of 
the relevant elements existing in the solution based on litera-
ture [55]. Knowing the exact pH value that causes the most 
formation of HFO and HAO in solution is important with 
respects to effective usage of Fe and Al, and optimal dosing 
of chemicals for pH adjustment of the concrete wastewater. 
The selection of optimal pH results in minimal generation 
of secondary waste after the wastewater treatment by the 

coagulation-flocculation.
Solubilities of the major elements in the dissolved-con-

crete liquor and chemical speciation of Fe and Al ions as a 
function of pH were evaluated by using the chemical equi-
librium modelling code of MINEQL 4.5 with thermody-
namic data [55]. Figure 2 shows the calculated solubilities 
of the elements reported in Table 1 in water as a function of 
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pH by using the modelling code. For the calculation, it was 
assumed that Fe, Al, Co, Eu, Si, Mg, and Ca were saturated 
with α-FeO(OH), α-Al(OH)3, Co(OH)2, Eu(OH)3, Si(OH)4, 
and Ca(OH)2, respectively. The total concentrations of each 
element in the system used for the evaluation were setup 
as 1000 ppm for Al and Fe, 10,000 ppm for Ca, 500 ppm 
for Mg, 2000 ppm for Si, 10 ppm for Co, and 1 ppm for 
Eu, respectively, taking into consideration Table 1. Figure 3 
shows the species distributions of carrier elements Fe and Al 
used for the coprecipitation of the target elements. Al3+ and 
Fe3+ ions begin to hydrolyze from the acidic condition with 
the formation of various hydrolyzed-cationic species. They 
show to have their lowest solubilities around pH 6.8 and 8, 
respectively, where Al(OH)3 and Fe(OH)3 solid phases are 
the most dominant. On the other hand, the hydrolysis of the 
target elements Co and Eu begins to occur beyond pH 7, and 
have the lowest solubilities in the pH range between 10 and 

11. The hydrolysis of Ca begins over pH 11 (Fig. 2). For the 
selective removal of Co and Eu from the dissolved-concrete 
solution, Ca, which is the most abundant in the solution, 
should remain in solution as free hydrated ions, while the 
target elements are sequestered as precipitates from the 
solution. Otherwise, the volume of secondary waste to be 
disposed of will increase, which would result in inefficien-
cies of the proposed process. The concentrations of Co and 
Eu at the pH corresponding to the lowest solubilities are 
in order of 10–5 to 10–8 M. However, the release require-
ments to environment of Co-60 and Eu-152 in radioactive 
wastewater according to act of nuclear safety and security 
commission in Korea are 0.3 Bq mL−1, and 0.5 Bq mL−1 
[49], which are equivalent to approximately 8.2 × 10–14 M 
and 4.9 × 10–13 M, respectively. Therefore, the direct precipi-
tation of Co and Eu by hydrolysis cannot meet the release 
requirements required for the final effluent out of the process 
of Fig. 1. In addition, such direct hydrolyses of Co and Eu at 
high pH range over 10 can cause simultaneous precipitation 
of other metal ions of Mg and Ca, etc. as well as Fe and Al, 
which results in increase in final volume of precipitate to be 
disposed of. Accordingly, the target elements with very low 
concentrations in the dissolved-concrete liquor should be 
removed by coprecipitation around pH where hydrolyses of 
Fe and Al ions occur.

To evaluate the behaviours of major elements found in 
the dissolved-concrete liquor (shown in Table 1) and to 
compare with the calculated results presented in Fig. 2, the 
concentration of each element in solution was measured at 
different pHs. The results are shown in Fig. 4a. For that 
experiment, all the initial solutions containing single ele-
ments were first prepared in 0.1 M HCl and then their pHs 
were adjusted in the alkaline direction up to pH 13 with 
NaOH at an interval of 1 h between each pH adjustment, 
because the dissolved-concrete liquor was generated using 
HCl, as explained in Fig. 1. The concentration behaviours of 
all the elements except Si with a change of pH are generally 
in agreement with those in Fig. 2 that were calculated with 
thermodynamic data available in the literature. The flat line 
for each element shown at the lowest value of each curve 
was because of the detection limit of each element by the 
ICP-OES used in this work. For example, the detection limit 
concentration of Fe and Al was 20 ppb (~ 10–7 M). Accord-
ingly, actual concentrations in the range can be lower than 
the detection limit value (It will be discussed in detail later 
using active dissolved-concrete liquor). In the case of Si, the 
concentration remained constant until pH 4 at the same level 
as the initial concentration at pH 1, and then decreased in 
the pH range between 4 and 8, beyond pH 8 Si re-dissolved 
reaching the initial concentration. However, Si solubility is 
generally known to be approximately 100 ppm between pH 
1 and 8 while exponentially increasing in alkaline condi-
tions [56, 57]. The discrepancy is considered to be ascribed 
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to precipitation kinetics of silica ion of monosilicic acid 
existing in the prepared solution using HCl in Fig. 4. It is 
reported that re-precipitation of silica from acid solutions 
takes time and aging for polymerization of the dissolved 
silica ion to form primary particles and then flocculate [58]. 
Therefore, the high concentration of Si in solution in acidic 
media (Fig. 4) is considered to eventually drop to the same 
level as thermodynamic solubility value shown in Fig. 2 
[59]. Figure 4b shows the concentration changes of the 
major elements in concrete with a change of pH in the real 
dissolved-concrete liquor where inactive Co and Eu were 
spiked. The behaviours of all the elements except Co and 
Eu are similar to those in single element system of Fig. 4a 
in water. The pH at which Co and Eu concentrations reached 
the lowest values was shifted slightly, precipitating earlier 

than expected within the acidic region. The pH in the case 
of Eu moved to 6 (10 in single element system), and that 
of Co did too to 9 (11 in single element system). The rea-
son is considered to be because Co and Eu ions in solution 
were removed from the solution by the coprecipitation due 
to the adsorption of them onto the HFO and HAO formed 
through Eqs. (1)–(6). These results mean that the Co and Eu 
ions existing in the dissolved-concrete liquor can be effec-
tively removed from the dissolved concrete solution (where 
Ca is dominant (see Table 1)) by the action of HFO and 
HAO formed through Fe and Al ions existing together with 
them in the solution, with Ca remaining in the solution. The 
effluent including Ca after the treatment is to be released to 
environment.

Evaluation of co‑precipitation mechanisms

To further understand the behaviour and mechanism of 
coagulation–flocculation accompanying the coprecipitation 
of the target elements with HFO and HAO, the concentra-
tions of the elements were measured with a change of pH in 
the systems of single-element solution of Co and Eu, binary-
elements solution together with Fe ions or Al ions, and ter-
nary-element solution together with both of Fe and Al ions. 
The results are shown in Fig. 5. In the case of Eu (Fig. 5a), 
the concentration in Eu in the single system decreased from 
pH 5 and reached the lowest value of 2.2 × 10–7 M at pH 10. 
In the case of the binary system of Eu-Al, the concentra-
tion began to decrease at a lower pH and reached the lowest 
value of 2.9 × 10–8 M (detection limit of Eu by ICP-OES 
used in this work) at pH 9. The systems of Eu-Fe and of 
Eu-Fe-Al showed almost the same behaviours with respect 
to Eu concentration and showed earlier concentration drop 
of Eu at lower pH than in the Eu-Al system, and reached the 
detection limit of Eu by pH 7. These results mean that the 
formation of HFO by ferric ions play a more important role 
in the coprecipitation of Eu from the solution rather than 
aluminium ions.

In the case of Co (Fig. 5b), the concentration of Co as a 
single component system decreased from pH 8 and reached 
the lowest value of 2.7 × 10–6 M around pH 11. In the case 
of the binary system of Co–Fe, the concentration of Co 
began to decrease at lower pH than in the single system, 
but its slope became sluggish above pH 9 and reached the 
lowest value of 3.54 × 10–8 M (detection limit of Co by the 
ICP-OES used) at pH 11. However, in the cases of binary 
system of Co-Al, and ternary system of Co–Al–Fe, the Co 
concentration decreased at an earlier pH than in the binary 
system of Co-Fe, and reached the detection limit at pH 9. 
These results mean that HAO plays more important role in 
coprecipitation of Co than Fe in the Co-Al- Fe system.
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Radioactive simulant tests

Based on the results of Figs. 4 and 5, the pH to simulta-
neously and effectively remove Eu and Co from the dis-
solved-concrete liquor by pH adjustment of the solution 
can be determined to be 9. However, the results obtained 
by ICP-OES cannot confirm that their final concentrations 
in the supernatant after precipitation by the pH adjustment 
meet the requirements for environment release of Co-60 
(0.3 Bq mL−1) and Eu-152 (0.5 Bq mL−1) because of the 
detection limit of used ICP-OES, as mentioned above. To 
confirm this, an active dissolved-concrete solution was pre-
pared by dosing Co-60 and Eu-152 radioisotopes in the solu-
tion used in Fig. 4b.

The initial activities of Co-60 and Eu-152 in the solu-
tion were approximately 200 Bq mL−1, and 100 Bq mL−1, 
respectively. The prepared solution was pH-adjusted first 
to pH 3, then pH 9 to confirm the selective removal of Eu 
and Co without precipitation of Ca. The formed solids 
were then separated by centrifuge before the supernatant 
was filtered through a 0.22 µm syringe filter. Finally, the 
remaining supernatant was adjusted to pH 11 for precipi-
tation of Ca. The supernatants after each pH-adjustment 
were taken for analysis, and their activities were counted 
for 1 h by the HP-Ge detector. The results are shown in 
Fig. 6. The activities of Co-60 and Eu-152 in the solution 
at pH 3 were 85.0 Bq mL−1, and 37.4 Bq mL−1, respec-
tively. The activities decreased a little even at pH 3, which 
was thought to be ascribed to the adsorption by HFO. 
Ferric ion is known to begin to precipitate with forming 
HFO over pH 2 [59], which is observed in Fig. 4 as well. 
The activities of Co-60 and Eu-152 were not detected in 
the supernatant after the precipitation of HFO and HAO 
occurred at pH 9. The detection limits of the nuclide 
measured for one hour by the HP-Ge detector used in this 
work were approximately 0.03 Bq mL−1 for Co-60 and 
0.01 Bq mL−1 for Eu-152, respectively, which are much 
lower than the release limits of 0.3 Bq mL−1 for Co-60 and 
0.5 Bq mL−1 for Eu-152 in Korea.

Taking into consideration of their initial activities in 
solution and the detection limits of the nuclides by MCA, 
the decontamination factors for each nuclides in solution 
was evaluated to be at least 6666 for Co-60 and 10,000 for 
Eu-152, respectively. These results are sufficiently high to 
meet the requirement for release of treated dissolved-con-
crete liquor. Analysis of the final solution after pH adjust-
ment to pH 11, and analysis of the formed calcium precipi-
tates revealed that both were free from Co-60 and Eu-152 
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radioisotopes. These results of Figs. 5 and 6 mean that the 
radionuclides Co-60 and Eu-152 existing in radioactive 
concrete waste can be effectively removed by way of co-
precipitation of the nuclides induced with pH-adjustment of 
the concrete-dissolved liquor. Taking into consideration all 
of the results obtained in this work, it can be concluded that 
the precipitation method studied in this work to remove the 
radionuclide in radioactive concrete waste can be adopted 
into the process suggested in this work (in Fig. 1) for treat-
ment of the radioactive concrete waste to be generated from 
the decommissioning of nuclear power plants.

Conclusions

The behaviour of ion species of elements present in radio-
active concrete waste were evaluated in solutions with dif-
ferent pHs. The major radionuclides of Co-60 and Eu-152 
in the concrete waste were confirmed to be selectively and 
effectively removed from the dissolved-concrete solution 
as precipitates by pH-adjustment to pH 9. The removal 
mechanism was ascribed to the coprecipitation by HFO and 
HAO formed by ferric and aluminium ions that were present 
together in the dissolved-concrete liquor. The decontamina-
tion factors of the nuclides were high enough to meet the 
requirement for release of radioactive wastewater in Korea, 
evaluated to be at least 6666 for Co-60 and 10,000 for 
Eu-152, respectively. The experimental results showed that 
the chemical treatment process of concrete waste generated 
from the decommissioning of nuclear power plant, which 
was suggested in Fig. 1, is possible for significant volume 
reductions of the concrete waste to be disposed.
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