
Vol.:(0123456789)1 3

Journal of Radioanalytical and Nuclear Chemistry (2021) 327:1251–1258 
https://doi.org/10.1007/s10967-020-07590-y

The separation of thorium and rare earth elements using  [A336][NO3]: 
insight into a new extraction mechanism

Xuan Fu1 · Fang Zhang1 · Qiang Wu1 · Yang Li1 · Qing‑Gang Huang2 · Ze‑Yi Yan1,3 

Received: 22 October 2020 / Accepted: 31 December 2020 / Published online: 25 January 2021 
© Akadémiai Kiadó, Budapest, Hungary 2021

Abstract
In this study, extraction and separation of thorium(IV) and a few representative rare earths in  HNO3 media was evaluated 
using trioctylmethylammonium nitrate  ([A336][NO3]) ionic liquid. An unexpected novel extraction mechanism was identi-
fied based on the studies in the slope analysis and ESI–MS spectrum. The trimer of  [A336][NO3] was confirmed to dominate 
the extraction reaction by ESI–MS spectrum before and after the extraction. The extraction efficiency of La(III), Eu(III) and 
Lu(III) by  [A336][NO3] are much lower than Th(IV) in acid medium, which means that it is possible to separate thorium 
from rare earths or the rare earth ores by using  [A336][NO3].
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Introduction

Along with growing environmental concern and the increas-
ing demand of energy from fossil fuel, nuclear energy is con-
sidered as an attractive option for solving the global energy 
crisis in the future because of its high energy density and 
low greenhouse gas emission [1, 2]. Thorium is a potential 
nuclear fuel because 232Th can convert to 233U by absorbing 
slow neutrons [3]. It has being paid more and more attention 
due to the ongoing consumption of uranium resources [4]. 
Generally, the rare earth ores such as monazite, bastnasite, 
and xenotime are natural deposits of lanthanides containing 
thorium. To eliminate the radioactive pollution caused by 
thorium and the widespread use of rare earth, it is always 
necessary for the extraction and separation of thorium and 
rare earths [5]. As we known, solvent extraction is a major 
technique for the separation of actinides and rare earths in 

the industrial field, which has been widely used in hydro-
metallurgy [6, 7], waste disposal [8, 9], and environmen-
tal treatment [10]. The solvent extraction can be used to 
decontaminate the rare earth concentrates from thorium-
bearing radioactive material or to produce nuclear fuel 
[11]. In these processes, various extractants such as amines 
[12, 13], organophosphorus compounds [14, 15] have been 
developed for the extraction and separation of thorium and 
rare earths. There are reasons to believe that the production 
of new thorium-based nuclear fuel and the reprocessing of 
thorium-based spent fuel using the solvent extraction would 
become an important issue in the future.

Room temperature ionic liquids (RTILs or ILs) are a class 
of organic salts composed of ions that can also be liquid 
at or near room temperature. Due to some useful solvent 
properties, including their high thermal stability, negligible 
volatility, high selectivity, and high solvent extraction effi-
ciency, RTILs are increasingly recognized and accepted as 
a kind of novel green solvents for liquid–liquid extraction 
[16–19]. RTILs have shown some appealing applications in 
the nuclear fuel cycle especially as an alternative to molecu-
lar diluent in solvent extraction procedures [20–22]. Most 
of the ILs typically used for solvent extraction processes 
contain imidazolium, pyridinium, ammonium, and phospho-
nium cations, because these ILs tend to be immiscible with 
water in combination with some anions. Some studies dem-
onstrated that long-chain quaternary ammonium and phos-
phonium ionic liquids are thermal and chemical stability 
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compared to their imidazolium- and pyridinium-based coun-
terparts [23].  Aliquat® 336-based ILs, trioctylmethylammo-
nium chloride([A336][Cl]) are highly hydrophobic due to 
their long-chain alkyl groups. Thus, Aliquat-336 is regarded 
as a versatile and cheap cation source for the synthesis of a 
new family of hydrophobic ionic liquids. The cation present 
in  Aliquat® 336, trioctylmethylammonium cation  ([A336]+) 
can be combined with several anions by simple replacement 
of the chloride ions [24]. Therefore, some of these ionic 
liquids have already been studied as diluent or extractant in 
solvent extraction and the mechanisms of extraction have 
been also reported [20, 25–27].

The previous studies revealed that either cations or ani-
ons of ILs may act as more interesting roles in an extrac-
tion process, respectively [28]. Due to the fact that  Aliquat® 
336-based ILs ([A336][Cl]) more commonly exist as semi-
solid or solid at room temperature, we wish to investigate the 
extraction and separation of thorium and rare earths using 
the corresponding nitrate ionic liquid  [A336][NO3] (trioc-
tylmethylammonium nitrate) derived from [A336][Cl]). 
In fact, the pure  [A336][NO3]) is a viscous liquid at room 
temperature [23], which is more suitable for the extraction 
of metal ions (Fig. 1). Thus, the effects of several experi-
mental parameters, including the aqueous acidity, diluent 
and extractant concentration, were evaluated in terms of the 
ligands and the metal ions in this study. The new extraction 
mechanism was discussed using a slope analysis method, 
and were further confirmed by ESI–MS spectrum. Also, the 
stripping of the thorium ions from the loaded organic phase 
was investigated.

Experimental

Chemicals and apparatus

All chemicals and reagents were of analytical grade and 
used without further purification. All work solutions were 
obtained by appropriate dilution of the standardized stock 
solutions. Aliquot 336 (methyltrioctyl/decylammonium 
chloride, > 97% quaternary ammonium content) was sup-
plied by Aladdin (China) and also not purified. Standard 

solutions of metal ions were prepared by dissolving cor-
responding oxides (99.99%) with concentrated nitric acid 
and diluting with ultra-pure water. Th(NO3)4·5H2O (from 
Aladdin, China) were used as the sources of Th(IV) for the 
following extraction.

The metals were analyzed using an inductively coupled 
plasma optical emission spectrometer (ICP-OES, IRIS 
Advantage ER/S, TJA, USA). High-resolution mass spectra 
(HRMS) were recorded on a Bruker micrOTOF-QII analysis 
instrument.

Synthesis of  [A336][NO3]

[A336][NO3] was synthesized according to the modified lit-
erature methods [23]. 100 g of [A336][Cl] (trioctylmethyl-
ammonium chloride) was mixed with 100 mL dichlorometh-
ane (DCM) to form a solution of organic phase, which was 
pre-equilibrated four times with 200 mL of 2.5 M  KNO3 
solution each time in order to exchange the chloride ions 
to nitrate ions. During these four ion-exchange steps, the 
organic phase was always separated by separating funnel 
from the mixture each time. After the fourth equilibration, 
chloride levels were minimal and almost unchanged. It indi-
cated that the majority of chloride ions in [A336][Cl] had 
been converted to nitrate ions. After the metathesis reaction, 
the resulting ionic liquid was washed further with 100 mL 
of water to remove chloride and  KNO3 impurities. Finally, a 
yellow and viscous  [A336][NO3] ionic liquid was obtained 
by evaporating DCM under reduced pressure (yield: 95%).

Extraction procedure

For solvent extraction,  HNO3 solution containing metal ions 
and  [A336][NO3] solution (in various diluents) were taken in 
a 1:1 volume ratio and equilibrated on a mechanical shaker 
for the required time. The solution was allowed to settle for 
20 min. The preliminary experiments have confirmed that 
20 min shaking is enough to complete the equilibrium at 
25 ± 1 °C. After centrifugation (5 min and 2000 rpm/min) 
and separation of both phases, the duplicate aliquots were 
taken from the aqueous phases. The amount of metal ions 
in aqueous solutions was determined by ICP-OES. The dis-
tribution ratio (D) is the ratio of the concentration of metal 
ions in the organic phase to the concentration of metal ions 
in the aqueous phase after solvent extraction. Thorium (or 
other metal ions) concentration in the organic phase was, in 
turn, calculated from the difference of initial concentration 
of thorium taken in aqueous phase and the thorium left in 
the aqueous phase after solvent extraction. The data in this 
study were an average of triplicate measurements in mass 
balance within ± 5%. The distribution ratio (D) of metal ions 
was calculated based on the following Eq. (1):

[A336][Cl] [A336][NO3]

Fig. 1  Major structures of [A336][Cl] and  [A336][NO3] ionic liquids
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The extraction efficiency (%E) was determined by using 
Eq. (2):

where [Mn+]org represents the concentrations of metal ions 
in the loaded organic phase and [Mn+]aq represents the con-
centrations of metal ions in the aqueous phase after the 
equilibrium.

The separation factor (SF) was calculated as Eq. (3):

where DTh(IV) represents the distribution ratio of Th(IV) 
ions and DLn(III) represents the distribution ration of La(III), 
Eu(III) and Lu(III) ions, respectively.

Results and discussion

Effect of contacting time

The extraction kinetics of Th(IV) was investigated by 
5.04 × 10−4 M in 4.0 M  HNO3 solution contacting with 
0.05 M  [A336][NO3] in xylene. It is distinct from Fig. 2 
that the extraction efficiency of Th(IV) increases quickly 
with increasing of contacting time, and almost reached 

(1)D =
[Mn+]org

[Mn+]aq

(2)%E =
[Mn+]org

[Mn+]aq + [Mn+]org
× 100%

(3)SF =
DTh(IV)

DLn(III)

equilibrium after 10 min. Further extending time to 20 min, 
no obvious change in %E is observed. The result indicated 
that 20 min is sufficient up to equilibrium for the extraction 
process. Thus, 20 min of equilibration time of two phases 
have been employed for all the following extraction process 
to ensure the complete extraction.

Effect of diluents and  HNO3 concentration

The appropriate solvent plays an important role in perform-
ing a satisfactory extraction process. The expected proper-
ties of extraction solvents are high distribution ratio, good 
solubility to extractant and low solubility in water. Initially, 
the extraction behavior of Th(IV) ions in several organic 
solvents, such as chloroform  (CHCl3), 1,2-dichloralethane 
 (CH2ClCH2Cl), xylene and dichloromethane  (CH2Cl2) were 
studied as a function of the  HNO3 concentration (1.0–6.0 M) 
in the aqueous phase. Apolar and weak polar solvents are 
preferred because of quick separation between the dilu-
ent and the aqueous phase. The concentration of  HNO3 
had a significant impact on the extraction efficiency of 
thorium(IV), and the distribution ratios of DTh(IV) increased 
with the increase of nitric acid concentration for all the dilu-
ents used. As shown in Fig. 3, the extraction efficiency for all 
diluents reached the highest levels when 6.0 M  HNO3 was 
employed as the result of aqueous solution. It can be also 
observed that xylene had the highest extraction efficiency 
compared to the other solvents used. Besides, the extraction 
efficiency of thorium(IV) by pure  [A336][NO3] was also 
investigated, and an outstanding DTh(IV) values higher than 
2000 was obtained under high acidity. However, it is distinct 
that the high viscosity of  [A336][NO3] hinders the extraction 
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Fig. 2  Equilibrium time on Th(IV) extraction in  HNO3 media. Aque-
ous phase: [Th(IV)] = 5.04 × 10−4 M,  [HNO3] = 4.0 M; Organic phase: 
0.05 M  [A336][NO3] in xylene
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Fig. 3  Effect of diluents and concentration of  HNO3 in the feed 
solution. Aqueous phase: [Th(IV)] = 5.04 × 10−4 M; Organic phase: 
0.10 M  [A336][NO3] in various diluents
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process due to the poor mass transfer. The complete equi-
librium was extended to an increasingly longer 60 min in 
pure  [A336][NO3] system. Therefore, because of the high 
compatibility, low volatility, excellent solubility and shorter 
equilibrium time as well as excellent extractability, the weak 
polar xylene was selected for the subsequent experiments.

Effect of extractant content and  HNO3 concentration

More experiments were performed for a comprehensive 
understanding of the extraction process of thorium(IV) ion. 
Figure 4 represents the relation between  HNO3 concentra-
tion and distribution ratio of Th(IV) by using 0.10, 0.15, 
0.20, 0.30, 0.40 and 0.50 M  [A336][NO3] in xylene from 
aqueous  HNO3 solutions containing Th(IV) ions. In order 
to investigate the effect of  [A336][NO3] concentration on 
extraction efficiency, several experiments were carried out 
with the  HNO3 concentration ranged from 1.0 to 6.0 mol/L. 
It was clear that the extraction efficiency for all diluents 
reached the highest levels when 6.0 M  HNO3 was employed 
as the result of aqueous solution. The distribution ratio of 
Th(IV) using 6.0 M nitric acid increased from 68.79 to 
1105 with the increase of  [A336][NO3] concentration from 
0.10 to 0.50 M. Similar to the distribution ratio, the extrac-
tion efficiency of Th(IV) increases from 98.57% to almost 
100% after 20 min equilibrium. It was worth noting that, 
using 0.5 M  [A336][NO3], the distribution ratio of Th(IV) 
reached almost 91.83 even in 1 M nitric acid medium. In 
addition, when the ionic liquid concentration increased from 
0.2 to 0.5 M, the distribution ratio showed a rapid increase. 
We hypothesized that  [A336][NO3] ionic liquids are more 
likely to form trimers at high concentrations, thus resulting 

in higher extraction efficiency. All the above results indicate 
that the content of  [A336][NO3] in the organic phase has a 
positive effect on the Th(IV) extraction efficiency. Due to 
the excellent performance in the present system, the extrac-
tion mechanisms of  [A336][NO3] in xylene for Th(IV) were 
further investigated.

Extraction mechanism

Slope analysis is the most commomly used method for 
the determination of the number of extractant molecules 
involved in the extraction process. A slope analysis was per-
formed by extracting 5.04 × 10−4 M Th(IV) ions in aqueous 
phase using  [A336][NO3] as extractant. In the meantime, 
xylene was chosen as organic phase but the total volume of 
the organic phase was kept constant. Figure 5 showed the 
variation in the distribution ratio of Th(IV) as a function of 
ionic liquid concentration in organic phase. It is observed 
that the DTh increased with the increase in the concentration 
of ionic liquid. Linear regression analysis of the extraction 
data resulted in a slope of ca. 2 at different acidity, which 
is in agreement with the result reported [1]. The previous 
mechanism for extraction of thorium by Aliquat 336 was 
written as Eq. (4):

 
To establish the extraction equilibrium of the sys-

tem, the main extractable species should be considered. 
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Fig. 4  Effect of the concentration of extractant. Aqueous phase: 
[Th(IV)] = 5.04 × 10−4 M; Organic phase:  [A336][NO3] in xylene 
with various concentration
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Therefore, the determining ESI–MS of organic phase 
was performed before or after extraction of Th(IV) with 
 [A336][NO3] in the present study. The data were acquired 
on a Bruker microOTOF-QII system. In positive ion mode 
of mass spectrometry (Fig. 6), peak at m/z 798.8356 can 
be observed using organic phase after the extraction, 
which is corresponding to the representative extracted 
species ([(A336)2(NO3)]+, calcd. m/z: 798.8391). Simi-
larly, peak at m/z 541.9790 (Fig. 7) could be assigned 

to the corresponding negative ions ([(Th(NO3)5]−, calcd. 
m/z: 542.0626). Using the organic phase before extrac-
tion, peaks at m/z 798.8365 (Fig. 8) as [(A336)2(NO3)]+ 
were also observed in positive ion mode. Peak at m/z 
492.3919 (Fig. 9) could be explicitly assigned to the cor-
responding negative ions ([(A336)(NO3)2]−, calcd. m/z: 
492.4013). The above results suggest that the first tri-
merization of  [A336][NO3] partially forms the trimeric 
species ([(A336)2(NO3)]+[(A336)(NO3)2]−) to participate 

Fig. 6  High-resolution ESI positive mass spectrum of xylene after extraction of Th(IV) ions with  [A336][NO3]

Fig. 7  High-resolution ESI negative mass spectrum of xylene after extraction of Th(IV) ions with  [A336][NO3]

Fig. 8  High-resolution ESI positive mass spectrum of xylene before extraction of Th(IV) ions with  [A336][NO3]
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into the extraction reaction. Although Nasab [1] presumed 
that the thorium complex was extracted with two mol-
ecules of Aliquat 336, and the extractable complex of 
Th(NO3)6

2− involved in the extraction reaction. Clearly, no 
peak was corresponding to Th(NO3)6

2− in our study by the 
ESI mass spectrum. It indicates that the ion-pairing inter-
actions between various charged organic or inorganic spe-
cies are more complex than those represented in Eq. (3). 
According to the above results, the extraction equilibrium 
for thorium can be represented by the following updated 
reactions rather than the reported Eq. (4):

    

Extraction of Th(IV) from a mixture solution

To test the selectivity of the present extractant, a competitive 
extraction of Th(IV) was investigated from a mixture solu-
tion containing thorium(IV), lanthanide(III), europium(III) 
and lutetium(III) using  [A336][NO3] in xylene. As showed 
in Fig. 10, the present extraction system exhibited a high 
affinity to tetravalent thorium ion at high acidity. When 
 HNO3 concentration reached up to 6.0 mol/L, the distribu-
tion ratios of Th(IV) was as high as 1000. In the meantime, 
the extraction of La(III), Eu(III) and Lu(III) is negligible 
and nearly invariable with  HNO3 concentration ranging 
from 1.0 M to 6.0 M. It is clear from Fig. 10 that the selec-
tive extractions were accomplished in the order: Th (IV) ≫ 
La(III) ≈ Eu(III) ≈ Lu(III). As listed in Table 1, the good to 
excellent separation factor (SF) between Th(IV) and typical 
rare earths was obtained in the  [A336][NO3]-xylene sys-
tem. The highest separation factor (SF) values of Th(IV)/
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La(III), Th(IV)/Eu(III) and Th(IV)/Lu(III) were reached in 
8.78 × 103, 9.01 × 103 and 8.80 × 103, respectively. There-
fore, it is possible to separate Th(IV) from rare earths by 
the  [A336][NO3] ionic liquid.

Stripping properties

After the extraction at 6.0 M  HNO3, the organic phase 
(initial concentration of  [A336][NO3] was 0.50 M) loaded 
with Th(IV) was back-extracted using different reagents 
such as diluted  HNO3,  Na2SO4,  NaNO3 as well as pure 
water. As showed in Table 2, the loaded thorium could 
be easily stripped using the above reagents. The strip-
ping efficiency for 0.1 M  HNO3, 1.0 M  Na2SO4, 1.0 M 
 NaNO3, pure water was 94.5, 99.6, 95.4, 94.4 at one 
stage, respectively. It can be attributed to not easily form 

Fig. 9  High-resolution ESI negative mass spectrum of xylene before extraction of Th(IV) ion with  [A336][NO3]

Fig. 10  Comparison of the extraction of Th(IV) and typi-
cal rare earths. Aqueous phase:[Th(IV)] = 5.04 × 10−4 
M, [La(III)] = 5.02 × 10−4 M, [Eu(III)] = 5.04 × 10−4 M, 
[Lu(III)] = 5.02 × 10−4 M; Organic phase: 0.10  M  [A336][NO3] in 
xylene
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[(Th(NO3)5]− complex anions at low acidity. Among these, 
1.0 M  Na2SO4 seems to be the most effective stripping 
reagent, and almost a complete stripping (100%) of Th(IV) 
can be achieved by twice contacts.

Conclusions

The present study proposed a facile liquid–liquid extrac-
tion method for separation of thorium and rare earth ele-
ments. The optimum conditions for thorium separations 
from lanthanum, europium and lutetium were investigated 
using  [A336][NO3] in nitric acid solution. The distribution 
ratios (D) of Th(IV) increased with increasing the concen-
tration of  HNO3.  [A336][NO3] exhibited a high selectiv-
ity and extraction power for Th(IV) over Lanthanides(III) 
in high  HNO3 concentration. The slope analysis method 
was conducted to investigate the ion-association extraction 
mechanisms. A novel extraction mechanisms were unex-
pectedly observed. The trimer of  [A336][NO3] was con-
firmed to involve into the extraction reaction by ESI–MS 
spectrum before and after the extraction. Complete strip-
ping and regeneration of the ionic liquid could be per-
formed by using several chemicals or pure water by a sin-
gle or twice contact. The extraction efficiency of La(III), 
Lu(III) and Eu(III) by  [A336][NO3] are much lower than 
Th(IV) at high acidity, which means that the present sys-
tem can be developed to separate thorium from lanthanum, 
lutetium or europium.
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