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Abstract
A common advanced radiochemical technique is the use of the AG® 1-X8 anion exchanger, Cl2− form (from Bio Rad), to 
separate uranium and/or thorium from a sample by ion exchange. This method is used to separate elements by chemical 
elution from an ion exchange column via a precipitate of substances (co-precipitation), with Nd3+ as a thin layer of smooth 
fluoride particles on a membrane filter, then using α-spectrometry to measure uranium and thorium. The obtained data 
showed that the column could be reused, at least twelve times, safely in separating uranium and thorium from environmental 
samples, before observing any change in the performance of the exchanger.
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Abbreviations
Th	� Thorium
U	� Uranium
HNO3	� Nitric acid
HCl	� Hydrochloric acid
pCi	� Picocurie
TiCl3	� Titanium (III) chloride
HF	� Hydrofluoric acid

Introduction

Appropriate management of radioactive wastes and their 
subsequent effect both on nature and on human welfare 
requires analytical procedures for delicate and reliable iden-
tification and determination of a wide assortment of radio-
nuclides in a wide assortment of sample matrices. Other 
researchers have developed methodologies for isolating, pre-
cipitating, and mounting actinides for α-spectrometry [1–3], 
either separately or mixed, as either fluorides or hydrox-
ides [4, 5]. In these methods, actinides were isolated from 
all other components of the sample and from each other 
by chromatography of ion exchange, co-precipitated with 

Nd3+ as fine fluoride particles, and mounted on membrane 
filters for α-spectrometry [6–8].

Since ion exchange columns are only used once, it is com-
mon for many of organic ion exchangers to be expended in 
these studies. An anion exchanger (AG1-X8, chloride form, 
100–200 mesh, from Bio-Rad) is routinely used in radio-
analytical techniques in analyzing uranium, thorium, and 
plutonium radionuclides in different types of environmental 
samples [1, 2, 6, 7, 9–11]. Large quantities of ground water 
samples are typically received for investigation. Radionu-
clides of uranium and radium, in addition to radon-222, are 
the main radionuclides of interest in ground water [12–15] 
and the use of the exchanger is mainly due to the routine 
work of uranium analysis in ground water [16–18]. In the 
experimental, the equal amounts of the same sample were 
used in each run of the same column, and a blank sample 
was added to wash the exchanger after every three sample 
runs in the same renewal column to prepare it for meas-
urement by using α-spectrometry. The performance of the 
washed exchanger was examined by examining changes in 
the sample recovery and the blank sample counting rate. 
In a similar experiment to determine the suitability of this 
method for separating thorium, we used the same level of 
aqueous solutions using 8 M HNO3 media; the column could 
be reused at least 12 times without degradation of the meas-
urement for U and Th.

The aim of the present article is to study the possibility 
of renewing the exchanger and reusing the column, with the 
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goal of reducing the resin consumption rate and reducing 
cost.

Low-level samples require 24 h of counting time [4, 
19–21]. In the experimental setup described means that 
only 8 samples can be counted per day, even though more 
samples may be prepared. This leads investigators to store 
samples for some time while waiting for counting. Stor-
ing samples in a dry atmosphere may lead to changes in 
the physical properties of the fluoride particles of the thin 
source, and hence may result in spectrum degradation [8, 22, 
23]. However, the stability of the fine fluoride particles with 
time is also tested in this work.

Methodology and experiments

Standard reference materials

For this study, we used 232U and 229Th standard refer-
ence materials, purchased from the National Bureau of 
Standards, USA, under the code numbers STM 4324 and 
STM 4328, respectively. The activities for 232U and 229Th 
are 0.1557209291 Bq/ml (reference date 14/2/2002), and 
0.332834375 Bq/ml (reference date 7/5/1984) respectively. 
The reference materials were diluted and used as a spiking 
tracer for analyzing uranium and thorium standard solutions 
[24, 25].

Uranium and thorium standard solutions

Standard radioactive solutions are used for chemical yield 
determinations during the chemical separation process [27]. 
They are usually supplied in a form of 5 g aqueous solu-
tions, composed of the radionuclide salt in an acidic medium 
contained in glass ampule. Uranium and thorium standard 
solutions were prepared in the laboratory from uranyl chlo-
ride and thorium nitrate salts, respectively [28, 29]. For 
quality control, aliquots of the prepared standard solutions 
were spiked with the respective radiotracer and analyzed by 
α-spectrometry, which is shown in Fig. 1.

Uranium samples

In a 100 mL measuring flask, we combined 5 mL of sea-
water, an aliquot of uranium standard (13.5 pCi 238U), and 
enough concentrated HCl to get 10 M, and diluted it to vol-
ume with distilled water. This solution contained almost 2.7 
pCi of 238U/20 mL of 10 M HCl; it was designated U-I. 
The second uranium solution was prepared exactly as U-I, 
except that 28 pCi 238U were added instead of 13.5 pCi. This 
solution contained almost 5.6 pCi 238U/20 mL of 10 M HCl 
and was designated U-II. The fixed amount of seawater was 
added to each solution to bring ions in solution comparable 

to those in the environmental samples. Seawater does add 
a constant amount of natural uranium and thorium to all 
the samples; however, this amount of activity is negligible 
compared to the concentration of uranium or thorium in the 
prepared samples.

Thorium samples

Two thorium solutions (2.5 and 5.1 pCi 232Th in 20 mL of 
8 M HNO3, respectively) were prepared in the same manner 
as the uranium solutions except that 232Th and HNO3 were 
used instead of 238U and HCl, respectively. These solutions 
were respectively designated Th-I and Th-II.

Apparatus

For this project, we used an ORTEC Octete Plus high resolu-
tion α-spectrometry system from ORTEC. The device was 

Fig.1   a Alpha Spectrum of 232U isotope measured by α-spectrometry, 
b Alpha Spectrum of 229Th isotope measured by α-spectrometry.
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connected to a vacuum pump and contained eight 450 mm2 
silicon surface barrier detectors situated in isolated cham-
bers. The background count rate ranged from 0 to 2 counts 
within 18 h under the energy peaks of 238U or 234U, produc-
ing an ultra-low detection limit of " < 0.01/Bq/L". The effi-
ciency of the detectors ranged from 20 to 21.5%.

Analysis

Uranium and thorium were analyzed by chemical sepa-
ration and co-precipitation as a thin fluoride sources for 
α-spectrometry according to the method described by 
Moghissi (1969) [6], which is shown in Fig. 2.

Briefly, in water samples, aliquots were first spiked with 
the radiotracer. Next, the solution evaporated to reach dry-
ness. Then, the resulting salt was transformed into the suit-
able form.

To isolate uranium, the material in the chloride structure, 
which was spiked with 232U radiotracer (1 cpm/mL), was 
loaded in 20 mL 10 M HCl. A 10 mL sample was placed 
in the separation column (from Bio Rad), filled with AG® 
1-X8 anion exchanger (5 mL bed volume); 20 mL of 10 M 
HCl was passed to precondition the column. Next, the ura-
nium was washed with another 20 mL of 10 M HCl and 
eluted from the column by passing 20 mL of 0.1 M HCl. To 
prepare the uranium source, 50 μL of Nd3+ solution (1 mg 
Nd3+/mL) were added to the isolated uranium (the eluted 
sample), followed by an additional measure of TiCl3 (15%), 
drop by drop, to change the solution color to purple; at that 
point an additional 1 mL was added to keep uranium in the 
tetravalent state. The next step was to add the HF solution 
(5 mL of 40% of HF) to the sample and leave it for 30 min 
before filtering it with a 0.1 μL polypropylene membrane 
filter. The precipitate was washed with 3 mL of an 80% etha-
nol solution. Finally, the sample was dried at 50° C for five 
minutes, placed on stainless steel disc, and measured using 
α-spectrometer [3, 6, 26].

The thorium was isolated in the same manner as the ura-
nium except that 8 M and 1 M HNO3 was used in loading 
and eluting the thorium instead of the 10 M and 0.1 M HCl 
used with the uranium, respectively. The source of thorium 
was also prepared as the uranium was, except there was no 
need for the addition of a TiCl3 solution as shown in Fig. 2.

Results and discussion

Equal fractions of 20 mL of each of the uranium and tho-
rium solutions (U-I, U-II, Th-I, and Th-II) were repeat-
edly applied to each of four fixed columns (numbered I, 
II, III, and IV, respectively) packed with AG® 1-8X anion 
exchanger, 100–200 mesh, Cl2− form. In other words, equal 

fractions of the same sample were applied in each run for 
the same column.

As mentioned above, dilute acid was used to elute the 
retained uranium or thorium and regenerate the column for 
the next run. The eluted fraction was prepared for count-
ing by α-spectrometry. Twenty-two runs were carried out 
through each column with the same solution. The column 
was regenerated between runs, and a blank sample was 
applied to each column after every three successive sample 
runs to follow the change in counting rate of the blank sam-
ples due to repeated column reuse. The performance of the 
column could be evaluated by following the change in the 
chemical yield of the eluted uranium or thorium fractions, 
in addition to the change in the counting rate of the eluted 
fraction of the blank sample.

The change in chemical yield with repeated column 
reuse is illustrated in Figs. 3 and 4. Two different concen-
trations were tested for uranium and for thorium to evalu-
ate the effect of concentration on the performance of the 
reused column. The Figures showed that the chemical yield 
was almost the same along all 22 runs in the four columns 
(90.8 ± 6.2) % and (81.4 ± 6.2) % for the U-I and U-II solu-
tions, respectively. For both thorium solutions (Th-I and 
Th-II), the chemical yield was almost equal (87.4 ± 10.5)%. 
This means that the ion exchange was unaffected, although 
the resin may suffer from contact with the reused concen-
trated mineral acids.

Results of the counting rate of the blank samples are 
given in Tables 1 and 2. It can be concluded that the slight 
increase in count rate appeared after run number 15, indicat-
ing slight contamination.

The background level was measured for each detector 
after every five sample runs (Tables 3 and 4). This was to 
test whether the slight change in counting rate of the blank 
sample was due to column contamination or detector recoil 
contamination. The results showed a negligible recoil con-
tamination. Accordingly, these results indicated that the 
columns can be regenerated at least 12 times for safe reuse.

The resolution of the resultant α-spectrometry is simi-
lar to that obtained by electrodeposition onto cleaned steel 
plates; however, the technique discussed here is much 
quicker, more reliable, and generally gives a higher chemi-
cal yield [15].

Due to the possibility of storing the prepared sample 
sources in covered Petri dishes for days or weeks before 
counting, or of needing to recount older samples after 
some period, the physical properties of the fluoride parti-
cles (such as porosity, surface area, or particle size) may 
change with time due to the dry atmosphere of the labo-
ratory, resulting in spectrum degradation. However, the 
stability of the prepared uranium or thorium sources were 
tested by repeated counting of two sources on the same 
detectors occasionally over a 100-day period to examine 
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Fig. 2   (a) a separation column filled with AG® 1-X8 anion 
exchanger; b TiCl3 (15%) added drop by drop, to change the solu-
tion color to purple; c HF solution (5  mL of 40% of HF) added to 
the sample and leave it for 30 min before filtration; d filtering sample 

with a 0.1 μL polypropylene membrane filter; e placing the sample on 
stainless steel disc; f Spectrum shows 232U and 229Th measured using 
α-spectrometer. (b) A flowchart showing the main procedure to deter-
mine U and Th isotopes
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the change in resolution of the α-spectrometry peaks with 
time, which are shown Fig. 5. The results showed that the 
resolution of the Spectra peaks was almost constant over 
the studied period.

Conclusion

An AG® 1-X8 anion exchanger was used to separate ura-
nium or thorium from all other components of a sample 
by ion exchange chromatography, a commonly used radio-
chemical technique.

The concept of renewing the exchanger for column 
reuse was tested, with the goal of reducing the costs in 
mind. The obtained data showed that the column could 
be regenerated safely at least 12 times for reuse before 
observing any change in the performance of the exchanger.

Fig. 3   Effect of repeated regeneration of the uranium columns on the 
chemical yield

Fig. 4   Effect of repeated regeneration of the thorium columns on the 
chemical yield

Table 1   The counting rate of the blank samples under the 238U and 
234U energy peaks

Run No Counting rate, Counts/18 h

U-I U-II
238U 234U 238U 234U

After run 3 0 1 2 0
After run 6 1 1 2 2
After run 9 1 2 4 2
After run 12 1 2 3 2
After run 15 10 4 5 1
After run 18 8 4 6 3
After run 21 9 5 12 4

Table 2   The counting rate of the blank samples under the 232Th and 
228Th energy peaks

Run No Counting rate, Counts/18 h

Th-I Th-II
232Th 228Th 232Th 228Th

After run 3 2 0 0 2
After run 6 1 1 2 3
After run 9 1 2 2 5
After run 12 3 4 5 5
After run 15 6 9 11 15
After run 18 8 9 11 14
After run 21 19 14 13 21

Table 3   Background count rate of the detectors under 238U and 234U 
energy peaks

Run No Counting rate, Counts/18 h

U-I U-II
238U 234U 238U 234U

Before run 1 1 1 2 1
After run 5 1 1 2 1
After run 10 1 1 2 1
After run 15 0 1 0 0
After run 21 2 1 1 1

Table 4   Background count rate of the detectors under 232Th and 228Th 
energy peaks

Run No Counting rate, Counts/18 h

Th-I Th-II
232Th 228Th 232Th 228Th

Before run 1 2 0 0 2
After run 5 2 0 0 2
After run 10 1 2 1 4
After run 15 3 3 3 4
After run 21 2 3 2 3
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The stability of the uranium or thorium fluoride sources 
that were prepared for counting by α-spectrometry were also 
tested by constructing peak resolution–aging time curves. 
The data obtained showed that even after 100 days of stor-
age, the resolution of the source peaks is virtually unaffected 
with time.
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